Metabolomic Investigation of Myelodysplastic Syndromes, Multiple Myeloma, and Homozygous β-Thalassemia
Abstract
1. Introduction
1.1. Background
1.2. Hematopoietic System, Aging, and Metabolomics Research
2. The Role of Metabolism Dysregulation in Myelodysplastic Syndromes
2.1. Metabolomic Pathophysiology and Pathogenesis
2.1.1. Alterations and Potential Therapeutic Value of Glucose Metabolism
2.1.2. Alterations in Amino Acid and Fatty Acid Metabolic Changes
2.1.3. Iron Metabolic Alterations
2.2. Metabolism-Targeting Approaches in MDS Therapeutics
3. Multiple Myeloma
3.1. The Need for Novel MM Therapeutic Targets in the Elderly
3.2. Targeting Glucose Metabolism in MM
3.3. Targeting Lipid Metabolism in MM
3.4. Targeting Amino Acid Metabolism in MM
3.5. The Role of Iron Metabolism in MM
4. B-Thalassemia
4.1. B-Thalassemia Is a Disease Model of Accelerating Cellular Aging
4.2. Metabolic Alterations in β-Thalassemia Patients
4.3. Metabolite Patterns Implicated in the Different Therapeutic Options for β-Thalassemia
4.3.1. Chronic Transfusions
4.3.2. Hydroxyurea
4.3.3. Mitapivat
4.4. Targeting Mitochondrial Metabolism in β-Thalassemia: A Novel Promising Metabolic-Related Approach
4.5. Targeting Iron Metabolism
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaskell, H.; Derry, S.; Andrew Moore, R.; McQuay, H.J. Prevalence of Anaemia in Older Persons: Systematic Review. BMC Geriatr. 2008, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Blanc, B. Nutritional Anaemias. Report of a WHO Scientific Group. WHO Tech. Rep. Ser. 1968, 405, 5. [Google Scholar]
- Shavelle, R.M.; MacKenzie, R.; Paculdo, D.R. Anemia and Mortality in Older Persons: Does the Type of Anemia Affect Survival? Int. J. Hematol. 2012, 95, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Stauder, R.; Valent, P.; Theurl, I. Anemia at Older Age: Etiologies, Clinical Implications, and Management. Blood 2018, 131, 505–514. [Google Scholar] [CrossRef]
- Schneider, A.; Jonassaint, C.; Sharrett, A.; Mosley, T.; Astor, B.; Selvin, E.; Coresh, J.; Gottesman, R. Hemoglobin, Anemia, and Cognitive Function: The Atherosclerosis Risk in Communities Study. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 71, 772–779. [Google Scholar] [CrossRef]
- Al Saeed, M.; Ahmed, S.; Seyadi, K.; Ahmed, A.; Alawi, S.A.; Abulsaad, K. The Prevalence and Impact of Anemia on Hospitalized Older Adults: A Single Center Experience from Bahrain. J. Taibah Univ. Med. Sci. 2022, 17, 587–595. [Google Scholar] [CrossRef]
- Oram, J.F.; Vaughan, A.M. ATP-Binding Cassette Cholesterol Transporters and Cardiovascular Disease. Circ. Res. 2006, 99, 1031–1043. [Google Scholar] [CrossRef]
- Macciò, A.; Madeddu, C. Management of Anemia of Inflammation in the Elderly. Anemia 2012, 2012, 563251. [Google Scholar] [CrossRef]
- Bruserud, Ø.; Vo, A.K.; Rekvam, H. Hematopoiesis, Inflammation and Aging—The Biological Background and Clinical Impact of Anemia and Increased C-Reactive Protein Levels on Elderly Individuals. J. Clin. Med. 2022, 11, 706. [Google Scholar] [CrossRef]
- Creangă, E.-C.; Stan, R.; Nicolae, A.-C.; Drăgoi, C.M.; Dumitrescu, I.-B. Personalized Therapeutic Advances in Erythropoietin Signaling: From Anemia Management to Extensive Clinical Applications. Pharmaceutics 2025, 17, 1190. [Google Scholar] [CrossRef] [PubMed]
- Kondoh, H.; Kameda, M.; Yanagida, M. Whole Blood Metabolomics in Aging Research. Int. J. Mol. Sci. 2021, 22, 175. [Google Scholar] [CrossRef]
- Khanijou, J.K.; Kulyk, H.; Bergès, C.; Khoo, L.W.; Ng, P.; Yeo, H.C.; Helmy, M.; Bellvert, F.; Chew, W.; Selvarajoo, K. Metabolomics and Modelling Approaches for Systems Metabolic Engineering. Metab. Eng. Commun. 2022, 15, e00209. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small Molecule Metabolites: Discovery of Biomarkers and Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef]
- Hamany Djande, C.Y.; Pretorius, C.; Tugizimana, F.; Piater, L.A.; Dubery, I.A. Metabolomics: A Tool for Cultivar Phenotyping and Investigation of Grain Crops. Agronomy 2020, 10, 831. [Google Scholar] [CrossRef]
- Tsoukalas, D.; Sarandi, E.; Fragoulakis, V.; Xenidis, S.; Mhliopoulou, M.; Charta, M.; Paramera, E.; Papakonstantinou, E.; Tsatsakis, A. Metabolomics-Based Treatment for Chronic Diseases: Results from a Multidisciplinary Clinical Study. BMJ Nutr. Prev. Health 2024, 7, 357–365. [Google Scholar] [CrossRef]
- Arvanitakis, K.; Chatzikalil, E.; Kalopitas, G.; Patoulias, D.; Popovic, D.S.; Metallidis, S.; Kotsa, K.; Germanidis, G.; Koufakis, T. Metabolic Dysfunction-Associated Steatotic Liver Disease and Polycystic Ovary Syndrome: A Complex Interplay. J. Clin. Med. 2024, 13, 4243. [Google Scholar] [CrossRef]
- Chatzikalil, E.; Asvestas, D.; Tzeis, S.; Solomou, E.E. Clonal Hematopoiesis of Intermediate Potential in Atrial Fibrillation: A Critical View of Current Knowledge as a Springboard for Future Research. Diagnostics 2025, 15, 1915. [Google Scholar] [CrossRef] [PubMed]
- Chatzikalil, E.; Arvanitakis, K.; Filippatos, F.; Diamantopoulos, P.T.; Koufakis, T.; Solomou, E.E. Diagnostic and Therapeutic Implications of the SUMOylation Pathway in Acute Myeloid Leukemia. Cancers 2025, 17, 631. [Google Scholar] [CrossRef]
- Chatzikalil, E.; Kattamis, A.; Diamantopoulos, P.; Solomou, E.E. New-Onset Aplastic Anemia after SARS-CoV-2 Vaccination. Int. J. Hematol. 2023, 118, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Chatzikalil, E.; Roka, K.; Diamantopoulos, P.T.; Rigatou, E.; Avgerinou, G.; Kattamis, A.; Solomou, E.E. Venetoclax Combination Treatment of Acute Myeloid Leukemia in Adolescents and Young Adult Patients. J. Clin. Med. 2024, 13, 2046. [Google Scholar] [CrossRef]
- Kaiser, L.; Weinschrott, H.; Quint, I.; Blaess, M.; Csuk, R.; Jung, M.; Kohl, M.; Deigner, H.-P. Metabolite Patterns in Human Myeloid Hematopoiesis Result from Lineage-Dependent Active Metabolic Pathways. Int. J. Mol. Sci. 2020, 21, 6092. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, P.; Howell, P.R.; Anderson, R.M. Aging and Caloric Restriction Research: A Biological Perspective With Translational Potential. eBioMedicine 2017, 21, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Shyh-Chang, N.; Daley, G.Q.; Cantley, L.C. Stem Cell Metabolism in Tissue Development and Aging. Development 2013, 140, 2535–2547. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Sun, S.; Geng, L.; Song, M.; Wang, W.; Ye, Y.; Ji, Q.; Zou, Z.; Wang, S.I.; He, X. Caloric Restriction Reprograms the Single-Cell Transcriptional Landscape of Rattus Norvegicus Aging. Cell 2020, 180, 984–1001. [Google Scholar] [CrossRef]
- Hennrich, M.L.; Romanov, N.; Horn, P.; Jaeger, S.; Eckstein, V.; Steeples, V.; Ye, F.; Ding, X.; Poisa-Beiro, L.; Lai, M.C. Cell-Specific Proteome Analyses of Human Bone Marrow Reveal Molecular Features of Age-Dependent Functional Decline. Nat. Commun. 2018, 9, 4004. [Google Scholar] [CrossRef]
- Comi, T.J.; Do, T.D.; Rubakhin, S.S.; Sweedler, J. V Categorizing Cells on the Basis of Their Chemical Profiles: Progress in Single-Cell Mass Spectrometry. J. Am. Chem. Soc. 2017, 139, 3920–3929. [Google Scholar] [CrossRef]
- Li, S.; Vazquez, J.M.; Sudmant, P.H. The Evolution of Aging and Lifespan. Trends Genet. 2023, 39, 830–843. [Google Scholar] [CrossRef]
- Lokhov, P.G.; Balashova, E.E.; Maslov, D.L.; Trifonova, O.P.; Archakov, A.I. Aging and Pathological Conditions Similarity Revealed by Meta-Analysis of Metabolomics Studies Suggests the Existence of the Health and Age-Related Metapathway. Metabolites 2024, 14, 593. [Google Scholar] [CrossRef]
- Fang, W.; Chen, S.; Jin, X.; Liu, S.; Cao, X.; Liu, B. Metabolomics in Aging Research: Aging Markers from Organs. Front. Cell Dev. Biol. 2023, 11, 1198794. [Google Scholar] [CrossRef]
- Madu, A.J.; Ughasoro, M.D. Anaemia of Chronic Disease: An In-Depth Review. Med. Princ. Pract. 2016, 26, 1–9. [Google Scholar] [CrossRef]
- Garcia-Manero, G. Myelodysplastic Syndromes: 2023 Update on Diagnosis, Risk-Stratification, and Management. Am. J. Hematol. 2023, 98, 1307–1325. [Google Scholar] [CrossRef]
- Sanchez-Villalobos, M.; Blanquer Blanquer, M.; Moraleda, J.; Salido, E.; Perez-Oliva, A. New Insights Into Pathophysiology of β-Thalassemia. Front. Med. 2022, 9, 880752. [Google Scholar] [CrossRef]
- Sadiq, I.Z.; Abubakar, F.S.; Usman, H.S.; Abdullahi, A.D.; Ibrahim, B.; Kastayal, B.S.; Ibrahim, M.; Hassan, H.A. Thalassemia: Pathophysiology, Diagnosis, and Advances in Treatment. Thalass. Rep. 2024, 14, 81–102. [Google Scholar] [CrossRef]
- Sekeres, M.; Taylor, J. Diagnosis and Treatment of Myelodysplastic Syndromes: A Review. JAMA 2022, 328, 872. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Sevilla, J.J.; Adema, V.; Garcia-Manero, G.; Colla, S. Emerging Treatments for Myelodysplastic Syndromes: Biological Rationales and Clinical Translation. Cell Rep. Med. 2023, 4, 100940. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, H. Reprogramming of Glucose, Fatty Acid and Amino Acid Metabolism for Cancer Progression. Cell. Mol. Life Sci. 2016, 73, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.S.; Park, C.Y. Aging, Hematopoiesis, and the Myelodysplastic Syndromes. Hematology 2017, 2017, 73–78. [Google Scholar] [CrossRef]
- Kokkaliaris, K.D.; Scadden, D.T. Cell Interactions in the Bone Marrow Microenvironment Affecting Myeloid Malignancies. Blood Adv. 2020, 4, 3795–3803. [Google Scholar] [CrossRef]
- Nakamura-Ishizu, A.; Ito, K.; Suda, T. Hematopoietic Stem Cell Metabolism during Development and Aging. Dev. Cell 2020, 54, 239–255. [Google Scholar] [CrossRef]
- Suda, T.; Takubo, K.; Semenza, G. Metabolic Regulation of Hematopoietic Stem Cells in the Hypoxic Niche. Cell Stem Cell 2011, 9, 298–310. [Google Scholar] [CrossRef]
- Takubo, K.; Goda, N.; Yamada, W.; Iriuchishima, H.; Ikeda, E.; Kubota, Y.; Shima, H.; Johnson, R.S.; Hirao, A.; Suematsu, M.; et al. Regulation of the HIF-1α Level Is Essential for Hematopoietic Stem Cells. Cell Stem Cell 2010, 7, 391–402. [Google Scholar] [CrossRef]
- Pronk, E.; Raaijmakers, M.H.G.P. The Mesenchymal Niche in MDS. Blood 2019, 133, 1031–1038. [Google Scholar] [CrossRef]
- Liu, J.; Gao, J.; Liang, Z.; Gao, C.; Niu, Q.; Wu, F.; Zhang, L. Mesenchymal Stem Cells and Their Microenvironment. Stem Cell Res. Ther. 2022, 13, 429. [Google Scholar] [CrossRef] [PubMed]
- Goulard, M.; Dosquet, C.; Bonnet, D. Role of the Microenvironment in Myeloid Malignancies. Cell. Mol. Life Sci. 2018, 75, 1377–1391. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, S.; Jiang, Q.; Pei, M. Determinants of Stem Cell Lineage Differentiation toward Chondrogenesis versus Adipogenesis. Cell. Mol. Life Sci. 2019, 76, 1653–1680. [Google Scholar] [CrossRef]
- Grayson, W.; Zhao, F.; Bunnell, B.; Ma, T. Hypoxia Enhances Proliferation and Tissue Formation of Human Mesenchymal Stem Cell. Biochem. Biophys. Res. Commun. 2007, 358, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does It Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef]
- Pattappa, G.; Heywood, H.; de Bruijn, J.; Lee, D. The Metabolism of Human Mesenchymal Stem Cells During Proliferation and Differentiation. J. Cell. Physiol. 2011, 226, 2562–2570. [Google Scholar] [CrossRef]
- Stevens, B.; Engel, K.; Gillen, A.; Culp-Hill, R.; D’Alessandro, A.; Alper, S.; Pollyea, D.; Jordan, C. Unique Metabolic Vulnerabilities of Myelodysplastic Syndrome Stem Cells. Blood 2021, 138, 1511. [Google Scholar] [CrossRef]
- Jones, C.L.; Inguva, A.; Jordan, C.T. Targeting Energy Metabolism in Cancer Stem Cells: Progress and Challenges in Leukemia and Solid Tumors. Cell Stem Cell 2021, 28, 378–393. [Google Scholar] [CrossRef]
- Patel, S.B.; Nemkov, T.; D’Alessandro, A.; Welner, R.S. Deciphering Metabolic Adaptability of Leukemic Stem Cells. Front. Oncol. 2022, 12, 846149. [Google Scholar] [CrossRef]
- Richardson, C.; Yan, S.; Vestal, C.G. Oxidative Stress, Bone Marrow Failure, and Genome Instability in Hematopoietic Stem Cells. Int. J. Mol. Sci. 2015, 16, 2366–2385. [Google Scholar] [CrossRef]
- Poulaki, A.; Katsila, T.; Stergiou, I.E.; Giannouli, S.; Gόmez-Tamayo, J.C.; Piperaki, E.-T.; Kambas, K.; Dimitrakopoulou, A.; Patrinos, G.P.; Tzioufas, A.G.; et al. Bioenergetic Profiling of the Differentiating Human MDS Myeloid Lineage with Low and High Bone Marrow Blast Counts. Cancers 2020, 12, 3520. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Zheng, C.; Ou, X.; Zheng, J.; Yu, J.; Chen, S.; Duan, Y.; Liu, W. Glutamine Metabolism in Cancers: Targeting the Oxidative Homeostasis. Front. Oncol. 2022, 12, 994672. [Google Scholar] [CrossRef]
- Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine Reliance in Cell Metabolism. Exp. Mol. Med. 2020, 52, 1496–1516. [Google Scholar] [CrossRef]
- Matre, P.; Velez Lujan, J.; Jacamo, R.; Qi, Y.; Su, X.; Cai, T.; Chan, S.; Lodi, A.; Sweeney, S.; Ma, H.; et al. Inhibiting Glutaminase in Acute Myeloid Leukemia: Metabolic Dependency of Selected AML Subtypes. Oncotarget 2016, 7, 79722. [Google Scholar] [CrossRef] [PubMed]
- Modoux, M.; Rolhion, N.; Mani, S.; Sokol, H. Tryptophan Metabolism as a Pharmacological Target. Trends Pharmacol. Sci. 2020, 42, 60–73. [Google Scholar] [CrossRef]
- Lee, G.K.; Park, H.; MacLeod, M.; Chandler, P.; Munn, D.; Mellor, A. Tryptophan Deprivation Sensitizes Activated T Cells to Apoptosis Prior to Cell Division. Immunology 2003, 107, 452–460. [Google Scholar] [CrossRef]
- Giannattasio, S.; Dri, M.; Merra, G.; Caparello, G.; Rampello, T.; Renzo, L. Effects of Fatty Acids on Hematological Neoplasms: A Mini Review. Nutr. Cancer 2021, 74, 1538–1548. [Google Scholar] [CrossRef] [PubMed]
- Carracedo, A.; Cantley, L.C.; Pandolfi, P.P. Cancer Metabolism: Fatty Acid Oxidation in the Limelight. Nat. Rev. Cancer 2013, 13, 227–232. [Google Scholar] [CrossRef]
- Dang, L.; Yen, K.; Attar, E. IDH Mutations in Cancer and Progress toward Development of Targeted Therapeutics. Ann. Oncol. 2016, 27, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Kirkman, H.; Rolfo, M.; Ferraris, A.; Gaetani, G. Mechanisms of Protection of Catalase by NADPH. J. Biol. Chem. 1999, 274, 13908–13914. [Google Scholar] [CrossRef]
- Chang, L.-C.; Chiang, S.-K.; Chen, S.-E.; Hung, M.-C. Targeting 2-Oxoglutarate Dehydrogenase for Cancer Treatment. Am. J. Cancer Res. 2022, 12, 1436–1455. [Google Scholar]
- Lin, C.-C.; Hou, H.-A.; Chou, W.-C.; Kuo, Y.-Y.; Liu, C.-Y.; Chen, C.-Y.; Lai, Y.-J.; Tseng, M.-H.; Huang, C.-F.; Chiang, Y.-C.; et al. IDH Mutations Are Closely Associated with Mutations of DNMT3A, ASXL1 and SRSF2 in Patients with Myelodysplastic Syndromes and Are Stable during Disease Evolution. Am. J. Hematol. 2014, 89, 137–144. [Google Scholar] [CrossRef]
- Pirozzi, C.; Yan, H. The Implications of IDH Mutations for Cancer Development and Therapy. Nat. Rev. Clin. Oncol. 2021, 18, 645–661. [Google Scholar] [CrossRef]
- Komrokji, R.; Al Ali, N.; Chan, O.; Sweet, K.; Kuykendall, A.; Lancet, J.; Padron, E.; Sallman, D. IDH Mutations Are Enriched in Myelodysplastic Syndrome Patients with Severe Neutropenia and Can Be a Potential for Targeted Therapy. Haematologica 2022, 108, 1168. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, G.; Pantopoulos, K. Disorders Associated with Systemic or Local Iron Overload: From Pathophysiology to Clinical Practice. Metallomics 2011, 3, 971–986. [Google Scholar] [CrossRef] [PubMed]
- Chatzikalil, E.; Arvanitakis, K.; Kalopitas, G.; Florentin, M.; Germanidis, G.; Koufakis, T.; Solomou, E.E. Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches. Cancers 2025, 17, 392. [Google Scholar] [CrossRef]
- Słomka, A.; Pokrzywa, A.; Strzała, D.; Kubiaczyk, M.; Wesołowska, O.; Denkiewicz, K.; Styczynski, J. The Role of Hepcidin in Myelodysplastic Syndromes (MDS): A Systematic Review of Observational Studies. Cancers 2024, 16, 332. [Google Scholar] [CrossRef]
- Kohgo, Y.; Ikuta, K.; Ohtake, T.; Torimoto, Y.; Kato, J. Body Iron Metabolism and Pathophysiology of Iron Overload. Int. J. Hematol. 2008, 88, 7–15. [Google Scholar] [CrossRef]
- Knutson, M.; Wessling-Resnick, M. Iron Metabolism in the Reticuloendothelial System. Crit. Rev. Biochem. Mol. Biol. 2003, 38, 61–88. [Google Scholar] [CrossRef]
- Frascatani, R.; Colella, M.; Monteleone, G. Hepcidin Is a Valuable Therapeutic Target for Colorectal Cancer. Cancers 2024, 16, 4068. [Google Scholar] [CrossRef] [PubMed]
- Ru, Q.; Li, Y.; Chen, L.; Wu, Y.; Min, J.; Wang, F. Iron Homeostasis and Ferroptosis in Human Diseases: Mechanisms and Therapeutic Prospects. Signal Transduct. Target. Ther. 2024, 9, 271. [Google Scholar] [CrossRef]
- Patnaik, M.M.; Tefferi, A. Myelodysplastic Syndromes with Ring Sideroblasts (MDS-RS) and MDS/Myeloproliferative Neoplasm with RS and Thrombocytosis (MDS/MPN-RS-T)—“2021 Update on Diagnosis, Risk-Stratification, and Management”. Am. J. Hematol. 2021, 96, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Stoian, I.; Manolescu, B.; Atanasiu, V.; Lupescu, O.; Busu, C. IL-6-STAT-3-Hepcidin: Linking Inflammation to the Iron Metabolism. Rom. J. Intern. Med. 2007, 45, 305–309. [Google Scholar]
- Coffey, R.; Jung, G.; Olivera, J.D.; Karin, G.; Pereira, R.C.; Nemeth, E.; Ganz, T. Erythroid Overproduction of Erythroferrone Causes Iron Overload and Developmental Abnormalities in Mice. Blood 2022, 139, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Ambaglio, I.; Malcovati, L.; Papaemmanuil, E.; Laarakkers, C.; Porta, M.; Gallì, A.; Da Vià, M.; Bono, E.; Ubezio, M.; Travaglino, E.; et al. Inappropriately Low Hepcidin Levels in Patients with Myelodysplastic Syndrome Carrying a Somatic Mutation of SF3B1. Haematologica 2013, 98, 420. [Google Scholar] [CrossRef]
- Camaschella, C.; Nai, A.; Silvestri, L. Iron Metabolism and Iron Disorders Revisited in the Hepcidin Era. Haematologica 2020, 105, 260–272. [Google Scholar] [CrossRef]
- Seiler, K.; Humbert, M.; Minder, P.; Mashimo, I.; Schläfli, A.; Krauer-Shan, D.; Federzoni, E.; Vu, B.; Moresco, J.; Yates, J.; et al. Hexokinase 3 Enhances Myeloid Cell Survival via Non-Glycolytic Functions. Cell Death Dis. 2022, 13, 448. [Google Scholar] [CrossRef]
- Sheng, H. Glycolysis Inhibitors for Anticancer Therapy: A Review of Recent Patents. Recent Pat. Anticancer. Drug Discov. 2016, 11, 297–308. [Google Scholar] [CrossRef]
- Zhou, R.-Q.; Wang, X.; Ye, Y.-B.; Lu, B.; Wang, J.; Guo, Z.-W.; Mo, W.-J.; Yang, Z.; Srisuk, P.; Yan, L.-P.; et al. Prevention of Acute Graft-vs.-host Disease by Targeting Glycolysis and MTOR Pathways in Activated T Cells. Exp. Ther. Med. 2022, 24, 448. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Jiang, Y.; Zhang, X.-H.; Wang, X.-R.; Wei, R.; Qin, K.; Lu, Y. SUMOylation Disassembles the Tetrameric Pyruvate Kinase M2 to Block Myeloid Differentiation of Leukemia Cells. Cell Death Dis. 2021, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, L.; Yang, Z.; Tang, Y.; Tao, Y.; Zhan, Q.; Lei, L.; Jing, Y.; Jiang, X.; Jin, H.; et al. Glycolytic Enzyme PKM2 Mediates Autophagic Activation to Promote Cell Survival in NPM1-Mutated Leukemia. Int. J. Biol. Sci. 2019, 15, 882–894. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Guo, J.; Li, Q.; Long, J.; Ma, C.; Ding, Y.; Yan, C.; Li, L.; Wu, Z.; et al. Natural Product Micheliolide (MCL) Irreversibly Activates Pyruvate Kinase M2 and Suppresses Leukemia. J. Med. Chem. 2018, 61, 4155–4164. [Google Scholar] [CrossRef]
- DiNardo, C.; Verma, D.; Baran, N.; Bhagat, T.; Skwarska, A.; Lodi, A.; Saxena, K.; Cai, T.; Su, X.; Guerra, V.; et al. Glutaminase Inhibition in Combination with Azacytidine in Myelodysplastic Syndromes: A Phase 1b/2 Clinical Trial and Correlative Analyses. Nat. Cancer 2024, 5, 1515–1533. [Google Scholar] [CrossRef]
- Testa, U.; Castelli, G.; Pelosi, E. Isocitrate Dehydrogenase Mutations in Myelodysplastic Syndromes and in Acute Myeloid Leukemias. Cancers 2020, 12, 2427. [Google Scholar] [CrossRef] [PubMed]
- Gbyli, R.; Song, Y.; Liu, W.; Gao, Y.; Biancon, G.; Chandhok, N.; Wang, X.; Fu, X.; Patel, A.; Sundaram, R.; et al. In Vivo Anti-Tumor Effect of PARP Inhibition in IDH1/2 Mutant MDS/AML Resistant to Targeted Inhibitors of Mutant IDH1/2. Leukemia 2022, 36, 1313–1323. [Google Scholar] [CrossRef]
- Sebert, M.; Cluzeau, T.; Rauzy, O.B.; Bastard, A.S.; Dimicoli-Salazar, S.; Thepot, S.; Peterlin, P.; Park, S.; Gourin, M.-P.; Brehar, O. Ivosidenib Monotherapy Is Effective in Patients with IDH1 Mutated Myelodysplastic Syndrome (MDS): The Idiome Phase 2 Study by the GFM Group. Blood 2021, 138, 62. [Google Scholar] [CrossRef]
- Stempel, J.M.; Kewan, T.; Zeidan, A.M. Advances and Challenges in the Management of Myelodysplastic Syndromes. Cancers 2025, 17, 2469. [Google Scholar] [CrossRef]
- Stein, E.M.; Fathi, A.T.; DiNardo, C.D.; Pollyea, D.A.; Roboz, G.J.; Collins, R.; Sekeres, M.A.; Stone, R.M.; Attar, E.C.; Frattini, M.G. Enasidenib in Patients with Mutant IDH2 Myelodysplastic Syndromes: A Phase 1 Subgroup Analysis of the Multicentre, AG221-C-001 Trial. Lancet Haematol. 2020, 7, e309–e319. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Venugopal, S.; Lachowiez, C.; Takahashi, K.; Loghavi, S.; Montalban-Bravo, G.; Wang, X.; Carraway, H.; Sekeres, M.; Sukkur, A. Targeted Therapy with the Mutant IDH2 Inhibitor Enasidenib for High-Risk IDH2-Mutant Myelodysplastic Syndrome. Blood Adv. 2023, 7, 2378–2387. [Google Scholar] [CrossRef] [PubMed]
- Leitch, H.; Leger, C.; Goodman, T.; Wong, K.; Wong, D.; Ramadan, K.; Rollins, M.; Barnett, M.; Galbraith, P.; Vickars, L. Improved Survival in Patients with Myelodysplastic Syndrome Receiving Iron Chelation Therapy. Clin. Leuk. 2008, 2, 205–211. [Google Scholar] [CrossRef]
- DivakarJose, R.R.; Delhikumar, C.G.; Ram Kumar, G. Efficacy and Safety of Combined Oral Chelation with Deferiprone and Deferasirox on Iron Overload in Transfusion Dependent Children with Thalassemia—A Prospective Observational Study. Indian J. Pediatr. 2020, 88, 330–335. [Google Scholar] [CrossRef]
- Sandnes, M.; Reikvam, H. Hepcidin as a Therapeutic Target in Iron Overload. Expert Opin. Ther. Targets 2024, 28, 1039–1046. [Google Scholar] [CrossRef]
- Li, X.; Zou, C.; Xiang, X.; Zhao, L.; Chen, M.; Yang, C.; Wu, Y. Myelodysplastic Neoplasms (MDS): Pathogenesis and Therapeutic Prospects. Biomolecules 2025, 15, 761. [Google Scholar] [CrossRef]
- Oliva, E.N.; Huey, K.; Deshpande, S.; Turner, M.; Chitnis, M.; Schiller, E.; Tang, D.; Yucel, A.; Hughes, C.; Shah, F. A Systematic Literature Review of the Relationship between Serum Ferritin and Outcomes in Myelodysplastic Syndromes. J. Clin. Med. 2022, 11, 895. [Google Scholar] [CrossRef]
- Durairaj, S.; Chew, S.; Hyslop, A.; Keenan, N.; Groves, M.J.; Tauro, S. Predicted Costs of Iron-chelators in Myelodysplastic Syndromes: A 10-year Analysis Based on Actual Prevalence and Red Cell Transfusion Rates. Am. J. Hematol. 2011, 86, 406–410. [Google Scholar] [CrossRef]
- Efficace, F.; Santini, V.; La Nasa, G.; Cottone, F.; Finelli, C.; Borin, L.; Quaresmini, G.; Di Tucci, A.A.; Volpe, A.; Cilloni, D. Health-Related Quality of Life in Transfusion-Dependent Patients with Myelodysplastic Syndromes: A Prospective Study to Assess the Impact of Iron Chelation Therapy. BMJ Support. Palliat. Care 2016, 6, 80–88. [Google Scholar] [CrossRef]
- Malard, F.; Neri, P.; Bahlis, N.J.; Terpos, E.; Moukalled, N.; Hungria, V.T.M.; Manier, S.; Mohty, M. Multiple Myeloma. Nat. Rev. Dis. Prim. 2024, 10, 45. [Google Scholar] [CrossRef]
- Utley, A.; Lipchick, B.; Lee, K.P.; Nikiforov, M.A. Targeting Multiple Myeloma through the Biology of Long-Lived Plasma Cells. Cancers 2020, 12, 2117. [Google Scholar] [CrossRef]
- Forster, S.; Radpour, R.; Ochsenbein, A.F. Molecular and Immunological Mechanisms of Clonal Evolution in Multiple Myeloma. Front. Immunol. 2023, 14, 1243997. [Google Scholar] [CrossRef]
- Yang, P.; Qu, Y.; Wang, M.; Chu, B.; Chen, W.; Zheng, Y.; Niu, T.; Qian, Z. Pathogenesis and Treatment of Multiple Myeloma. MedComm 2022, 3, e146. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Yang, D.; Li, H.; Niu, T.; Tong, A. Multiple Myeloma: Signaling Pathways and Targeted Therapy. Mol. Biomed. 2024, 5, 25. [Google Scholar] [CrossRef]
- Facon, T.; Leleu, X.; Manier, S. How I Treat Multiple Myeloma in Geriatric Patients. Blood 2024, 143, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Dima, D.; Jiang, D.; Singh, D.J.; Hasipek, M.; Shah, H.S.; Ullah, F.; Khouri, J.; Maciejewski, J.P.; Jha, B.K. Multiple Myeloma Therapy: Emerging Trends and Challenges. Cancers 2022, 14, 4082. [Google Scholar] [CrossRef] [PubMed]
- Ito, S. Proteasome Inhibitors for the Treatment of Multiple Myeloma. Cancers 2020, 12, 265. [Google Scholar] [CrossRef]
- Zhou, X.; He, R.; Hu, W.-X.; Luo, S.; Hu, J. Targeting Myeloma Metabolism: How Abnormal Metabolism Contributes to Multiple Myeloma Progression and Resistance to Proteasome Inhibitors. Neoplasia 2024, 50, 100974. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Wang, J.; Guo, X.; Song, Y.; Fu, K.; Gao, Z.; Liu, D.; He, W.; Yang, L.-L. Energy Metabolism in Health and Diseases. Signal Transduct. Target. Ther. 2025, 10, 69. [Google Scholar] [CrossRef]
- Cisewski, S.E.; Zhang, L.; Kuo, J.; Wright, G.J.; Wu, Y.; Kern, M.J.; Yao, H. The Effects of Oxygen Level and Glucose Concentration on the Metabolism of Porcine TMJ Disc Cells. Osteoarthr. Cartil. 2015, 23, 1790–1796. [Google Scholar] [CrossRef]
- Drochioiu, G. Multifactorial Distress, the Warburg Effect, and Respiratory and PH Imbalance in Cancer Development. Stresses 2023, 3, 500–528. [Google Scholar] [CrossRef]
- Revheim, M.-E.; Stokke, C.; Nørgaard, J.N.; Phillips, H.F.; Sherwani, A.G.; Schjesvold, F.; Connelly, J.P. New Targets for PET Imaging of Myeloma. Hemato 2021, 2, 727–738. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, T.; Doh, H.M.; Trinh, K.R.; Catapang, A.; Lee, J.T.; Braas, D.; Bayley, N.A.; Yamada, R.E.; Vasuthasawat, A.; et al. An HK2 Antisense Oligonucleotide Induces Synthetic Lethality in HK1−HK2+ Multiple Myeloma. Cancer Res. 2019, 79, 2748–2760. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shen, X.; Yan, Y.; Li, H. Pyruvate Dehydrogenase Kinases (PDKs): An Overview toward Clinical Applications. Biosci. Rep. 2021, 41, BSR20204402. [Google Scholar] [CrossRef] [PubMed]
- Tataranni, T.; Agriesti, F.; Pacelli, C.; Ruggieri, V.; Laurenzana, I.; Mazzoccoli, C.; Della Sala, G.; Panebianco, C.; Pazienza, V.; Capitanio, N.; et al. Dichloroacetate Affects Mitochondrial Function and Stemness-Associated Properties in Pancreatic Cancer Cell Lines. Cells 2019, 8, 478. [Google Scholar] [CrossRef]
- Roh, J.-L.; Park, J.Y.; Kim, E.H.; Jang, H.J.; Kwon, M. Activation of Mitochondrial Oxidation by PDK2 Inhibition Reverses Cisplatin Resistance in Head and Neck Cancer. Cancer Lett. 2016, 371, 20–29. [Google Scholar] [CrossRef]
- Barba, I.; Carrillo-Bosch, L.; Seoane, J. Targeting the Warburg Effect in Cancer: Where Do We Stand? Int. J. Mol. Sci. 2024, 25, 3142. [Google Scholar] [CrossRef]
- Arponen, M.; Jalava, N.; Widjaja, N.; Ivaska, K.K. Glucose Transporters GLUT1, GLUT3, and GLUT4 Have Different Effects on Osteoblast Proliferation and Metabolism. Front. Physiol. 2022, 13, 1035516. [Google Scholar] [CrossRef]
- Dalva-Aydemir, S.; Bajpai, R.; Martinez, M.; Adekola, K.U.A.; Kandela, I.; Wei, C.; Singhal, S.; Koblinski, J.E.; Raje, N.S.; Rosen, S.T.; et al. Targeting the Metabolic Plasticity of Multiple Myeloma with FDA-Approved Ritonavir and Metformin. Clin. Cancer Res. 2015, 21, 1161–1171. [Google Scholar] [CrossRef]
- Abdollahi, P.; Vandsemb, E.N.; Elsaadi, S.; Røst, L.M.; Yang, R.; Hjort, M.A.; Andreassen, T.; Misund, K.; Slørdahl, T.S.; Rø, T.B.; et al. Phosphatase of Regenerating Liver-3 Regulates Cancer Cell Metabolism in Multiple Myeloma. FASEB J. 2021, 35, e21344. [Google Scholar] [CrossRef]
- Tan, X.-Q.; Guo, A.-Y.; Zheng, L.-F.; Xiong, J. Research Progress on FOXM1 in Ovarian Cancer Diagnosis and Therapeutics. Front. Oncol. 2025, 15, 1598868. [Google Scholar] [CrossRef]
- Singh, M.K.; Han, S.; Kim, S.; Kang, I. Targeting Lipid Metabolism in Cancer Stem Cells for Anticancer Treatment. Int. J. Mol. Sci. 2024, 25, 1185. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, K.; Chatzikalil, E.; Antza, C.; Topalidis, C.; Kalopitas, G.; Solomou, E.; Kotsis, V.; Germanidis, G.; Koufakis, T.; Doumas, M. Pediatric Familial Hypercholesterolemia: Targeting Intestinal Absorption and Other Therapeutic Strategies. Nutrients 2025, 17, 2357. [Google Scholar] [CrossRef] [PubMed]
- Butler, L.M.; Perone, Y.; Dehairs, J.; Lupien, L.E.; de Laat, V.; Talebi, A.; Loda, M.; Kinlaw, W.B.; Swinnen, J.V. Lipids and Cancer: Emerging Roles in Pathogenesis, Diagnosis and Therapeutic Intervention. Adv. Drug Deliv. Rev. 2020, 159, 245–293. [Google Scholar] [CrossRef]
- Duan, Y.; Gong, K.; Xu, S.; Zhang, F.; Meng, X.; Han, J. Regulation of Cholesterol Homeostasis in Health and Diseases: From Mechanisms to Targeted Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 265. [Google Scholar] [CrossRef] [PubMed]
- Cuyàs, E.; Pedarra, S.; Verdura, S.; Pardo, M.A.; Espin Garcia, R.; Serrano-Hervás, E.; Llop-Hernández, À.; Teixidor, E.; Bosch-Barrera, J.; López-Bonet, E.; et al. Fatty Acid Synthase (FASN) Is a Tumor-Cell-Intrinsic Metabolic Checkpoint Restricting T-Cell Immunity. Cell Death Discov. 2024, 10, 417. [Google Scholar] [CrossRef]
- Chen, M.; Huang, J. The Expanded Role of Fatty Acid Metabolism in Cancer: New Aspects and Targets. Precis. Clin. Med. 2019, 2, 183–191. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, Q.; Halim, A.; Song, G. Targeting Lipid Metabolism of Cancer Cells: A Promising Therapeutic Strategy for Cancer. Cancer Lett. 2017, 401, 39–45. [Google Scholar] [CrossRef]
- Delmas, D.; Cotte, A.K.; Connat, J.-L.; Hermetet, F.; Bouyer, F.; Aires, V. Emergence of Lipid Droplets in the Mechanisms of Carcinogenesis and Therapeutic Responses. Cancers 2023, 15, 4100. [Google Scholar] [CrossRef]
- Diedrich, J.D.; Herroon, M.K.; Rajagurubandara, E.; Podgorski, I. The Lipid Side of Bone Marrow Adipocytes: How Tumor Cells Adapt and Survive in Bone. Curr. Osteoporos. Rep. 2018, 16, 443–457. [Google Scholar] [CrossRef]
- Li, J.; Zhao, J.; Wang, S.; Wu, R.; Duan, S.; Wang, H. A Case Report of IgA-κ Type Multiple Myeloma Complicated With Hyperlipidemia. Clin. Case Rep. 2025, 13, e70309. [Google Scholar] [CrossRef]
- Tirado-Vélez, J.M.; Benítez-Rondán, A.; Cózar-Castellano, I.; Medina, F.; Perdomo, G. Low-Density Lipoprotein Cholesterol Suppresses Apoptosis in Human Multiple Myeloma Cells. Ann. Hematol. 2012, 91, 83–88. [Google Scholar] [CrossRef]
- Morofuji, Y.; Nakagawa, S.; Ujifuku, K.; Fujimoto, T.; Otsuka, K.; Niwa, M.; Tsutsumi, K. Beyond Lipid-Lowering: Effects of Statins on Cardiovascular and Cerebrovascular Diseases and Cancer. Pharmaceuticals 2022, 15, 151. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Li, J.; Xu, H.; Zhao, Y.; Yu, X.; Shi, S. Functional Significance of Cholesterol Metabolism in Cancer: From Threat to Treatment. Exp. Mol. Med. 2023, 55, 1982–1995. [Google Scholar] [CrossRef] [PubMed]
- Mollinedo, F.; Iglesia-Vicente, J.; Gajate, C.; Estella-Hermoso de Mendoza, A.; Villa-Pulgarin, J.; Campanero, M.; Blanco-Prieto, M. Lipid Raft-Targeted Therapy in Multiple Myeloma. Oncogene 2010, 29, 3748–3757. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Park, M.J.; Ye, S.-K.; Kim, C.-W.; Kim, Y.-N. Elevated Levels of Cholesterol-Rich Lipid Rafts in Cancer Cells Are Correlated with Apoptosis Sensitivity Induced by Cholesterol-Depleting Agents. Am. J. Pathol. 2006, 168, 1107–1118. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, Z.; Liu, Z.; Zheng, Z.; Zhang, Y.; Aweya, J.J. Transcriptome Analysis Reveals That SREBP Modulates a Large Repertoire of Genes Involved in Key Cellular Functions in Penaeus Vannamei, Although the Majority of the Dysregulated Genes Are Unannotated. Genes 2022, 13, 2057. [Google Scholar] [CrossRef]
- Bessot, A.; Gunter, J.; McGovern, J.; Bock, N. Bone Marrow Adipocytes in Cancer: Mechanisms, Models, and Therapeutic Implications. Biomaterials 2025, 322, 123341. [Google Scholar] [CrossRef]
- Mastrogeorgiou, M.; Chatzikalil, E.; Theocharis, S.; Papoudou-Bai, A.; Péoc’h, M.; Mobarki, M.; Karpathiou, G. The Immune Microenvironment of Cancer of the Uterine Cervix. Histol. Histopathol. 2024, 39, 1245–1271. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Wang, J.; Xin, Y.; Lyu, X. Relationship between Adipocytes and Hematological Tumors in the Bone Marrow Microenvironment: A Literature Review. Transl. Cancer Res. 2024, 13, 5691. [Google Scholar] [CrossRef]
- Baldelli, S.; Aiello, G.; Mansilla Di Martino, E.; Campaci, D.; Muthanna, F.M.S.; Lombardo, M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024, 16, 2436. [Google Scholar] [CrossRef]
- Panaroni, C.; Fulzele, K.; Mori, T.; Siu, K.T.; Onyewadume, C.; Maebius, A.; Raje, N. Multiple Myeloma Cells Induce Lipolysis in Adipocytes and Uptake Fatty Acids through Fatty Acid Transporter Proteins. Blood 2022, 139, 876–888. [Google Scholar] [CrossRef]
- Fairfield, H.; Dudakovic, A.; Khatib, C.M.; Farrell, M.; Costa, S.; Falank, C.; Hinge, M.; Murphy, C.S.; DeMambro, V.; Pettitt, J.A.; et al. Myeloma-Modified Adipocytes Exhibit Metabolic Dysfunction and a Senescence-Associated Secretory Phenotype. Cancer Res. 2021, 81, 634–647. [Google Scholar] [CrossRef]
- Sherman, C.; Peterson, S.; Frishman, W. Apolipoprotein A-I Mimetic Peptides: A Potential New Therapy for the Prevention of Atherosclerosis. Cardiol. Rev. 2010, 18, 141–147. [Google Scholar] [CrossRef]
- Ling, Z.-N.; Jiang, Y.-F.; Ru, J.-N.; Lu, J.-H.; Ding, B.; Wu, J. Amino Acid Metabolism in Health and Disease. Signal Transduct. Target. Ther. 2023, 8, 345. [Google Scholar] [CrossRef] [PubMed]
- Averous, J.; Lambert-Langlais, S.; Mesclon, F.; Carraro, V.; Parry, L.; Jousse, C.; Bruhat, A.; Maurin, A.-C.; Pierre, P.; Proud, C.G. GCN2 Contributes to MTORC1 Inhibition by Leucine Deprivation through an ATF4 Independent Mechanism. Sci. Rep. 2016, 6, 27698. [Google Scholar] [CrossRef] [PubMed]
- Soncini, D.; Minetto, P.; Martinuzzi, C.; Becherini, P.; Fenu, V.; Guolo, F.; Todoerti, K.; Calice, G.; Contini, P.; Miglino, M.; et al. Amino Acid Depletion Triggered by ʟ-Asparaginase Sensitizes MM Cells to Carfilzomib by Inducing Mitochondria ROS-Mediated Cell Death. Blood Adv. 2020, 4, 4312–4326. [Google Scholar] [CrossRef] [PubMed]
- Plano, F.; Gigliotta, E.; Corsale, A.M.; Azgomi, M.S.; Santonocito, C.; Ingrascì, M.; Di Carlo, L.; Augello, A.E.; Speciale, M.; Vullo, C.; et al. Ferritin Metabolism Reflects Multiple Myeloma Microenvironment and Predicts Patient Outcome. Int. J. Mol. Sci. 2023, 24, 8852. [Google Scholar] [CrossRef]
- Shaw, J.; Chakraborty, A.; Nag, A.; Chattopadyay, A.; Dasgupta, A.K.; Bhattacharyya, M. Intracellular Iron Overload Leading to DNA Damage of Lymphocytes and Immune Dysfunction in Thalassemia Major Patients. Eur. J. Haematol. 2017, 99, 399–408. [Google Scholar] [CrossRef]
- Yang, F.; Wu, Z.; Dai, D.; Zhang, L.; Zhang, X.; Zhang, X.; Xu, Y. The Iron Chelator Deferoxamine Decreases Myeloma Cell Survival. J. Int. Med. Res. 2021, 49, 0300060520987396. [Google Scholar] [CrossRef]
- Strasser-Weippl, K.; Ludwig, H. Ferritin as Prognostic Marker in Multiple Myeloma Patients Undergoing Autologous Transplantation. Leuk. Lymphoma 2014, 55, 2520–2524. [Google Scholar] [CrossRef]
- Naeimi Kararoudi, M.; Nagai, Y.; Elmas, E.; de Souza Fernandes Pereira, M.; Ali, S.A.; Imus, P.H.; Wethington, D.; Borrello, I.M.; Lee, D.A.; Ghiaur, G. CD38 Deletion of Human Primary NK Cells Eliminates Daratumumab-Induced Fratricide and Boosts Their Effector Activity. Blood J. Am. Soc. Hematol. 2020, 136, 2416–2427. [Google Scholar] [CrossRef]
- Viola, D.; Dona, A.; Caserta, E.; Troadec, E.; Besi, F.; McDonald, T.; Ghoda, L.; Gunes, E.G.; Sanchez, J.F.; Khalife, J. Daratumumab Induces Mechanisms of Immune Activation through CD38+ NK Cell Targeting. Leukemia 2021, 35, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Pinto, V.M.; Forni, G.L. Management of Iron Overload in Beta-Thalassemia Patients: Clinical Practice Update Based on Case Series. Int. J. Mol. Sci. 2020, 21, 8771. [Google Scholar] [CrossRef]
- Delaporta, P.; Chatzikalil, E.; Ladis, V.; Moraki, M.; Kattamis, A. Evolving Changes in the Characteristics of Death in Transfusion Dependent Thalassemia in Greece. Blood 2023, 142, 1103. [Google Scholar] [CrossRef]
- Delaporta, P.; Chatzikalil, E.; Kyriakopoulou, D.; Berdalli, S.; Chouliara, V.; Hatzieleftheriou, M.-I.; Mylona, S.; Kattamis, A. Abrupt Increases in Ferritin Levels May Indicate a Malignant Process and Not Changes in Iron Overload in Thalassemic Patients. Blood 2024, 144, 3860. [Google Scholar] [CrossRef]
- Zhang, D.-L.; Ghosh, M.C.; Rouault, T.A. The Physiological Functions of Iron Regulatory Proteins in Iron Homeostasis—An Update. Front. Pharmacol. 2014, 5, 124. [Google Scholar] [CrossRef]
- Duca, L.; Di Pierro, E.; Scaramellini, N.; Granata, F.; Graziadei, G. The Relationship Between Non-Transferrin-Bound Iron (NTBI), Labile Plasma Iron (LPI), and Iron Toxicity. Int. J. Mol. Sci. 2025, 26, 6433. [Google Scholar] [CrossRef]
- Nairz, M.; Theurl, I.; Swirski, F.K.; Weiss, G. “Pumping Iron”—How Macrophages Handle Iron at the Systemic, Microenvironmental, and Cellular Levels. Pflügers Arch.-Eur. J. Physiol. 2017, 469, 397–418. [Google Scholar] [CrossRef]
- Voskou, S.; Aslan, M.; Fanis, P.; Phylactides, M.; Kleanthous, M. Oxidative Stress in β-Thalassaemia and Sickle Cell Disease. Redox Biol. 2015, 6, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Rivadeneira, D.B.; Thosar, S.; Quann, K.; Gunn, W.G.; Dean, V.G.; Xie, B.; Parise, A.; McGovern, A.C.; Spahr, K.; Lontos, K.; et al. Oxidative-Stress-Induced Telomere Instability Drives T Cell Dysfunction in Cancer. Immunity 2025, 58, 2524–2540.E5. [Google Scholar] [CrossRef] [PubMed]
- Gluba-Brzózka, A.; Franczyk, B.; Rysz-Górzyńska, M.; Rokicki, R.; Koziarska-Rościszewska, M.; Rysz, J. Pathomechanisms of Immunological Disturbances in β-Thalassemia. Int. J. Mol. Sci. 2021, 22, 9677. [Google Scholar] [CrossRef] [PubMed]
- Alum, E.U.; Izah, S.C.; Uti, D.E.; Ugwu, O.P.; Betiang, P.A.; Basajja, M.; Ejemot-Nwadiaro, R.I. Targeting Cellular Senescence for Healthy Aging: Advances in Senolytics and Senomorphics. Drug Des. Devel. Ther. 2025, 19, 8489–8522. [Google Scholar] [CrossRef]
- Martyshkina, Y.S.; Tereshchenko, V.P.; Bogdanova, D.A.; Rybtsov, S.A. Reliable Hallmarks and Biomarkers of Senescent Lymphocytes. Int. J. Mol. Sci. 2023, 24, 5653. [Google Scholar] [CrossRef]
- Musharraf, S.G.; Iqbal, A.; Ansari, S.H.; Parveen, S.; Khan, I.A.; Siddiqui, A.J. β-Thalassemia Patients Revealed a Significant Change of Untargeted Metabolites in Comparison to Healthy Individuals. Sci. Rep. 2017, 7, 42249. [Google Scholar] [CrossRef]
- El Azab, E.F.; Abdulmalek, S. Amelioration of Age-Related Multiple Neuronal Impairments and Inflammation in High-Fat Diet-Fed Rats: The Prospective Multitargets of Geraniol. Oxid. Med. Cell. Longev. 2022, 2022, 4812993. [Google Scholar] [CrossRef]
- Ceja-Galicia, Z.A.; Cespedes-Acuña, C.L.A.; El-Hafidi, M. Protection Strategies Against Palmitic Acid-Induced Lipotoxicity in Metabolic Syndrome and Related Diseases. Int. J. Mol. Sci. 2025, 26, 788. [Google Scholar] [CrossRef]
- Biggelaar, L.J.C.J.d.; Eussen, S.J.P.M.; Sep, S.J.S.; Mari, A.; Ferrannini, E.; Dongen, M.C.J.M.v.; Denissen, K.F.M.; Wijckmans, N.E.G.; Schram, M.T.; Kallen, C.J.v.d.; et al. Associations of Dietary Glucose, Fructose, and Sucrose with β-Cell Function, Insulin Sensitivity, and Type 2 Diabetes in the Maastricht Study. Nutrients 2017, 9, 380. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, S. Mammalian Lipids: Structure, Synthesis and Function. Essays Biochem. 2021, 65, 813–845. [Google Scholar] [CrossRef] [PubMed]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef]
- Alruwaili, N.; Alshdayed, F. Fructose Metabolism and Its Effect on Glucose-Galactose Malabsorption Patients: A Literature Review. Diagnostics 2023, 13, 294. [Google Scholar] [CrossRef]
- Le Calvé, S.; Somme, D.; Prud’homm, J.; Corvol, A. Blood Transfusion in Elderly Patients with Chronic Anemia: A Qualitative Analysis of the General Practitioners’ Attitudes. BMC Fam. Pract. 2017, 18, 76. [Google Scholar] [CrossRef]
- Raffa, M.; Atig, F.; Mhalla, A.; Kerkeni, A.; Mechri, A. Decreased Glutathione Levels and Impaired Antioxidant Enzyme Activities in Drug-Naive First-Episode Schizophrenic Patients. BMC Psychiatry 2011, 11, 124. [Google Scholar] [CrossRef]
- de Wolski, K.; Fu, X.; Dumont, L.J.; Roback, J.D.; Waterman, H.; Odem-Davis, K.; Howie, H.L.; Zimring, J.C. Metabolic Pathways That Correlate with Post-Transfusion Circulation of Stored Murine Red Blood Cells. Haematologica 2016, 101, 578–586. [Google Scholar] [CrossRef]
- Jiang, H.J.; Underwood, T.C.; Bell, J.G.; Ranjan, S.; Sasselov, D.; Whitesides, G.M. Mimicking Lighting-Induced Electrochemistry on the Early Earth. Proc. Natl. Acad. Sci. USA 2017, 120, 2017. [Google Scholar] [CrossRef]
- Biswas, S.; Smrity, S.Z.; Bhuia, M.S.; Sonia, F.A.; Aktar, M.A.; Chowdhury, R.; Islam, T.; Islam, M.T.; Gonçalves Alencar, G.; Paulo, C.L.R.; et al. Beta-Thalassemia: A Pharmacological Drug-Based Treatment. Drugs Drug Candidates 2024, 3, 126–147. [Google Scholar] [CrossRef]
- Iqbal, A.; Ansari, S.H.; Parveen, S.; Khan, I.A.; Siddiqui, A.J.; Musharraf, S.G. Hydroxyurea Treated β-Thalassemia Children Demonstrate a Shift in Metabolism Towards Healthy Pattern. Sci. Rep. 2018, 8, 15152. [Google Scholar] [CrossRef] [PubMed]
- Szebeni, J.; Esketson, C.; Sampliner, R.; Hartmann, B.; Griffin, J.; Dormandy, T.; Watson, R.R. Plasma Fatty Acid Pattern Including Diene-conjugated Linoleic Acid in Ethanol Users and Patients with Ethanol-related Liver Disease. Alcohol. Clin. Exp. Res. 1986, 10, 647–650. [Google Scholar] [CrossRef]
- Wang, S.; Ma, A.; Song, S.; Quan, Q.; Zhao, X.; Zheng, X. Fasting Serum Free Fatty Acid Composition, Waist/Hip Ratio and Insulin Activity in Essential Hypertensive Patients. Hypertens. Res. 2008, 31, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, Z.; Min, L.; Li, H.; Wang, B.; Zhong, J.; Dai, L. Biomarker Identification and Pathway Analysis by Serum Metabolomics of Lung Cancer. Biomed. Res. Int. 2015, 2015, 183624. [Google Scholar] [CrossRef]
- Jackson, K.H.; Harris, W.S.; Belury, M.A.; Kris-Etherton, P.M.; Calder, P.C. Beneficial Effects of Linoleic Acid on Cardiometabolic Health: An Update. Lipids Health Dis. 2024, 23, 296. [Google Scholar] [CrossRef]
- Harris, W.; Pottala, J.; Varvel, S.; Borowski, J.; Ward, J.; McConnell, J. Erythrocyte Omega-3 Fatty Acids Increase and Linoleic Acid Decreases with Age: Observations from 160,000 Patients. Prostaglandins. Leukot. Essent. Fat. Acids 2013, 88, 257–263. [Google Scholar] [CrossRef]
- Botta, A.; Forest, A.; Daneault, C.; Pantopoulos, K.; Tantiworawit, A.; Phrommintikul, A.; Chattipakorn, S.; Chattipakorn, N.; Des Rosiers, C.; Sweeney, G. Identification of Circulating Endocan-1 and Ether Phospholipids as Biomarkers for Complications in Thalassemia Patients. Metabolites 2021, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Srinoun, K.; Sathirapongsasuti, N.; Paiboonsukwong, K.; Sretrirutchai, S.; Wongchanchailert, M.; Fucharoen, S. MiR-144 Regulates Oxidative Stress Tolerance of Thalassemic Erythroid Cell via Targeting NRF2. Ann. Hematol. 2019, 98, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, I.; Mishra, R.; Gachhui, R.; Kar, M. Distortion of β-Globin Chain of Hemoglobin Alters the Pathway of Erythrocytic Glucose Metabolism through Band 3 Protein. Arch. Med. Res. 2012, 43, 112–116. [Google Scholar] [CrossRef]
- Ting, Y.L.T.; Naccarato, S.; Qualtieri, A.; Chidichimo, G.; Brancati, C. In Vivo Metabolic Studies of Glucose, ATP and 2, 3-DPG in Β-thalassaemia Intermedia, Heterozygous Β-thalassaemic and Normal Erythrocytes: 13C and 31P MRS Studies. Br. J. Haematol. 1994, 88, 547–554. [Google Scholar] [CrossRef]
- Rab, M.A.E.; van Oirschot, B.A.; van Straaten, S.; Biemond, B.J.; Bos, J.; Kosinski, P.A.; Kung, C.; van Beers, E.J.; van Wijk, R. Decreased Activity and Stability of Pyruvate Kinase in Hereditary Hemolytic Anemia: A Potential Target for Therapy by AG-348 (Mitapivat), an Allosteric Activator of Red Blood Cell Pyruvate Kinase. Blood 2019, 134, 3506. [Google Scholar] [CrossRef]
- Kuo, K.H.M. Pyruvate Kinase Activators: Targeting Red Cell Metabolism in Thalassemia. Hematology 2023, 2023, 114–120. [Google Scholar] [CrossRef]
- Taher, A.T.; Al-Samkari, H.; Aydinok, Y.; Besser, M.; Boscoe, A.N.; Dahlin, J.L.; De Luna, G.; Estepp, J.H.; Gheuens, S.; Gilroy, K.S.; et al. Mitapivat in Adults with Non-Transfusion-Dependent α-Thalassaemia or β-Thalassaemia (ENERGIZE): A Phase 3, International, Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2025, 406, 33–42. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, M.J.; Ruiter, T.J.J.; van der Veen, S.; Rab, M.A.E.; van Oirschot, B.A.; Bos, J.; Derichs, C.; Rijneveld, A.W.; Cnossen, M.H.; Nur, E.; et al. Metabolic Blood Profile and Response to Treatment with the Pyruvate Kinase Activator Mitapivat in Patients with Sickle Cell Disease. HemaSphere 2024, 8, e109. [Google Scholar] [CrossRef]
- Miwa, S.; Kashyap, S.; Chini, E.; von Zglinicki, T. Mitochondrial Dysfunction in Cell Senescence and Aging. J. Clin. Invest. 2022, 132, e158447. [Google Scholar] [CrossRef]
- Lyu, J.; Ni, M.; Weiss, M.J.; Xu, J. Metabolic Regulation of Erythrocyte Development and Disorders. Exp. Hematol. 2024, 131, 104153. [Google Scholar] [CrossRef]
- Khungwanmaythawee, K.; Sornjai, W.; Paemanee, A.; Jaratsittisin, J.; Fucharoen, S.; Svasti, S.; Lithanatudom, P.; Roytrakul, S.; Smith, D.R. Mitochondrial Changes in Β0-Thalassemia/Hb E Disease. PLoS ONE 2016, 11, e0153831. [Google Scholar] [CrossRef]
- Leecharoenkiat, A.; Wannatung, T.; Lithanatudom, P.; Svasti, S.; Fucharoen, S.; Chokchaichamnankit, D.; Srisomsap, C.; Smith, D.R. Increased Oxidative Metabolism Is Associated with Erythroid Precursor Expansion in Β0-Thalassaemia/Hb E Disease. Blood Cells Mol. Dis. 2011, 47, 143–157. [Google Scholar] [CrossRef]
- Suriyun, T.; Winichagoon, P.; Fucharoen, S.; Sripichai, O. Impaired Terminal Erythroid Maturation in Β0-Thalassemia/HbE Patients with Different Clinical Severity. J. Clin. Med. 2022, 11, 1755. [Google Scholar] [CrossRef]
- Suragani, R.N.V.S.; Cadena, S.M.; Cawley, S.M.; Sako, D.; Mitchell, D.; Li, R.; Davies, M.V.; Alexander, M.J.; Devine, M.; Loveday, K.S. Transforming Growth Factor-β Superfamily Ligand Trap ACE-536 Corrects Anemia by Promoting Late-Stage Erythropoiesis. Nat. Med. 2014, 20, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Matte, A.; Wilson, A.B.; Gevi, F.; Federti, E.; Recchiuti, A.; Ferri, G.; Brunati, A.M.; Pagano, M.A.; Russo, R.; Leboeuf, C. Mitapivat Reprograms the RBC Metabolome and Improves Anemia in a Mouse Model of Hereditary Spherocytosis. JCI Insight 2023, 8, e172656. [Google Scholar] [CrossRef]
- Sun, Y.; Benmhammed, H.; Al Abdullatif, S.; Habara, A.; Fu, E.; Brady, J.; Williams, C.; Ilinski, A.; Sharma, A.; Mahdaviani, K. PGC-1α Agonism Induces Fetal Hemoglobin and Exerts Antisickling Effects in Sickle Cell Disease. Sci. Adv. 2024, 10, eadn8750. [Google Scholar] [CrossRef]
- Di Pierro, E.; Di Stefano, V.; Migone De Amicis, M.; Graziadei, G. Are Mitochondria a Potential Target for Treating β-Thalassemia? J. Clin. Med. 2025, 14, 1095. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, S.; Riaz, R.; Hospital, K.; Khan, R.; Zhaira, D.; Rafaqat, S.; Fatima, M.; Ali, S. Hepcidin Levels, Markers of Iron Overload, and Liver Damage in Patients with Beta Thalassemia Major. Rev. J. Neurol. Med. Sci. Rev. 2025, 3, 142–163. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E.; Rivella, S.; Goldberg, P.; Dibble, A.R.; McCaleb, M.L.; Guo, S.; Monia, B.P.; Barrett, T.D. TMPRSS6 as a Therapeutic Target for Disorders of Erythropoiesis and Iron Homeostasis. Adv. Ther. 2023, 40, 1317–1333. [Google Scholar] [CrossRef]
- Katsarou, A.; Pantopoulos, K. Hepcidin Therapeutics. Pharmaceuticals 2018, 11, 127. [Google Scholar] [CrossRef]
- Nyffenegger, N.; Flace, A.; Doucerain, C.; Dürrenberger, F.; Manolova, V. The Oral Ferroportin Inhibitor VIT-2763 Improves Erythropoiesis without Interfering with Iron Chelation Therapy in a Mouse Model of β-Thalassemia. Int. J. Mol. Sci. 2021, 22, 873. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.; Mcdonald, C.; Secondes, E.; Ostini, L.; Rishi, G.; Hooper, J.; Velasco, G.; Ramsay, A.; López-Otín, C.; Subramaniam, V. An Essential Role For Transferrin Receptor 2 In Erythropoiesis During Iron Restriction. Blood 2013, 122, 429. [Google Scholar] [CrossRef]
- Longo, F.; Piga, A. Does Hepcidin Tuning Have a Role among Emerging Treatments for Thalassemia? J. Clin. Med. 2022, 11, 5119. [Google Scholar] [CrossRef] [PubMed]
- Chatzikalil, E.; Stergiou, I.E.; Papadakos, S.P.; Konstantinidis, I.; Theocharis, S. The Clinical Relevance of the EPH/Ephrin Signaling Pathway in Pediatric Solid and Hematologic Malignancies. Int. J. Mol. Sci. 2024, 25, 3834. [Google Scholar] [CrossRef]
- Arvanitakis, K.; Papadakos, S.P.; Vakadaris, G.; Chatzikalil, E.; Stergiou, I.E.; Kalopitas, G.; Theocharis, S.; Germanidis, G. Shedding Light on the Role of LAG-3 in Hepatocellular Carcinoma: Unraveling Immunomodulatory Pathways. Hepatoma Res. 2024, 10, 20. [Google Scholar] [CrossRef]
- Papadakos, S.P.; Chatzikalil, E.; Vakadaris, G.; Reppas, L.; Arvanitakis, K.; Koufakis, T.; Siakavellas, S.I.; Manolakopoulos, S.; Germanidis, G.; Theocharis, S. Exploring the Role of GITR/GITRL Signaling: From Liver Disease to Hepatocellular Carcinoma. Cancers 2024, 16, 2609. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Martín-Rodríguez, A.; Redondo-Flórez, L.; López-Mora, C.; Yáñez-Sepúlveda, R.; Tornero-Aguilera, J.F. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. Int. J. Mol. Sci. 2023, 24, 672. [Google Scholar] [CrossRef]
- Papadakos, S.P.; Chatzikalil, E.; Arvanitakis, K.; Vakadaris, G.; Stergiou, I.E.; Koutsompina, M.-L.; Argyrou, A.; Lekakis, V.; Konstantinidis, I.; Germanidis, G.; et al. Understanding the Role of Connexins in Hepatocellular Carcinoma: Molecular and Prognostic Implications. Cancers 2024, 16, 1533. [Google Scholar] [CrossRef]
- Zhou, H.; Xiang, W.; Zhou, G.; Rodrigues-Lima, F.; Guidez, F.; Wang, L. Metabolic Dysregulation in Myelodysplastic Neoplasm: Impact on Pathogenesis and Potential Therapeutic Targets. Med. Oncol. 2024, 42, 23. [Google Scholar] [CrossRef]
- Gavriatopoulou, M.; Paschou, S.A.; Ntanasis-Stathopoulos, I.; Dimopoulos, M.A. Metabolic Disorders in Multiple Myeloma. Int. J. Mol. Sci. 2021, 22, 1430. [Google Scholar] [CrossRef]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination Therapy in Combating Cancer. Oncotarget 2017, 8, 38022. [Google Scholar] [CrossRef]
- Lehár, J.; Krueger, A.S.; Avery, W.; Heilbut, A.M.; Johansen, L.M.; Price, E.R.; Rickles, R.J.; Short Iii, G.F.; Staunton, J.E.; Jin, X. Synergistic Drug Combinations Tend to Improve Therapeutically Relevant Selectivity. Nat. Biotechnol. 2009, 27, 659–666. [Google Scholar] [CrossRef]
- Zhou, Y.; Tao, L.; Qiu, J.; Xu, J.; Yang, X.; Zhang, Y.; Tian, X.; Guan, X.; Cen, X.; Zhao, Y. Tumor Biomarkers for Diagnosis, Prognosis and Targeted Therapy. Signal Transduct. Target. Ther. 2024, 9, 132. [Google Scholar] [CrossRef] [PubMed]
- O’Brien III, W.G.; Berka, V.; Tsai, A.-L.; Zhao, Z.; Lee, C.C. CD73 and AMPD3 Deficiency Enhance Metabolic Performance via Erythrocyte ATP That Decreases Hemoglobin Oxygen Affinity. Sci. Rep. 2015, 5, 13147. [Google Scholar] [CrossRef]
- Jaafar, L.; Kourie, C.; El-Mallah, C.; Obeid, O. 2,3-Diphosphoglycerate: The Forgotten Metabolic Regulator of Oxygen Affinity. Br. J. Nutr. 2025, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Koehl, B.; Claude, L.; Reminy, K.; Tarer, V.; Baccini, V.; Romana, M.; Colin-Aronovicz, Y.; Damaraju, V.L.; Sawyer, M.; Peyrard, T.; et al. Erythrocyte Type 1 Equilibrative Nucleoside Transporter Expression in Sickle Cell Disease and Sickle Cell Trait. Br. J. Haematol. 2023, 200, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Dalamaga, M. Clinical Metabolomics: Useful Insights, Perspectives and Challenges. Metab. Open 2024, 22, 100290. [Google Scholar] [CrossRef]
- Hertzog, A.; Selvanathan, A.; Devanapalli, B.; Ho, G.; Bhattacharya, K.; Tolun, A. A Narrative Review of Metabolomics in the Era of “-Omics”: Integration into Clinical Practice for Inborn Errors of Metabolism. Transl. Pediatr. 2021, 11, 1704. [Google Scholar] [CrossRef]
- Armakolas, A.; Kotsari, M.; Koskinas, J. Liquid Biopsies, Novel Approaches and Future Directions. Cancers 2023, 15, 1579. [Google Scholar] [CrossRef]
- Ali, H. Artificial Intelligence in Multi-Omics Data Integration: Advancing Precision Medicine, Biomarker Discovery and Genomic-Driven Disease Interventions. Int. J. Sci. Res. Arch. 2023, 8, 1012–1030. [Google Scholar] [CrossRef]
- Goetz, L.H.; Schork, N.J. Personalized Medicine: Motivation, Challenges, and Progress. Fertil. Steril. 2018, 109, 952–963. [Google Scholar] [CrossRef] [PubMed]


| Reference | Medication | Target | Model |
|---|---|---|---|
| [80,81] | 3-Bromopyruvate (3-BrPA) (Glycolytic enzyme inhibitor) | Hexokinase | In vivo |
| [80] | 2-Deoxy-D-glucose (2-DG) (Glycolytic enzyme inhibitor) | Hexokinase | In vivo |
| [84] | Micheliolide (MCL) prodrug (ACT002) (Glycolytic enzyme inhibitor) | PKM2 | In vivo |
| [85] | Telaglenastat (CB-839) (Glutaminase inhibitor) | GLS1 | Phase II clinical trial |
| [87] | Ivosidenib (IDH inhibitor) | IDH1 | Phase II clinical trial |
| [87] | Enasidenib (IDH inhibitor) | IDH2 | Phase clinical trial II |
| [87] | Olaparib [poly-ADP-ribose-polymerase (PARP) inhibitor] | PARP | In vivo |
| [94] | Rusfertide (PTG-300) (Hepcidin agonist) | Ferroportin | Phase clinical trial II |
| [94] | Vamifeport (VIT-2763) (Hepcidin agonist) | Ferroportin | Phase II clinical trial |
| [94] | PR73 (mini-hepcidin) (Hepcidin agonist) | BMP6 | In vivo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzikalil, E.; Bistas, K.; Kymioni, V.; Diamantopoulos, P.T.; Solomou, E.E. Metabolomic Investigation of Myelodysplastic Syndromes, Multiple Myeloma, and Homozygous β-Thalassemia. Cells 2025, 14, 1788. https://doi.org/10.3390/cells14221788
Chatzikalil E, Bistas K, Kymioni V, Diamantopoulos PT, Solomou EE. Metabolomic Investigation of Myelodysplastic Syndromes, Multiple Myeloma, and Homozygous β-Thalassemia. Cells. 2025; 14(22):1788. https://doi.org/10.3390/cells14221788
Chicago/Turabian StyleChatzikalil, Elena, Konstantinos Bistas, Vasiliki Kymioni, Panagiotis T. Diamantopoulos, and Elena E. Solomou. 2025. "Metabolomic Investigation of Myelodysplastic Syndromes, Multiple Myeloma, and Homozygous β-Thalassemia" Cells 14, no. 22: 1788. https://doi.org/10.3390/cells14221788
APA StyleChatzikalil, E., Bistas, K., Kymioni, V., Diamantopoulos, P. T., & Solomou, E. E. (2025). Metabolomic Investigation of Myelodysplastic Syndromes, Multiple Myeloma, and Homozygous β-Thalassemia. Cells, 14(22), 1788. https://doi.org/10.3390/cells14221788

