MicroRNA Deregulation and Immune Checkpoint Interactions in Common Variable Immunodeficiency and CLL-Associated Secondary Immunodeficiency
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population Included in the Study
2.2. Immunophenotyping
2.3. miRNA Isolation from Patient Serum
2.4. cDNA Synthesis (Reverse Transcription)
2.5. Quantitative Analysis of miRNA Using Digital PCR (dPCR)
- hsa-miR-155-5p (YP02119311);
- hsa-miR-210-5p (YP02104321);
- hsa-miR-181a-5p (YP00206081);
- hsa-miR-134-5p (YP00205989);
- hsa-miR-125b-5p (YP00205713);
- hsa-miR-16-5p (YP002055702);
- hsa-miR-33a-5p (YP00205690);
- hsa-miR-30c-5p (YP00204783);
- hsa-miR-142-5p (YP00204722);
- hsa-miR-144-5p (YP00204670);
- hsa-miR-744-5p (YP00204663);
- hsa-miR-150-5p (YP00204660);
- hsa-miR-326 (YP00204512);
- hsa-miR-29a-5p (YP00204430);
- hsa-miR-28-5p (YP00204322);
- hsa-miR-21-5p (YP00204230);
- hsa-miR-15a-5p (YP00204066);
- hsa-miR-221-5p (YP00204032);
- hsa-miR-486-5p (YP00204001).
2.6. Determination of Soluble Checkpoint Molecules
2.7. Statistical Analysis
3. Results
3.1. Assessment of Clinical, Hematological, and Immunological Parameters of the Studied Groups, Including the Percentage of Immune Checkpoints on T and B Lymphocytes and Their Soluble Forms in Serum
3.2. Expression Profile of Selected microRNA Molecules in the Serum of CVID and CLL Patients with SID
3.3. Correlation Analysis Between Immune Parameters, Checkpoints, and miRNA Expression
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CD | Cluster of Differentiation |
CLL | Chronic Lymphocytic Leukemia |
CVID | Common Variable Immunodeficiency |
CTLA-4 | Cytotoxic T-Lymphocyte-Associated Antigen-4 |
dPCR | Digital Polymerase Chain Reaction |
EBV | Epstein–Barr Virus |
ICOS | Inducible T-Cell Costimulator |
miRNA (miR) | MicroRNA |
NK | Natural Killer |
PD-1 | Programmed Death Receptor 1 |
PD-L1 | Programmed Death-Ligand 1 |
PID | Primary Immunodeficiency |
SID | Secondary Immunodeficiency |
TNFRSF13B | Tumor Necrosis Factor Receptor Superfamily Member 13B |
References
- Kim, V.H.D.; Upton, J.E.M.; Derfalvi, B.; Hildebrand, K.J.; McCusker, C. Inborn Errors of Immunity (Primary Immunodeficiencies). Allergy Asthma Clin. Immunol. 2025, 20, 76. [Google Scholar] [CrossRef]
- Justiz Vaillant, A.A.; Qurie, A. Immunodeficiency. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Chen, R. Primary Immunodeficiency. In Rare Diseases; IntechOpen: London, UK, 2019; ISBN 978-1-83880-024-6. [Google Scholar]
- Amato, G.; Vita, F.; Quattrocchi, P.; Minciullo, P.L.; Pioggia, G.; Gangemi, S. Involvement of miR-142 and miR-155 in Non-Infectious Complications of CVID. Molecules 2020, 25, 4760. [Google Scholar] [CrossRef]
- De Felice, B.; Nigro, E.; Polito, R.; Rossi, F.W.; Pecoraro, A.; Spadaro, G.; Daniele, A. Differently Expressed microRNA in Response to the First Ig Replacement Therapy in Common Variable Immunodeficiency Patients. Sci. Rep. 2020, 10, 21482. [Google Scholar] [CrossRef]
- Kim, J.; Jones, J.R.; Seo, D. Factors Affecting Harmful Algal Bloom Occurrence in a River with Regulated Hydrology. J. Hydrol. Reg. Stud. 2021, 33, 100769. [Google Scholar] [CrossRef]
- Park, K.-S.; Lee, W.; Seong, M.-W.; Kong, S.-Y.; Lee, K.-A.; Ha, J.-S.; Cho, E.-H.; Han, S.-H.; Park, I.; Kim, J.-W. A Population-Based Analysis of BRCA1/2 Genes and Associated Breast and Ovarian Cancer Risk in Korean Patients: A Multicenter Cohort Study. Cancers 2021, 13, 2192. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.-Y. The Role of MicroRNAs in Regulatory T Cells and in the Immune Response. Immune Netw. 2011, 11, 11–41. [Google Scholar] [CrossRef]
- Raisch, J.; Darfeuille-Michaud, A.; Nguyen, H.T.T. Role of microRNAs in the Immune System, Inflammation and Cancer. World J. Gastroenterol. 2013, 19, 2985–2996. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.; Bastos, R.; Marinho, A.I.; Vieira, R.; Benício, I.; de Noronha, M.A.; Lírio, S.; Brodskyn, C.; Tavares, N.M. Recent Advances in the Development and Clinical Application of miRNAs in Infectious Diseases. Non-Coding RNA Res. 2025, 10, 41–54. [Google Scholar] [CrossRef]
- Rae, W. Indications to Epigenetic Dysfunction in the Pathogenesis of Common Variable Immunodeficiency. Arch. Immunol. Ther. Exp. 2017, 65, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Ranjbarnejad, T.; Gholaminejad, A.; Abolhassani, H.; Sherkat, R.; Salehi, M.; Sharifi, M. Decreased Expression of Hsa-miR-142-3p and Hsa-miR-155-5p in Common Variable Immunodeficiency and Involvement of Their Target Genes and Biological Pathways. Allergol. Immunopathol. 2025, 53, 153–169. [Google Scholar] [CrossRef]
- Babaha, F.; Yazdani, R.; Shahkarami, S.; Esfahani, Z.H.; Abolhahassani, H.; Sadr, M.; Hosseini, A.Z.; Aghamohammadi, A. Evaluation of miR-210 Expression in Common Variable Immunodeficiency: Patients with Unsolved Genetic Defect. Allergol. Immunopathol. 2021, 49, 84–93. [Google Scholar] [CrossRef]
- Mertowska, P.; Mertowski, S.; Grywalska, E. MicroRNA Changes with Macro Potential Contribute to Secondary Immunodeficiency in Chronic Lymphocytic Leukemia during Epstein Barr Virus Reactivation. Sci. Rep. 2025, 15, 16446. [Google Scholar] [CrossRef] [PubMed]
- Casabonne, D.; Benavente, Y.; Seifert, J.; Costas, L.; Armesto, M.; Arestin, M.; Besson, C.; Hosnijeh, F.S.; Duell, E.J.; Weiderpass, E.; et al. Serum Levels of Hsa-miR-16-5p, Hsa-miR-29a-3p, Hsa-miR-150-5p, Hsa-miR-155-5p and Hsa-miR-223-3p and Subsequent Risk of Chronic Lymphocytic Leukemia in the EPIC Study. Int. J. Cancer 2020, 147, 1315–1324. [Google Scholar] [CrossRef]
- Kipkeeva, F.; Muzaffarova, T.; Korotaeva, A.; Mansorunov, D.; Apanovich, P.; Nikulin, M.; Malikhova, O.; Stilidi, I.; Karpukhin, A. The Features of Immune Checkpoint Gene Regulation by microRNA in Cancer. Int. J. Mol. Sci. 2022, 23, 9324. [Google Scholar] [CrossRef]
- Zabeti Touchaei, A.; Vahidi, S. MicroRNAs as Regulators of Immune Checkpoints in Cancer Immunotherapy: Targeting PD-1/PD-L1 and CTLA-4 Pathways. Cancer Cell Int. 2024, 24, 102. [Google Scholar] [CrossRef]
- García-Giménez, J.L.; Saadi, W.; Ortega, A.L.; Lahoz, A.; Suay, G.; Carretero, J.; Pereda, J.; Fatmi, A.; Pallardó, F.V.; Mena-Molla, S. miRNAs Related to Immune Checkpoint Inhibitor Response: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 1737. [Google Scholar] [CrossRef]
- Huemer, F.; Leisch, M.; Geisberger, R.; Zaborsky, N.; Greil, R. miRNA-Based Therapeutics in the Era of Immune-Checkpoint Inhibitors. Pharmaceuticals 2021, 14, 89. [Google Scholar] [CrossRef]
- Yadav, R.; Khatkar, R.; Yap, K.C.-H.; Kang, C.Y.-H.; Lyu, J.; Singh, R.K.; Mandal, S.; Mohanta, A.; Lam, H.Y.; Okina, E.; et al. The miRNA and PD-1/PD-L1 Signaling Axis: An Arsenal of Immunotherapeutic Targets against Lung Cancer. Cell Death Discov. 2024, 10, 414. [Google Scholar] [CrossRef]
- Gherman, A.; Bolundut, D.; Ecea, R.; Balacescu, L.; Curcean, S.; Dina, C.; Balacescu, O.; Cainap, C. Molecular Subtypes, microRNAs and Immunotherapy Response in Metastatic Colorectal Cancer. Medicina 2024, 60, 397. [Google Scholar] [CrossRef] [PubMed]
- Baulina, N.M.; Kulakova, O.G.; Favorova, O.O. MicroRNAs: The Role in Autoimmune Inflammation. Acta Naturae 2016, 8, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Pauley, K.M.; Cha, S.; Chan, E.K.L. MicroRNA in Autoimmunity and Autoimmune Diseases. J. Autoimmun. 2009, 32, 189–194. [Google Scholar] [CrossRef]
- Allegra, A.; Tonacci, A.; Musolino, C.; Pioggia, G.; Gangemi, S. Secondary Immunodeficiency in Hematological Malignancies: Focus on Multiple Myeloma and Chronic Lymphocytic Leukemia. Front. Immunol. 2021, 12, 738915. [Google Scholar] [CrossRef]
- Diagnosis Criteria—ESID. Available online: https://esid.org/working-parties/registry-working-party/diagnosis-criteria/ (accessed on 6 September 2025).
- Pathania, A.S.; Chava, H.; Chaturvedi, N.K.; Chava, S.; Byrareddy, S.N.; Coulter, D.W.; Challagundla, K.B. The miR-29 Family Facilitates the Activation of NK-Cell Immune Responses by Targeting the B7-H3 Immune Checkpoint in Neuroblastoma. Cell Death Dis. 2024, 15, 428. [Google Scholar] [CrossRef]
- Wang, S.; Wan, X.; Ruan, Q. The MicroRNA-21 in Autoimmune Diseases. Int. J. Mol. Sci. 2016, 17, 864. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Liang, M.; Hou, X.; Zhang, Y.; Zhang, H.; Guo, Z.; Jinyu, J.; Feng, Z.; Mei, Z. The Role of microRNA-16 in the Pathogenesis of Autoimmune Diseases: A Comprehensive Review. Biomed. Pharmacother. 2019, 112, 108583. [Google Scholar] [CrossRef] [PubMed]
- Seddiki, N.; Brezar, V.; Ruffin, N.; Lévy, Y.; Swaminathan, S. Role of miR-155 in the Regulation of Lymphocyte Immune Function and Disease. Immunology 2014, 142, 32–38. [Google Scholar] [CrossRef]
- Liu, D.; Liao, F.; Wang, H. Serum miR-130a-3p and miR-326: Correlation with Airway Inflammation and Prognostic Implications in Pediatric Bronchial Asthma. J. Asthma Allergy 2025, 18, 591–603. [Google Scholar] [CrossRef]
- Pathania, A.S.; Prathipati, P.; Olwenyi, O.A.; Chava, S.; Smith, O.V.; Gupta, S.C.; Chaturvedi, N.K.; Byrareddy, S.N.; Coulter, D.W.; Challagundla, K.B. miR-15a and miR-15b Modulate Natural Killer and CD8+T-Cell Activation and Anti-Tumor Immune Response by Targeting PD-L1 in Neuroblastoma. Mol. Ther. Oncolytics 2022, 25, 308–329. [Google Scholar] [CrossRef]
- Mikami, Y.; Philips, R.L.; Sciumè, G.; Petermann, F.; Meylan, F.; Nagashima, H.; Yao, C.; Davis, F.P.; Brooks, S.R.; Sun, H.-W.; et al. MicroRNA-221 and -222 Modulate Intestinal Inflammatory Th17 Cell Response as Negative Feedback Regulators Downstream of Interleukin-23. Immunity 2021, 54, 514–525.e6. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gong, J.; Liu, Y.; Guo, W.; Jin, B.; Wang, X.; Chen, L. MicroRNA-30c Promotes Natural Killer Cell Cytotoxicity via up-Regulating the Expression Level of NKG2D. Life Sci. 2016, 151, 174–181. [Google Scholar] [CrossRef]
- Hu, Y.-Z.; Li, Q.; Wang, P.-F.; Li, X.-P.; Hu, Z.-L. Multiple Functions and Regulatory Network of miR-150 in B Lymphocyte-Related Diseases. Front. Oncol. 2023, 13, 1140813. [Google Scholar] [CrossRef]
- Kotarski, K.; Kot, M.; Skrzypek, K. miR-28: A Tiny Player in Cancer Progression and Other Human Diseases. Biomolecules 2025, 15, 757. [Google Scholar] [CrossRef]
- Li, R.-D.; Shen, C.-H.; Tao, Y.-F.; Zhang, X.-F.; Zhang, Q.-B.; Ma, Z.-Y.; Wang, Z.-X. MicroRNA-144 Suppresses the Expression of Cytokines through Targeting RANKL in the Matured Immune Cells. Cytokine 2018, 108, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Ye, Z.; Weyand, C.M.; Goronzy, J.J. miR-181a-Regulated Pathways in T-Cell Differentiation and Aging. Immun. Ageing 2021, 18, 28. [Google Scholar] [CrossRef]
- Han, J.; Huang, J.; Hu, J.; Shi, W.; Wang, H.; Zhang, W.; Wang, J.; Shao, H.; Shen, H.; Bo, H.; et al. miR-744-5p Promotes T-Cell Differentiation via Inhibiting STK11. Gene 2024, 926, 148635. [Google Scholar] [CrossRef]
- Yu, J.; Shen, Y.; Xu, Y.; Feng, Z.; Shen, Y.; Zhu, Y.; Huan, J.; Peng, Q. MicroRNA-486: A Dual-Function Biomarker for Diagnosis and Tumor Immune Microenvironment Characterization in Non-Small Cell Lung Cancer. BMC Med. Genom. 2025, 18, 92. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Q.; Yu, L.; Zhu, D.; Li, Y.; Xue, Z.; Hua, Z.; Luo, X.; Song, Z.; Lu, C.; et al. The Role of miRNA in Tumor Immune Escape and miRNA-Based Therapeutic Strategies. Front. Immunol. 2022, 12, 807895. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Muhuri, M.; Li, S.; Qin, W.; Xu, G.; Luo, L.; Li, J.; Letizia, A.J.; Wang, S.K.; Chan, Y.K.; et al. Circumventing Cellular Immunity by miR142-Mediated Regulation Sufficiently Supports rAAV-Delivered OVA Expression without Activating Humoral Immunity. JCI Insight 2019, 4, e99052. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Azzam, K.M.; Lin, W.-C.; Rai, P.; Lowe, J.M.; Gabor, K.A.; Madenspacher, J.H.; Aloor, J.J.; Parks, J.S.; Näär, A.M.; et al. MicroRNA-33 Regulates the Innate Immune Response via ATP Binding Cassette Transporter-Mediated Remodeling of Membrane Microdomains. J. Biol. Chem. 2016, 291, 19651–19660. [Google Scholar] [CrossRef]
- Wang, J.K.; Wang, Z.; Li, G. MicroRNA-125 in Immunity and Cancer. Cancer Lett. 2019, 454, 134–145. [Google Scholar] [CrossRef]
- Nyström, S.; Hultberg, J.; Blixt, E.; Nilsdotter-Augustinsson, Å.; Larsson, M. Plasma Levels of Mir-34a-5p Correlate with Systemic Inflammation and Low Naïve CD4 T Cells in Common Variable Immunodeficiency. J. Clin. Immunol. 2023, 44, 21. [Google Scholar] [CrossRef] [PubMed]
- Hamidi Esfahani, Z.; Yazdani, R.; Shahkarami, S.; Babaha, F.; Abolhassani, H.; Sadr, M.; Pourfathollah, A.A.; Aghamohammadi, A. Evaluation of MicroRNA-125b-5p and Transcription Factors BLIMP1 and IRF4 Expression in Unsolved Common Variable Immunodeficiency Patients. Iran. J. Allergy Asthma Immunol. 2021, 20, 700–710. [Google Scholar] [CrossRef]
- Decreased Expression of Hsa-miR-142-3p and Hsa-miR-155-5p in Common Variable Immunodeficiency and Involvement of Their Target Genes and Biological Pathways. Available online: https://www.ivysci.com/en/articles/8279815 (accessed on 4 June 2025).
- EL-Khazragy, N.; Hosny, M.; Elhady, M.M.; El-Agmawy, A.; Hassan, N.S. Role of miR_155a and miR_181a in Chronic Lymphocytic Leukemia. Hematol. Dis. Ther. 2019, 10, 2577-1418. [Google Scholar]
- Aref, S.; El Tantawy, A.; Aref, M.; El Agdar, M.; Ayed, M. Prognostic Value of Plasma miR-29a Evaluation in Chronic Lymphocytic Leukemia Patients. Asian Pac. J. Cancer Prev. 2023, 24, 2439–2444. [Google Scholar] [CrossRef]
- Autore, F.; Ramassone, A.; Stirparo, L.; Pagotto, S.; Fresa, A.; Innocenti, I.; Visone, R.; Laurenti, L. Role of microRNAs in Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2023, 24, 12471. [Google Scholar] [CrossRef]
- Ruiz-Lafuente, N.; Alcaraz-García, M.-J.; Sebastián-Ruiz, S.; García-Serna, A.-M.; Gómez-Espuch, J.; Moraleda, J.-M.; Minguela, A.; García-Alonso, A.-M.; Parrado, A. IL-4 Up-Regulates MiR-21 and the MiRNAs Hosted in the CLCN5 Gene in Chronic Lymphocytic Leukemia. PLoS ONE 2015, 10, e0124936. [Google Scholar] [CrossRef]
- Kooshkaki, O.; Rezaei, Z.; Rahmati, M.; Vahedi, P.; Derakhshani, A.; Brunetti, O.; Baghbanzadeh, A.; Mansoori, B.; Silvestris, N.; Baradaran, B. MiR-144: A New Possible Therapeutic Target and Diagnostic/Prognostic Tool in Cancers. Int. J. Mol. Sci. 2020, 21, 2578. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Liu, C.; Kang, J.; Zhao, G.; Ye, Z.; Huang, S.; Li, Z.; Wu, Z.; Pei, G. MicroRNA miR-326 Regulates TH-17 Differentiation and Is Associated with the Pathogenesis of Multiple Sclerosis. Nat. Immunol. 2009, 10, 1252–1259. [Google Scholar] [CrossRef]
- Poudineh, M.; Darweesh, O.; Mokhtari, M.; Zolfaghari, O.; Khaledi, A.; Piroozmand, A. Expression of microRNAs in the Detection and Therapeutic Roles of Viral Infections: Mechanisms and Applications. J. Virus Erad. 2025, 11, 100586. [Google Scholar] [CrossRef]
- Maher, N.; Maiellaro, F.; Ghanej, J.; Rasi, S.; Moia, R.; Gaidano, G. Unraveling the Epigenetic Landscape of Mature B Cell Neoplasia: Mechanisms, Biomarkers, and Therapeutic Opportunities. Int. J. Mol. Sci. 2025, 26, 8132. [Google Scholar] [CrossRef]
- Marco, M.D.; Ramassone, A.; Pagotto, S.; Anastasiadou, E.; Veronese, A.; Visone, R. MicroRNAs in Autoimmunity and Hematological Malignancies. Int. J. Mol. Sci. 2018, 19, 3139. [Google Scholar] [CrossRef] [PubMed]
- Fatica, A.; Fazi, F. MicroRNA-Regulated Pathways in Hematological Malignancies: How to Avoid Cells Playing Out of Tune. Int. J. Mol. Sci. 2013, 14, 20930–20953. [Google Scholar] [CrossRef] [PubMed]
Parameters | CVID (PID) | CLL (SID) | HV | p-Value | ||
---|---|---|---|---|---|---|
Mediana (Q1–Q3) | Mediana (Q1–Q3) | Mediana (Q1–Q3) | CVID vs. HV | CVID vs. CLL | CLL vs. HV | |
WBC [103/mm3] | 6.54 (5.30–7.14) | 30.91 (28.09–33.37) | 5.94 (4.05–6.73) | 0.120 | <0.001 * | <0.001 * |
LYM [103/mm3] | 0.74 (0.50–1.33) | 26.85 (23.44–29.58) | 1.69 (1.06–1.88) | 0.0015 * | <0.001 * | <0.001 * |
MON [103/mm3] | 0.48 (0.38–0.58) | 0.64 (0.53–0.87) | 0.46 (0.32–0.58) | 0.925 | <0.001 * | <0.001 * |
NEU [103/mm3] | 1.12 (0.59–1.61) | 2.49 (1.62–3.43) | 2.66 (1.99–4.60) | <0.001 * | <0.001 * | 0.022 * |
EOS [103/mm3] | 0.08 (0.06–0.11) | 0.07 (0.06–0.11) | 0.09 (0.08–0.13) | 0.400 | 0.631 | 0.011 * |
BAS [103/mm3] | 0.03 (0.02–0.04) | 0.03 (0.02–0.04) | 0.03 (0.02–0.03) | 0.461 | 0.607 | 0.840 |
RBC [106/mm3] | 3.43 (3.23–3.52) | 3.34 (2.97–4.22) | 4.54 (4.25–4.73) | <0.001 * | 0.929 | <0.001 * |
HGB [g/dL] | 9.90 (9.52–10.27) | 10.01 (9.04–10.96) | 13.10 (12.70–13.70) | <0.001 * | 0.826 | <0.001 * |
PLT [103/mm3] | 115.00 (104–134) | 140 (130–166) | 267.00 (226–302) | <0.001 * | <0.001 * | <0.001 * |
IgG [g/L] | 4.94 (4.43–5.76) | 6.27 (5.32–7.30) | 11.30 (9.96–14.70) | <0.001 * | <0.001 * | <0.001 * |
IgM [g/L] | 1.20 (0.85–1.52) | 1.10 (0.66–1.74) | 1.30 (0.85–2.10) | 0.400 | 0.903 | 0.677 |
IgA [g/L] | 0.62 (0.37–0.75) | 0.51 (0.27–0.78) | 1.90 (1.60–2.62) | <0.001 * | 0.382 | <0.001 * |
CD45+ [%] | 91.70 (89.32–94.61) | 93.57 (90.00–95.75) | 93.63 (91.22–95.04) | 0.165 | 0.438 | 0.712 |
CD3+ [%] | 65.18 (59.42–73.09) | 20.97 (16.96–27.150) | 74.14 (69.12–84.63) | 0.002 * | <0.001 * | <0.001 * |
CD19+ [%] | 8.62 (5.14–12.71) | 60.74 (56.10–73.64) | 48.08 (46.51–53.67) | <0.001 * | <0.001 * | <0.001 * |
CD4+ [%] | 30.24 (21.43–37.43) | 11.11 (7.22–14.53) | 39.06 (27.53–43.63) | 0.149 | <0.001 * | <0.001 * |
CD8+ [%] | 28.42 (22.06–42.41) | 9.72 (6.24–16.06) | 12.79 (8.22–13.88) | <0.001 * | <0.001 * | 0.766 |
CD4+/CD8+ lymphocyte ratio | 1.09 (0.66–1.70) | 1.11 (0.59–1.69) | 1.28 (1.16–1.95) | 0.059 | 0.801 | 0.115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mertowska, P.; Mertowski, S.; Czosnek, M.; Sosnowska-Pasiarska, B.; Krasińska-Płachta, A.; Krasiński, Z.; Urbanowicz, T.; Bojarski, K.; Rahnama-Hezavah, M.; Grywalska, E. MicroRNA Deregulation and Immune Checkpoint Interactions in Common Variable Immunodeficiency and CLL-Associated Secondary Immunodeficiency. Cells 2025, 14, 1577. https://doi.org/10.3390/cells14201577
Mertowska P, Mertowski S, Czosnek M, Sosnowska-Pasiarska B, Krasińska-Płachta A, Krasiński Z, Urbanowicz T, Bojarski K, Rahnama-Hezavah M, Grywalska E. MicroRNA Deregulation and Immune Checkpoint Interactions in Common Variable Immunodeficiency and CLL-Associated Secondary Immunodeficiency. Cells. 2025; 14(20):1577. https://doi.org/10.3390/cells14201577
Chicago/Turabian StyleMertowska, Paulina, Sebastian Mertowski, Milena Czosnek, Barbara Sosnowska-Pasiarska, Aleksandra Krasińska-Płachta, Zbigniew Krasiński, Tomasz Urbanowicz, Krzysztof Bojarski, Mansur Rahnama-Hezavah, and Ewelina Grywalska. 2025. "MicroRNA Deregulation and Immune Checkpoint Interactions in Common Variable Immunodeficiency and CLL-Associated Secondary Immunodeficiency" Cells 14, no. 20: 1577. https://doi.org/10.3390/cells14201577
APA StyleMertowska, P., Mertowski, S., Czosnek, M., Sosnowska-Pasiarska, B., Krasińska-Płachta, A., Krasiński, Z., Urbanowicz, T., Bojarski, K., Rahnama-Hezavah, M., & Grywalska, E. (2025). MicroRNA Deregulation and Immune Checkpoint Interactions in Common Variable Immunodeficiency and CLL-Associated Secondary Immunodeficiency. Cells, 14(20), 1577. https://doi.org/10.3390/cells14201577