Spectral Profiling of Early αsyn Aggregation in HEK293 Cells Modified to Stably Express Human WT and A53T-αsyn
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of huA53T- and huWT-αsyn PFFs
2.2. Data Analysis of the Fibril Aggregation Assay
2.3. Stable Expression of Endogenous huA53T- or huWT-αsyn in HEK293 Cells
2.4. Exposure of Stable HEK293 Cells to huWT- or huA53T-αsyn PFFs
2.5. Immunocytochemistry
2.6. Immunoblotting
2.7. Staining with h-FTAA, pS129-αsyn and Spectral Imaging, FLIM of h-FTAA Bound Intracellular Aggregates
2.8. Confocal Microscopy, FLIM and TEM of hu-αsyn PFFs
3. Results and Discussion
3.1. Endogenous Stable Expression of Monomeric hu-αsyn in HEK293 Cells
3.2. Spectral Fibrillation Kinetics of huWT- and huA53T-αsyn PFFs with hFTAA and ThT
Sample | (hr−1) | (hr) | (hr) |
---|---|---|---|
huWT ThT | 0.310 ± 0.008 | 29.1 ± 0.1 | 22.6 ± 0.6 |
huA53T ThT | 0.898 ± 0.004 | 19.8 ± 0.1 | 17.6 ± 0.1 |
huWT h-FTAA | 0.53 ± 0.03 | 9.0 ± 0.1 | 5.2 ± 0.3 |
huA53T h-FTAA | 1.4 ± 0.2 | 6.3 ± 0.1 | 4.9 ± 0.7 |
3.3. Confocal Microscopy, TEM Images, Emission Spectra, FLIM of huWT-and huA53T-αsyn PFFs
3.4. huA53T- or huWT-αsyn Protein Aggregation in Stable HEK293 Cells
3.5. Spectral Features and FLIM of h-FTAA, Bound to Intracellular hu-αsyn Aggregates, Induced by huWT- or huA53T-αsyn PFFs
3.5.1. h-FTAA-Labeling of Intracellular Aggregates, Induced by αsyn PFFs
3.5.2. Emission Profiles and FLIM of h-FTAA Bound Intracellular Aggregates, Induced by huWT- or huA53T-αsyn PFFs
PFFs + Cell Type, h-FTAA Staining in PFFs Seeded Cells | Mean Fluorescence Lifetime (μ), ns | Peak Width (2σ), ns |
---|---|---|
Day 7 imaging: | ||
huWT-αsyn PFFs + huWT-HEK293 | 0.81 ± 0.005 | 0.37 ± 0.01 |
huWT-αsyn PFFs + huA53T-HEK293 | 0.87 ± 0.004 | 0.14 ± 0.008 |
huA53T-αsyn PFFs + huWT-HEK293 | 0.87 ± 0.004 | 0.29 ± 0.008 |
huA53T-αsyn PFFs + huA53T-HEK293 | 0.83 ± 0.003 | 0.3 ± 0.006 |
Day 9 imaging: | ||
huWT-αsyn PFFs + huWT-HEK293 | 0.68 ± 0.004 | 0.3 ± 0.009 |
huWT-αsyn PFFs + huA53T-HEK293 | 0.76 ± 0.003 | 0.29 ± 0.006 |
huWT-αsyn PFFs + huA53T-HEK293, (h-FTAA labeled, pS129 positive puncta) | 0.71 ± 0.003 | 0.26 ± 0.005 |
huA53T-αsyn PFFs + huWT-HEK293 | 0.75 ± 0.003 | 0.34 ± 0.008 |
huA53T-αsyn PFFs + huA53T-HEK293 | 0.75 ± 0.003 | 0.30 ± 0.006 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuo, G.; Kumbhar, R.; Blair, W.; Dawson, V.L.; Dawson, T.M.; Mao, X. Emerging targets of α-synuclein spreading in α-synucleinopathies: A review of mechanistic pathways and interventions. Mol. Neurodegener. 2025, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, K.; Stefanova, N.; Heras-Garvin, A. The Concept of α-Synuclein Strains and How Different Conformations May Explain Distinct Neurodegenerative Disorders. Front. Neurol. 2021, 12, 737195. [Google Scholar] [CrossRef] [PubMed]
- Lashuel, H.A.; Overk, C.R.; Oueslati, A.; Masliah, E. The many faces of α-synuclein: From structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 2013, 14, 38–48. [Google Scholar] [CrossRef]
- Lau, A.; So, R.W.L.; Lau, H.H.C.; Sang, J.C.; Ruiz-Riquelme, A.; Fleck, S.C.; Stuart, E.; Menon, S.; Visanji, N.P.; Meisl, G.; et al. α-Synuclein strains target distinct brain regions and cell types. Nat. Neurosci. 2020, 23, 21–31. [Google Scholar] [CrossRef]
- Cascella, R.; Bigi, A.; Cremades, N.; Cecchi, C. Effects of oligomer toxicity, fibril toxicity and fibril spreading in synucleinopathies. Cell. Mol. Life Sci. 2022, 79, 174. [Google Scholar] [CrossRef]
- Rinauro, D.J.; Chiti, F.; Vendruscolo, M.; Limbocker, R. Misfolded protein oligomers: Mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol. Neurodegener. 2024, 19, 20. [Google Scholar] [CrossRef]
- Outeiro, T.F.; Putcha, P.; Tetzlaff, J.E.; Spoelgen, R.; Koker, M.; Carvalho, F.; Hyman, B.T.; McLean, P.J. Correction: Formation of Toxic Oligomeric α-Synuclein Species in Living Cells. PLoS ONE 2008, 3, e1867. [Google Scholar] [CrossRef]
- Cascella, R.; Chen, S.W.; Bigi, A.; Camino, J.D.; Xu, C.K.; Dobson, C.M.; Chiti, F.; Cremades, N.; Cecchi, C. The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nat. Commun. 2021, 12, 1814. [Google Scholar] [CrossRef]
- Winner, B.; Jappelli, R.; Maji, S.K.; Desplats, P.A.; Boyer, L.; Aigner, S.; Hetzer, C.; Loher, T.; Vilar, M.; Campioni, S.; et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. USA 2011, 108, 4194–4199. [Google Scholar] [CrossRef]
- Bengoa-Vergniory, N.; Roberts, R.F.; Wade-Martins, R.; Alegre-Abarrategui, J. Alpha-synuclein oligomers: A new hope. Acta Neuropathol. 2017, 134, 819–838. [Google Scholar] [CrossRef]
- Peelaerts, W.; Baekelandt, V. α-Synuclein Structural Diversity and the Cellular Environment in α-Synuclein Transmission Models and Humans. Neurotherapeutics 2023, 20, 67–82. [Google Scholar] [CrossRef]
- Peng, C.; Gathagan, R.J.; Covell, D.J.; Medellin, C.; Stieber, A.; Robinson, J.L.; Zhang, B.; Pitkin, R.M.; Olufemi, M.F.; Luk, K.C.; et al. Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature 2018, 557, 558–563. [Google Scholar] [CrossRef]
- Torre-Muruzabal, T.; Van der Perren, A.; Coens, A.; Gelders, G.; Janer, A.B.; Camacho-Garcia, S.; Klingstedt, T.; Nilsson, P.; Stefanova, N.; Melki, R.; et al. Host oligodendrogliopathy and α-synuclein strains dictate disease severity in multiple system atrophy. Brain 2023, 146, 237–251. [Google Scholar] [CrossRef]
- Kumar, S.T.; Jagannath, S.; Francois, C.; Vanderstichele, H.; Stoops, E.; Lashuel, H.A. How specific are the conformation-specific α-synuclein antibodies? Characterization and validation of 16 α-synuclein conformation-specific antibodies using well-characterized preparations of α-synuclein monomers, fibrils and oligomers with distinct structures and morphology. Neurobiol. Dis. 2020, 146, 105086. [Google Scholar] [CrossRef] [PubMed]
- Outeiro, T.F. Alpha-Synuclein Antibody Characterization: Why Semantics Matters. Mol. Neurobiol. 2021, 58, 2202–2203. [Google Scholar] [CrossRef] [PubMed]
- Klingstedt, T.; Shirani, H.; Åslund, K.O.A.; Cairns, N.J.; Sigurdson, C.J.; Goedert, M.; Nilsson, K.P.R. The Structural Basis for Optimal Performance of Oligothiophene-Based Fluorescent Amyloid Ligands: Conformational Flexibility is Essential for Spectral Assignment of a Diversity of Protein Aggregates. Chem.—A Eur. J. 2013, 19, 10179–10192. [Google Scholar] [CrossRef] [PubMed]
- Björk, L.; Klingstedt, T.; Nilsson, K.P.R. Thiophene-Based Ligands: Design, Synthesis and Their Utilization for Optical Assignment of Polymorphic-Disease-Associated Protein Aggregates. ChemBioChem 2023, 24, e202300044. [Google Scholar] [CrossRef]
- Klingstedt, T.; Ghetti, B.; Holton, J.L.; Ling, H.; Nilsson, K.P.R.; Goedert, M. Luminescent conjugated oligothiophenes distinguish between α-synuclein assemblies of Parkinson’s disease and multiple system atrophy. Acta Neuropathol. Commun. 2019, 7, 193. [Google Scholar] [CrossRef]
- Aslund, A.; Sigurdson, C.J.; Klingstedt, T.; Grathwohl, S.; Bolmont, T.; Dickstein, D.L.; Glimsdal, E.; Prokop, S.; Lindgren, M.; Konradsson, P.; et al. Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses. ACS Chem. Biol. 2009, 4, 673–684. [Google Scholar] [CrossRef]
- Civitelli, L.; Sandin, L.; Nelson, E.; Khattak, S.I.; Brorsson, A.-C.; Kågedal, K. The Luminescent Oligothiophene p-FTAA Converts Toxic Aβ1–42 Species into Nontoxic Amyloid Fibers with Altered Properties*. J. Biol. Chem. 2016, 291, 9233–9243. [Google Scholar] [CrossRef]
- Sandin, L.; Sjödin, S.; Brorsson, A.-C.; Kågedal, K.; Civitelli, L. The Luminescent Conjugated Oligothiophene h-FTAA Attenuates the Toxicity of Different Aβ Species. Biochemistry 2021, 60, 2773–2780. [Google Scholar] [CrossRef]
- Swaminathan, P.; Klingstedt, T.; Theologidis, V.; Gram, H.; Larsson, J.; Hagen, L.; Liabakk, N.B.; Gederaas, O.A.; Hammarström, P.; Nilsson, K.P.R.; et al. In Vitro Cell Model Investigation of Alpha-Synuclein Aggregate Morphology Using Spectroscopic Imaging. Int. J. Mol. Sci. 2024, 25, 12458. [Google Scholar] [CrossRef]
- Ohgita, T.; Kono, H.; Morita, I.; Oyama, H.; Shimanouchi, T.; Kobayashi, N.; Saito, H. Intramolecular interaction kinetically regulates fibril formation by human and mouse α-synuclein. Sci. Rep. 2023, 13, 10885. [Google Scholar] [CrossRef] [PubMed]
- Ohgita, T.; Namba, N.; Kono, H.; Shimanouchi, T.; Saito, H. Mechanisms of enhanced aggregation and fibril formation of Parkinson’s disease-related variants of α-synuclein. Sci. Rep. 2022, 12, 6770. [Google Scholar] [CrossRef] [PubMed]
- Bousset, L.; Pieri, L.; Ruiz-Arlandis, G.; Gath, J.; Jensen, P.H.; Habenstein, B.; Madiona, K.; Olieric, V.; Böckmann, A.; Meier, B.H.; et al. Structural and functional characterization of two alpha-synuclein strains. Nat. Commun. 2013, 4, 2575. [Google Scholar] [CrossRef] [PubMed]
- Klingstedt, T.; Aslund, A.; Simon, R.A.; Johansson, L.B.; Mason, J.J.; Nyström, S.; Hammarström, P.; Nilsson, K.P. Synthesis of a library of oligothiophenes and their utilization as fluorescent ligands for spectral assignment of protein aggregates. Org. Biomol. Chem. 2011, 9, 8356–8370. [Google Scholar] [CrossRef]
- Gade Malmos, K.; Blancas-Mejia, L.M.; Weber, B.; Buchner, J.; Ramirez-Alvarado, M.; Naiki, H.; Otzen, D. ThT 101: A primer on the use of thioflavin T to investigate amyloid formation. Amyloid 2017, 24, 1–16. [Google Scholar] [CrossRef]
- Hellstrand, E.; Boland, B.; Walsh, D.M.; Linse, S. Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem. Neurosci. 2010, 1, 13–18. [Google Scholar] [CrossRef]
- Kuang, Y.; Mao, H.; Huang, X.; Chen, M.; Dai, W.; Gan, T.; Wang, J.; Sun, H.; Lin, H.; Liu, Q.; et al. α-Synuclein seeding amplification assays for diagnosing synucleinopathies: An innovative tool in clinical implementation. Transl. Neurodegener. 2024, 13, 56. [Google Scholar] [CrossRef]
- Kumar, H.; Singh, J.; Kumari, P.; Udgaonkar, J.B. Modulation of the extent of structural heterogeneity in α-synuclein fibrils by the small molecule thioflavin T. J. Biol. Chem. 2017, 292, 16891–16903. [Google Scholar] [CrossRef]
- Iljina, M.; Garcia, G.A.; Horrocks, M.H.; Tosatto, L.; Choi, M.L.; Ganzinger, K.A.; Abramov, A.Y.; Gandhi, S.; Wood, N.W.; Cremades, N.; et al. Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. Proc. Natl. Acad. Sci. USA 2016, 113, E1206–E1215. [Google Scholar] [CrossRef]
- Fujiwara, H.; Hasegawa, M.; Dohmae, N.; Kawashima, A.; Masliah, E.; Goldberg, M.S.; Shen, J.; Takio, K.; Iwatsubo, T. alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell. Biol. 2002, 4, 160–164. [Google Scholar] [CrossRef]
- Anderson, J.P.; Walker, D.E.; Goldstein, J.M.; de Laat, R.; Banducci, K.; Caccavello, R.J.; Barbour, R.; Huang, J.; Kling, K.; Lee, M.; et al. Phosphorylation of Ser-129 Is the Dominant Pathological Modification of α-Synuclein in Familial and Sporadic Lewy Body Disease. J. Biol. Chem. 2006, 281, 29739–29752. [Google Scholar] [CrossRef]
- Lashuel, H.A.; Mahul-Mellier, A.-L.; Novello, S.; Hegde, R.N.; Jasiqi, Y.; Altay, M.F.; Donzelli, S.; DeGuire, S.M.; Burai, R.; Magalhães, P.; et al. Revisiting the specificity and ability of phospho-S129 antibodies to capture alpha-synuclein biochemical and pathological diversity. npj Park. Dis. 2022, 8, 136. [Google Scholar] [CrossRef]
- Maroteaux, L.; Campanelli, J.T.; Scheller, R.H. Synuclein: A neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 1988, 8, 2804–2815. [Google Scholar] [CrossRef] [PubMed]
- Pinho, R.; Paiva, I.; Jerčić, K.G.; Fonseca-Ornelas, L.; Gerhardt, E.; Fahlbusch, C.; Garcia-Esparcia, P.; Kerimoglu, C.; Pavlou, M.A.S.; Villar-Piqué, A.; et al. Nuclear localization and phosphorylation modulate pathological effects of alpha-synuclein. Hum. Mol. Genet. 2018, 28, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Mbefo, M.K.; Paleologou, K.E.; Boucharaba, A.; Oueslati, A.; Schell, H.; Fournier, M.; Olschewski, D.; Yin, G.; Zweckstetter, M.; Masliah, E.; et al. Phosphorylation of synucleins by members of the Polo-like kinase family. J. Biol. Chem. 2010, 285, 2807–2822. [Google Scholar] [CrossRef] [PubMed]
- Luk, K.C.; Song, C.; O’Brien, P.; Stieber, A.; Branch, J.R.; Brunden, K.R.; Trojanowski, J.Q.; Lee, V.M.-Y. Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl. Acad. Sci. USA 2009, 106, 20051–20056. [Google Scholar] [CrossRef]
- Volpicelli-Daley, L.A.; Luk, K.C.; Patel, T.P.; Tanik, S.A.; Riddle, D.M.; Stieber, A.; Meaney, D.F.; Trojanowski, J.Q.; Lee, V.M. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 2011, 72, 57–71. [Google Scholar] [CrossRef]
- Ostrerova-Golts, N.; Petrucelli, L.; Hardy, J.; Lee, J.M.; Farer, M.; Wolozin, B. The A53T α-Synuclein Mutation Increases Iron-Dependent Aggregation and Toxicity. J. Neurosci. 2000, 20, 6048–6054. [Google Scholar] [CrossRef]
- Narhi, L.; Wood, S.J.; Steavenson, S.; Jiang, Y.; Wu, G.M.; Anafi, D.; Kaufman, S.A.; Martin, F.; Sitney, K.; Denis, P.; et al. Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J. Biol. Chem. 1999, 274, 9843–9846. [Google Scholar] [CrossRef]
- Giasson, B.I.; Duda, J.E.; Quinn, S.M.; Zhang, B.; Trojanowski, J.Q.; Lee, V.M. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 2002, 34, 521–533. [Google Scholar] [CrossRef]
- Perni, M.; Van der Goot, A.; Limbocker, R.; Van Ham, T.J.; Aprile, F.A.; Xu, C.K.; Flagmeier, P.; Thijssen, K.; Sormanni, P.; Fusco, G. Comparative Studies in the A30P and A53T α-Synuclein C. elegans Strains to Investigate the Molecular Origins of Parkinson’s Disease. Front. Cell Dev. Biol. 2021, 9, 552549. [Google Scholar] [CrossRef]
- Lashuel, H.A.; Petre, B.M.; Wall, J.; Simon, M.; Nowak, R.J.; Walz, T.; Lansbury, P.T. α-Synuclein, Especially the Parkinson’s Disease-associated Mutants, Forms Pore-like Annular and Tubular Protofibrils. J. Mol. Biol. 2002, 322, 1089–1102. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, S.; Zhao, K.; Long, H.; Liu, Z.; Gao, J.; Zhang, Y.; Su, X.-D.; Li, D.; Liu, C. Cryo-EM structure of full-length α-synuclein amyloid fibril with Parkinson’s disease familial A53T mutation. Cell Res. 2020, 30, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Paumier, K.L.; Sukoff Rizzo, S.J.; Berger, Z.; Chen, Y.; Gonzales, C.; Kaftan, E.; Li, L.; Lotarski, S.; Monaghan, M.; Shen, W.; et al. Behavioral Characterization of A53T Mice Reveals Early and Late Stage Deficits Related to Parkinson’s Disease. PLoS ONE 2013, 8, e70274. [Google Scholar] [CrossRef] [PubMed]
- Wegenast-Braun, B.M.; Skodras, A.; Bayraktar, G.; Mahler, J.; Fritschi, S.K.; Klingstedt, T.; Mason, J.J.; Hammarström, P.; Nilsson, K.P.R.; Liebig, C.; et al. Spectral Discrimination of Cerebral Amyloid Lesions after Peripheral Application of Luminescent Conjugated Oligothiophenes. Am. J. Pathol. 2012, 181, 1953–1960. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, K.; Simon, R.; Sjölander, D.; Sigurdson, C.J.; Hammarström, P.; Nilsson, K.P. Multimodal fluorescence microscopy of prion strain specific PrP deposits stained by thiophene-based amyloid ligands. Prion 2014, 8, 319–329. [Google Scholar] [CrossRef]
- Datta, R.; Heaster, T.; Sharick, J.; Gillette, A.; Skala, M. Fluorescence lifetime imaging microscopy: Fundamentals and advances in instrumentation, analysis, and applications. J. Biomed. Opt. 2020, 25, 071203. [Google Scholar] [CrossRef]
- Laine, R.F.; Sinnige, T.; Ma, K.Y.; Haack, A.J.; Poudel, C.; Gaida, P.; Curry, N.; Perni, M.; Nollen, E.A.A.; Dobson, C.M.; et al. Fast Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α-Synuclein and Polyglutamine in Aging Caenorhabditis elegans. ACS Chem. Biol. 2019, 14, 1628–1636. [Google Scholar] [CrossRef]
- Melo, E.P.; Konno, T.; Farace, I.; Awadelkareem, M.A.; Skov, L.R.; Teodoro, F.; Sancho, T.P.; Paton, A.W.; Paton, J.C.; Fares, M.; et al. Stress-induced protein disaggregation in the endoplasmic reticulum catalysed by BiP. Nat. Commun. 2022, 13, 2501. [Google Scholar] [CrossRef]
- Nakabayashi, T.; Ohta, N. Sensing of intracellular environments by fluorescence lifetime imaging of exogenous fluorophores. Anal. Sci. 2015, 31, 275–285. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Pittman, J.M.; Zerweck, J.; Venkata, B.S.; Moore, P.C.; Sachleben, J.R.; Meredith, S.C. β-Amyloid aggregation and heterogeneous nucleation. Protein Sci. 2019, 28, 1567–1581. [Google Scholar] [CrossRef]
- Ivey, P.-M.E.; Guzman Sosa, M.; Salem, A.; Min, S.; Qi, W.; Scott, A.N.; Ejendal, K.F.K.; Kinzer-Ursem, T.L.; Rochet, J.-C.; Webb, K.J. Mechanisms of Alpha-Synuclein-Seeded Aggregation in Neurons Revealed by Fluorescence Lifetime Imaging. ACS Chem. Neurosci. 2025, 16, 2128–2140. [Google Scholar] [CrossRef]
- Tittelmeier, J.; Druffel-Augustin, S.; Alik, A.; Melki, R.; Nussbaum-Krammer, C. Dissecting aggregation and seeding dynamics of α-Syn polymorphs using the phasor approach to FLIM. Commun. Biol. 2022, 5, 1345. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swaminathan, P.; Godø, K.S.; Bjørn, E.B.; Klingstedt, T.; Chatterjee, D.; Hammarström, P.; Nair, R.R.; Lindgren, M. Spectral Profiling of Early αsyn Aggregation in HEK293 Cells Modified to Stably Express Human WT and A53T-αsyn. Cells 2025, 14, 1542. https://doi.org/10.3390/cells14191542
Swaminathan P, Godø KS, Bjørn EB, Klingstedt T, Chatterjee D, Hammarström P, Nair RR, Lindgren M. Spectral Profiling of Early αsyn Aggregation in HEK293 Cells Modified to Stably Express Human WT and A53T-αsyn. Cells. 2025; 14(19):1542. https://doi.org/10.3390/cells14191542
Chicago/Turabian StyleSwaminathan, Priyanka, Karsten Sættem Godø, Eline Bærøe Bjørn, Therése Klingstedt, Debdeep Chatterjee, Per Hammarström, Rajeevkumar Raveendran Nair, and Mikael Lindgren. 2025. "Spectral Profiling of Early αsyn Aggregation in HEK293 Cells Modified to Stably Express Human WT and A53T-αsyn" Cells 14, no. 19: 1542. https://doi.org/10.3390/cells14191542
APA StyleSwaminathan, P., Godø, K. S., Bjørn, E. B., Klingstedt, T., Chatterjee, D., Hammarström, P., Nair, R. R., & Lindgren, M. (2025). Spectral Profiling of Early αsyn Aggregation in HEK293 Cells Modified to Stably Express Human WT and A53T-αsyn. Cells, 14(19), 1542. https://doi.org/10.3390/cells14191542