Post-Translational Modifications in Mammalian Folliculogenesis and Ovarian Pathologies
Abstract
1. Introduction
1.1. Folliculogenesis
1.2. Folliculogenic Dysregulation and Ovarian Diseases
2. Phosphorylation
3. Ubiquitination
4. Acetylation
5. Lactylation
6. SUMOylation and ISGylation
7. Conclusions
Modification Type | Modified Proteins | Effect | Affected Disease or Function (Phenotype) | Species | References |
---|---|---|---|---|---|
Phosphorylation | SMAD1/5/8 | AMHR2 mutation inhibits SMAD1/5/8 phosphorylation and blocks AMH signaling | POI (impaired primordial follicle reserve) | Human | [19] |
ERK1/2 | Reduced CFTR expression blocks the HCO3−/sAC/PKA pathway and decreases ERK1/2 phosphorylation | PCOS (granulosa cell proliferation arrest, follicle arrest) | Human | [21] | |
BMP15 (Ser6) | Golgi casein kinase phosphorylates Ser6, enhancing its binding ability to receptors | Supports early follicular development and oocyte–granulosa cell paracrine signaling | Human | [23] | |
GSK3β (Ser9) | Phosphorylation at its Ser9 (inactive form) reduces phospho-MAPK3/1 level and maintained phosphoMAPK14 at a higher level, which could hamper the normal meiosis progression | Regulates spatiotemporal coordination between oocyte meiosis and granulosa cell proliferation | Cattle | [24] | |
MAPK8 (JNK, Thr183/Tyr185) | DUSP6 dephosphorylates its Thr183/Tyr185, inhibiting its pro-apoptotic activity | Maintains granulosa cell survival and follicular development | Sheep | [25] | |
SMAD2/3 (Ser465/467) | TGFβ3 induces SMAD2/3 phosphorylation, promoting nuclear translocation and regulating COX-2 expression | Supports follicular wall remodeling during ovulation | Human | [27] | |
p38 MAPK (Thr180/Tyr182) | BMP-4 inhibits SMAD1 phosphorylation, reducing StAR expression | Balances follicular luteinization and progesterone secretion | Sheep | [28] | |
AMPK/mTOR/ULK1 (AMPK Thr487, mTOR Ser2448, ULK1 Ser556) | BPA activates AMPK, inhibits mTOR, and activates ULK1, inducing granulosa cell autophagy | Abnormal follicular development, increased granulosa cell apoptosis in PCOS and POI | Human | [20] | |
FOXO3a | IGF-1 activates the PI3K/AKT pathway, regulating FOXO3a phosphorylation | Regulates primordial follicle activation | Pig | [30] | |
IRS-1 | Hyperphosphorylation of IRS-1 impairs PI3K/Akt signaling | Insulin resistance in granulosa cells in PCOS | Human | [12] | |
LH receptor | Constitutive phosphorylation of LH receptor aberrantly activates the cAMP-PKA cascade | Hyperandrogenemia and anovulation in PCOS | Human | [13] | |
Ubiquitination | NGF | HDAC6 catalyzes deacetylation of NGF, promoting ubiquitination and degradation, inhibiting the PI3K/Akt/mTOR pathway | Maintains primordial follicle quiescence; abnormal reduction in HDAC6 leads to POI (excessive follicle activation) | Mouse | [40] |
MeCP2 | E3 ligase CRL4 maintains the transcription in growing oocytes by targeting MeCP2 for degradation to prevent DNA hypermethylation | Maintains primordial follicle pool | Mouse | [41] | |
p27 | Skp2 mediates ubiquitination and degradation of p27, relieving inhibition of the cyclin E-CDK2 complex | Promotes granulosa cell transition from G1 to S phase; Skp2 deficiency leads to POI (impaired granulosa cell proliferation) | Mouse | [42] | |
SYCP3 | UCHL1 removes ubiquitin chains from SYCP3, maintaining synaptonemal complex integrity | UCHL1 functional defects lead to POI (abnormal oocyte chromosome segregation, apoptosis) | Mouse | [43] | |
Connexin37 | FBXW7 mediates ubiquitination of Connexin37, regulating gap junction permeability | FBXW7 mutation leads to POI (impaired oocyte–granulosa cell communication) | Mouse | [44,51] | |
YAP | LRRC4 promotes ubiquitination of YAP, restricting its nuclear translocation | LRRC4 deficiency leads to POI (abnormal mitochondrial fission in granulosa cells, insufficient energy supply) | Mouse | [46] | |
AR | PGK1 binds Skp2 to inhibit its ubiquitination and degradation of AR, leading to AR accumulation | PCOS (increased local ovarian androgen synthesis, chronic inflammatory microenvironment) | Human | [14,47] | |
Acetylation | H3K9ac | Transient upregulation of H3K9ac in primordial germ cells activates germ cell-specific genes such as Ddx4 and Sycp3 | Promotes primordial follicle assembly | Mammal | [54] |
α-tubulin K40ac | Ikbkap (Elp1) promotes α-tubulin K40 acetylation, maintaining spindle stability | Abnormal acetylation reduces oocyte maturation rate (spindle polarity disorder, chromosome misalignment) | Mouse | [56] | |
PDK4 | AMPK activation enhances SIRT1 deacetylase activity, activating PDK4 and inhibiting pyruvate dehydrogenase | Abnormalities in this pathway lead to glycolytic disorders in PCOS | Human | [33] | |
SDHA | SIRT3 mediates deacetylation of SDHA, maintaining mitochondrial cristae structure and ATP production | Imbalanced acetylation reduces oocyte energy reserves and impairs embryonic development | Mouse | [57] | |
Lactylation | AARS2 (R199C mutation) | AARS2 mutation increases lactylation levels, inhibiting CPT2-mediated fatty acid oxidation and PDHA1-driven pyruvate entry into the tricarboxylic acid cycle | POI (excessive follicle recruitment and depletion) | Human | [62] |
Histones (H3K9la, H3K14la, H4K8la, H4K12la) | Highly expressed at the GV stage, downregulated with meiotic progression; exogenous lactate enhances their levels, upregulating oxidative phosphorylation-related genes | Promotes oocyte maturation and spindle integrity | Mouse | [64] | |
H3K18la, CREB K136la | Under hCG-induced hypoxia, lactate promotes H3K18la (activating CYP11A1, STAR transcription) and CREB K136la (enhancing transcriptional activity) | Promotes progesterone synthesis during luteinization | Human | [65] | |
H3K18la | H3K18la activates Ythdf2 transcription; Ythdf2 binds m6A-modified Ets1 mRNA to promote its degradation | Inhibits female germline stem cell proliferation, maintaining homeostasis | Mouse | [66] | |
SUMOylation | KLP-19 (C. elegans) | GEI-17 mediates SUMOylation of KLP-19, essential for midbivalent ring complex assembly and chromosome alignment | Ensures meiotic chromosome alignment | C. elegans | [71] |
Aurora-B (Lys207) | SUMOylation of Aurora-B at Lys207 maintains spindle stability | Mutation leads to oocyte chromosome misalignment and metaphase I arrest | Mammal | [72] | |
Septin2 | SUMOylation of Septin2 promotes chromosome congression in mouse oocytes | Maintains normal meiotic progression | Mouse | [73] | |
PLK1 | PLK1 undergoes SUMO-2/3 modification, which is reversed by SENP3, ensuring meiotic transition | Regulates oocyte maturation process | Mouse | [74] | |
UBE2I | UBE2I deficiency leads to downregulation of maternal effect genes and abnormal zygotic genome activation | POI (follicle depletion) | Mouse | [77,78] | |
ISGylation | ADAMTS1 | ISG15 promotes proteasomal degradation of ADAMTS1 via ISGylation | Inhibits ovulation; ISG15 knockout increases ovulation rate | Mouse | [84] |
CYP19A1 | ISGylation upregulates CYP19A1 expression | Supports follicle health and estradiol synthesis | Pig | [83] | |
USP18 | USP18, as an ISG15 deconjugase, balances ISGylation | Maintains reproductive tract homeostasis; abnormalities lead to follicular atresia | Human | [85] |
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PTM | Post-translational modifications |
PCOS | Polycystic ovary syndrome |
POI | Premature ovarian insufficiency |
GCs | Premature ovarian insufficiency |
FSH | Follicle-stimulating hormone |
LH | Luteinizing hormone |
BPA | Bisphenol A |
PKA | Protein kinase A |
GV | Germinal vesicle |
AR | Androgen receptor |
References
- Rojas, J.; Chávez-Castillo, M.; Olivar, L.C.; Calvo, M.; Mejías, J.; Rojas, M.; Morillo, J.; Bermúdez, V. Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life. J. Pregnancy 2015, 2015, 715735. [Google Scholar] [CrossRef]
- de Castro, F.C.; Cruz, M.H.; Leal, C.L. Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility—A Review. Asian-Australas J. Anim. Sci. 2016, 29, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Su, Y.Q.; Sugiura, K.; Xia, G.; Eppig, J.J. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science 2010, 330, 366–369. [Google Scholar] [CrossRef]
- Nguyen, X.P.; Vilkaite, A.; Bender, U.; Dietrich, J.E.; Hinderhofer, K.; Strowitzki, T.; Rehnitz, J. Regulation of Bone Morphogenetic Protein Receptor Type II Expression by FMR1/Fragile X Mental Retardation Protein in Human Granulosa Cells in the Context of Poor Ovarian Response. Int. J. Mol. Sci. 2024, 25, 10643. [Google Scholar] [CrossRef]
- Orozco-Galindo, B.V.; Sánchez-Ramírez, B.; González-Trevizo, C.L.; Castro-Valenzuela, B.; Varela-Rodríguez, L.; Burrola-Barraza, M.E. Folliculogenesis: A Cellular Crosstalk Mechanism. Curr. Issues Mol. Biol. 2025, 47, 113. [Google Scholar] [CrossRef]
- Hayes, E.; Winston, N.; Stocco, C. Molecular crosstalk between insulin-like growth factors and follicle-stimulating hormone in the regulation of granulosa cell function. Reprod. Med. Biol. 2024, 23, e12575. [Google Scholar] [CrossRef]
- Wang, S.; Gong, Y.; Wang, Z.; Greenbaum, J.; Xiao, H.M.; Deng, H.W. Cell-specific network analysis of human folliculogenesis reveals network rewiring in antral stage oocytes. J. Cell. Mol. Med. 2021, 25, 2851–2860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bao, Y.; Zhou, X.; Zheng, L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod. Biol. Endocrinol. 2019, 17, 67. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Huo, P.; Liu, S.; Huang, H.; Zhang, S. Posttranslational modifications in pathogenesis of PCOS. Front. Endocrinol. 2022, 13, 1024320. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, X.; Ma, F.; Zhou, Y.; Song, S.; Li, Y.; Ma, Y. Molecular mechanisms and therapeutic potential of quercetin in ovarian functions. Phytomedicine 2025, 144, 156945. [Google Scholar] [CrossRef]
- Pala, L.; Barbaro, V.; Dicembrini, I.; Rotella, C.M. The therapy of insulin resistance in other diseases besides type 2 diabetes. Eat. Weight. Disord.-Stud. Anorex. Bulim. Obes. 2014, 19, 275–283. [Google Scholar] [CrossRef]
- Nisa, K.U.; Tarfeen, N.; Mir, S.A.; Waza, A.A.; Ahmad, M.B.; Ganai, B.A. Molecular Mechanisms in the Etiology of Polycystic Ovary Syndrome (PCOS): A Multifaceted Hypothesis Towards the Disease with Potential Therapeutics. Indian J. Clin. Biochem. 2024, 39, 18–36. [Google Scholar] [CrossRef]
- Franks, S.; Stark, J.; Hardy, K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum. Reprod. Update 2008, 14, 367–378. [Google Scholar] [CrossRef]
- Lim, J.J.; Lima, P.D.A.; Salehi, R.; Lee, D.R.; Tsang, B.K. Regulation of androgen receptor signaling by ubiquitination during folliculogenesis and its possible dysregulation in polycystic ovarian syndrome. Sci. Rep. 2017, 7, 10272. [Google Scholar] [CrossRef]
- Du, J.; Zhou, Y.; Su, X.; Yu, J.J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J.H.; Choi, B.H.; et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011, 334, 806–809. [Google Scholar] [CrossRef] [PubMed]
- Vo, K.C.T.; Sato, Y.; Kawamura, K. Improvement of oocyte quality through the SIRT signaling pathway. Reprod. Med. Biol. 2023, 22, e12510. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zhen, J.; Liu, X.; Guo, J.; Li, D.; Xie, J.; Xie, L. Protein post-translational modification by lysine succinylation: Biochemistry, biological implications, and therapeutic opportunities. Genes Dis. 2023, 10, 1242–1262. [Google Scholar] [CrossRef] [PubMed]
- Salvador, L.M.; Park, Y.; Cottom, J.; Maizels, E.T.; Jones, J.C.; Schillace, R.V.; Carr, D.W.; Cheung, P.; Allis, C.D.; Jameson, J.L.; et al. Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells. J. Biol. Chem. 2001, 276, 40146–40155. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Wang, X.; Wang, J.; Zhang, W.; Wang, B.; Cao, Y.; Kee, K. A dominant negative mutation at the ATP binding domain of AMHR2 is associated with a defective anti-Müllerian hormone signaling pathway. Mol. Hum. Reprod. 2016, 22, 669–678. [Google Scholar] [CrossRef]
- Lin, M.; Hua, R.; Ma, J.; Zhou, Y.; Li, P.; Xu, X.; Yu, Z.; Quan, S. Bisphenol A promotes autophagy in ovarian granulosa cells by inducing AMPK/mTOR/ULK1 signalling pathway. Environ. Int. 2021, 147, 106298. [Google Scholar] [CrossRef]
- Chen, H.; Guo, J.H.; Zhang, X.H.; Chan, H.C. Defective CFTR-regulated granulosa cell proliferation in polycystic ovarian syndrome. Reproduction 2015, 149, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, Y.; Wu, S.; Wang, L.; Tan, F.; Li, F. PIM2-mediated phosphorylation contributes to granulosa cell survival via resisting apoptosis during folliculogenesis. Clin. Transl. Med. 2021, 11, e359. [Google Scholar] [CrossRef]
- Tibaldi, E.; Arrigoni, G.; Martinez, H.M.; Inagaki, K.; Shimasaki, S.; Pinna, L.A. Golgi apparatus casein kinase phosphorylates bioactive Ser-6 of bone morphogenetic protein 15 and growth and differentiation factor 9. FEBS Lett. 2010, 584, 801–805. [Google Scholar] [CrossRef]
- Uzbekova, S.; Salhab, M.; Perreau, C.; Mermillod, P.; Dupont, J. Glycogen synthase kinase 3B in bovine oocytes and granulosa cells: Possible involvement in meiosis during in vitro maturation. Reproduction 2009, 138, 235–246. [Google Scholar] [CrossRef]
- Relav, L.; Estienne, A.; Price, C.A. Dual-specificity phosphatase 6 (DUSP6) mRNA and protein abundance is regulated by fibroblast growth factor 2 in sheep granulosa cells and inhibits c-Jun N-terminal kinase (MAPK8) phosphorylation. Mol. Cell. Endocrinol. 2021, 531, 111297. [Google Scholar] [CrossRef]
- Safdar, M.; Liang, A.; Rajput, S.A.; Abbas, N.; Zubair, M.; Shaukat, A.; Rehman, A.U.; Jamil, H.; Guo, Y.; Ullah, F.; et al. Orexin-A Regulates Follicular Growth, Proliferation, Cell Cycle and Apoptosis in Mouse Primary Granulosa Cells via the AKT/ERK Signaling Pathway. Molecules 2021, 26, 5635. [Google Scholar] [CrossRef]
- Lai, T.H.; Chen, H.T.; Wu, P.H.; Wu, W.B. The Presence of TGFβ3 in Human Ovarian Intrafollicular Fluid and Its Involvement in Thromboxane Generation in Follicular Granulosa Cells through a Canonical TGFβRI, Smad2/3 Signaling Pathway and COX-2 Induction. Int. J. Mol. Sci. 2024, 25, 5558. [Google Scholar] [CrossRef]
- Pierre, A.; Pisselet, C.; Dupont, J.; Mandon-Pépin, B.; Monniaux, D.; Monget, P.; Fabre, S. Molecular basis of bone morphogenetic protein-4 inhibitory action on progesterone secretion by ovine granulosa cells. J. Mol. Endocrinol. 2004, 33, 805–817. [Google Scholar] [CrossRef]
- Li, L.; Shi, X.; Shi, Y.; Wang, Z. The Signaling Pathways Involved in Ovarian Follicle Development. Front. Physiol. 2021, 12, 730196. [Google Scholar] [CrossRef] [PubMed]
- Bezerra MÉ, S.; Barberino, R.S.; Menezes, V.G.; Gouveia, B.B.; Macedo, T.J.S.; Santos, J.M.S.; Monte, A.P.O.; Barros, V.R.P.; Matos, M.H.T. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway. Reprod. Fertil. Dev. 2018, 30, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.; Huang, X. The Clinical Application of Growth Hormone and Its Biological and Molecular Mechanisms in Assisted Reproduction. Int. J. Mol. Sci. 2022, 23, 10768. [Google Scholar] [CrossRef]
- Merhi, Z. Vitamin D attenuates the effect of advanced glycation end products on anti-Mullerian hormone signaling. Mol. Cell. Endocrinol. 2019, 479, 87–92. [Google Scholar] [CrossRef]
- Hong, L.; Xiao, S.; Diao, L.; Lian, R.; Chen, C.; Zeng, Y.; Liu, S. Decreased AMPK/SIRT1/PDK4 induced by androgen excess inhibits human endometrial stromal cell decidualization in PCOS. Cell. Mol. Life Sci. 2024, 81, 324. [Google Scholar] [CrossRef] [PubMed]
- Scaramuzzi, R.J.; Zouaïdi, N.; Menassol, J.B.; Dupont, J. The effects of intravenous, glucose versus saline on ovarian follicles and their levels of some mediators of insulin signalling. Reprod. Biol. Endocrinol. 2015, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Z.; You, F.; Sun, J.; Yang, H. PTK2B inhibitor PF-431396 inhibits inflammatory response and apoptosis of ovarian granulosa cells by targeting AKT1 phosphorylation in premature ovarian insufficiency. Int. Immunopharmacol. 2025, 155, 114651. [Google Scholar] [CrossRef] [PubMed]
- Iwadate, M.; Takizawa, Y.; Shirai, Y.T.; Kimura, S. An in vivo model for thyroid regeneration and folliculogenesis. Lab. Investig. 2018, 98, 1126–1132. [Google Scholar] [CrossRef]
- Herhaus, L.; Dikic, I. Expanding the ubiquitin code through post-translational modification. EMBO Rep. 2015, 16, 1071–1083. [Google Scholar] [CrossRef]
- Kitamura, H.; Hashimoto, M. USP2-Related Cellular Signaling and Consequent Pathophysiological Outcomes. Int. J. Mol. Sci. 2021, 22, 1209. [Google Scholar] [CrossRef]
- Olzmann, J.A.; Li, L.; Chudaev, M.V.; Chen, J.; Perez, F.A.; Palmiter, R.D.; Chin, L.S. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J. Cell Biol. 2007, 178, 1025–1038. [Google Scholar] [CrossRef]
- Zhang, T.; Tong, Y.; Zhu, R.; Liang, Y.; Zhang, J.; Hu, C.; He, M.; Hu, Z.; Shen, Z.; Niu, J.; et al. HDAC6-dependent deacetylation of NGF dictates its ubiquitination and maintains primordial follicle dormancy. Theranostics 2024, 14, 2345–2366. [Google Scholar] [CrossRef]
- Ren, P.; Tong, X.; Li, J.; Jiang, H.; Liu, S.; Li, X.; Lai, M.; Yang, W.; Rong, Y.; Zhang, Y.; et al. CRL4(DCAF13) E3 ubiquitin ligase targets MeCP2 for degradation to prevent DNA hypermethylation and ensure normal transcription in growing oocytes. Cell. Mol. Life Sci. 2024, 81, 165. [Google Scholar] [CrossRef]
- Fotovati, A.; Abu-Ali, S.; Nakayama, K.; Nakayama, K.I. Impaired ovarian development and reduced fertility in female mice deficient in Skp2. J. Anat. 2011, 218, 668–677. [Google Scholar] [CrossRef]
- Woodman, M.F.; Ozcan, M.C.H.; Gura, M.A.; De La Cruz, P.; Gadson, A.K.; Grive, K.J. The requirement of ubiquitin C-terminal hydrolase L1 in mouse ovarian development and fertility. Biol. Reprod. 2022, 107, 500–513. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.; Zhou, Y.; Shuai, L.; Chen, Z.; Wang, L. Deletion of Fbxw7 in oocytes causes follicle loss and premature ovarian insufficiency in mice. J. Cell. Mol. Med. 2024, 28, e18487. [Google Scholar] [CrossRef]
- Kikuchi, M.; Nishimura, T.; Ishishita, S.; Matsuda, Y.; Tanaka, M. foxl3, a sexual switch in germ cells, initiates two independent molecular pathways for commitment to oogenesis in medaka. Proc. Natl. Acad. Sci. USA 2020, 117, 12174–12181. [Google Scholar] [CrossRef]
- Shang, Y.; Li, Y.; Han, D.; Deng, K.; Gao, W.; Wu, M. LRRC4 Deficiency Drives Premature Ovarian Insufficiency by Disrupting Metabolic Homeostasis in Granulosa Cells. Adv. Sci. 2025, 12, e2417717. [Google Scholar] [CrossRef]
- Liu, X.; Sun, C.; Zou, K.; Li, C.; Chen, X.; Gu, H.; Zhou, Z.; Yang, Z.; Tu, Y.; Qin, N.; et al. Novel PGK1 determines SKP2-dependent AR stability and reprograms granular cell glucose metabolism facilitating ovulation dysfunction. EBioMedicine 2020, 61, 103058. [Google Scholar] [CrossRef]
- Prizant, H.; Gleicher, N.; Sen, A. Androgen actions in the ovary: Balance is key. J. Endocrinol. 2014, 222, R141–R151. [Google Scholar] [CrossRef]
- Franks, S.; Hardy, K. Androgen Action in the Ovary. Front. Endocrinol. 2018, 9, 452. [Google Scholar] [CrossRef]
- Ke, H.; Tang, S.; Guo, T.; Hou, D.; Jiao, X.; Li, S.; Luo, W.; Xu, B.; Zhao, S.; Li, G.; et al. Landscape of pathogenic mutations in premature ovarian insufficiency. Nat. Med. 2023, 29, 483–492. [Google Scholar] [CrossRef]
- Rossetti, R.; Moleri, S.; Guizzardi, F.; Gentilini, D.; Libera, L.; Marozzi, A.; Moretti, C.; Brancati, F.; Bonomi, M.; Persani, L. Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset. Front. Endocrinol. 2021, 12, 664645. [Google Scholar] [CrossRef]
- Wu, Y.; Li, M.; Yang, M. Post-Translational Modifications in Oocyte Maturation and Embryo Development. Front. Cell Dev. Biol. 2021, 9, 645318. [Google Scholar] [CrossRef]
- Jin, J.; Ren, P.; Li, X.; Zhang, Y.; Yang, W.; Ma, Y.; Lai, M.; Yu, C.; Zhang, S.; Zhang, Y.-L. Ovulatory signal-triggered chromatin remodeling in ovarian granulosa cells by HDAC2 phosphorylation activation-mediated histone deacetylation. Epigenet. Chromatin 2023, 16, 11. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, J.; Li, Q.; Li, Y.; Shi, F.; Xie, Z.; Liu, H. Current advances in epigenetic modification and alteration during mammalian ovarian folliculogenesis. J. Genet. Genom. 2012, 39, 111–123. [Google Scholar] [CrossRef]
- Hunzicker-Dunn, M.; Maizels, E.T. FSH signaling pathways in immature granulosa cells that regulate target gene expression: Branching out from protein kinase A. Cell. Signal. 2006, 18, 1351–1359. [Google Scholar] [CrossRef]
- Yang, K.T.; Inoue, A.; Lee, Y.J.; Jiang, C.L.; Lin, F.J. Loss of Ikbkap/Elp1 in mouse oocytes causes spindle disorganization, developmental defects in preimplantation embryos and impaired female fertility. Sci. Rep. 2019, 9, 18875. [Google Scholar] [CrossRef]
- Bertoldo, M.J.; Guibert, E.; Faure, M.; Ramé, C.; Foretz, M.; Viollet, B.; Dupont, J.; Froment, P. Specific deletion of AMP-activated protein kinase (α1AMPK) in murine oocytes alters junctional protein expression and mitochondrial physiology. PLoS ONE 2015, 10, e0119680. [Google Scholar] [CrossRef]
- Monga, R.; Ghai, S.; Datta, T.K.; Singh, D. Tissue-specific promoter methylation and histone modification regulate CYP19 gene expression during folliculogenesis and luteinization in buffalo ovary. Gen. Comp. Endocrinol. 2011, 173, 205–215. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Perez-Neut, M.; et al. Metabolic regulation of gene expression by histone lactylation. Nature 2019, 574, 575–580. [Google Scholar] [CrossRef]
- Lu, Z.; Zheng, X.; Shi, M.; Yin, Y.; Liang, Y.; Zou, Z.; Ding, C.; He, Y.; Zhou, Y.; Li, X. Lactylation: The emerging frontier in post-translational modification. Front. Genet. 2024, 15, 1423213. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, D. Lactylation constrains OXPHOS under hypoxia. Cell Res. 2024, 34, 91–92. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Ren, S.T.; Yang, W.J.; Xu, X.W.; Zhao, S.M.; Fang, K.F.; Lin, Y.; Yuan, Y.Y.; Zhang, X.J.; Chen, Y.Q.; et al. AARS2-catalyzed lactylation induces follicle development and premature ovarian insufficiency. Cell Death Discov. 2025, 11, 209. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Zhang, J.; Zhou, Q.; He, X.; Zheng, Z.; Wei, Y.; Zhou, K.; Lin, Y.; Yu, H.; Zhang, H.; et al. Hypoxia induces mitochondrial protein lactylation to limit oxidative phosphorylation. Cell Res. 2024, 34, 13–30. [Google Scholar] [CrossRef]
- Yang, D.; Zheng, H.; Lu, W.; Tian, X.; Sun, Y.; Peng, H. Histone Lactylation Is Involved in Mouse Oocyte Maturation and Embryo Development. Int. J. Mol. Sci. 2024, 25, 4821. [Google Scholar] [CrossRef]
- Wu, G.; Pan, Y.; Chen, M.; Liu, Z.; Li, C.; Sheng, Y.; Li, H.; Shen, M.; Liu, H. Lactylation drives hCG-triggered luteinization in hypoxic granulosa cells. Int. J. Biol. Macromol. 2024, 280, 135580. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, B.; Peng, Y.; Lin, S.; Du, W.; Liu, R.; Zhang, S.; Wu, J.; Zou, K.; Zhao, X. H3K18 lactylation-mediated Ythdf2 activation restrains mouse female germline stem cell proliferation via promoting Ets1 mRNA degradation. Clin. Epigenet. 2025, 17, 84. [Google Scholar] [CrossRef]
- Wei, Y.; Pan, B.; Qin, J.; Cao, B.; Lv, T.; Ye, J.; Ning, A.; Du, K.; Chen, X.; Zou, S.; et al. The walnut-derived peptide TW-7 improves mouse parthenogenetic embryo development of vitrified MII oocytes potentially by promoting histone lactylation. J. Anim. Sci. Biotechnol. 2024, 15, 86. [Google Scholar] [CrossRef]
- Yang, W.; Wang, P.; Cao, P.; Wang, S.; Yang, Y.; Su, H.; Nashun, B. Hypoxic in vitro culture reduces histone lactylation and impairs pre-implantation embryonic development in mice. Epigenet. Chromatin 2021, 14, 57. [Google Scholar] [CrossRef]
- He, M.; Zhang, T.; Yang, Y.; Wang, C. Mechanisms of Oocyte Maturation and Related Epigenetic Regulation. Front. Cell Dev. Biol. 2021, 9, 654028. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Wang, Y.; Dushimova, Z.; Gulnara, K.; Takeda, S.; Zhou, Z.; Xu, X. ISGylation: Is our genome yearning for such a modification? Acta Biochim. Biophys. Sin. 2025. [Google Scholar] [CrossRef]
- Pelisch, F.; Tammsalu, T.; Wang, B.; Jaffray, E.G.; Gartner, A.; Hay, R.T. A SUMO-Dependent Protein Network Regulates Chromosome Congression during Oocyte Meiosis. Mol. Cell 2017, 65, 66–77. [Google Scholar] [CrossRef]
- Chen, S.S.; Li, L.; Yao, B.; Guo, J.L.; Lu, P.S.; Zhang, H.L.; Zhang, K.H.; Zou, Y.J.; Luo, N.J.; Sun, S.C.; et al. Mutation of the SUMOylation site of Aurora-B disrupts spindle formation and chromosome alignment in oocytes. Cell Death Discov. 2024, 10, 447. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.L.; Lin, S.L.; Li, M.; Ouyang, Y.C.; Hou, Y.; Schatten, H.; Sun, Q.Y. Septin2 is modified by SUMOylation and required for chromosome congression in mouse oocytes. Cell Cycle 2010, 9, 1607–1616. [Google Scholar] [CrossRef]
- Feitosa, W.B.; Hwang, K.; Morris, P.L. Temporal and SUMO-specific SUMOylation contribute to the dynamics of Polo-like kinase 1 (PLK1) and spindle integrity during mouse oocyte meiosis. Dev. Biol. 2018, 434, 278–291. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.B.; Ou, X.H.; Tong, J.S.; Li, S.; Wei, L.; Ouyang, Y.C.; Hou, Y.; Schatten, H.; Sun, Q.Y. The SUMO pathway functions in mouse oocyte maturation. Cell Cycle 2010, 9, 2640–2646. [Google Scholar] [CrossRef]
- Ihara, M.; Stein, P.; Schultz, R.M. UBE2I (UBC9), a SUMO-conjugating enzyme, localizes to nuclear speckles and stimulates transcription in mouse oocytes. Biol. Reprod. 2008, 79, 906–913. [Google Scholar] [CrossRef]
- Briley, S.M.; Ahmed, A.A.; Steenwinkel, T.E.; Jiang, P.; Hartig, S.M.; Schindler, K.; Pangas, S.A. Global SUMOylation in mouse oocytes maintains oocyte identity and regulates chromatin remodeling and transcriptional silencing at the end of folliculogenesis. Development 2023, 150, dev201535. [Google Scholar] [CrossRef]
- Rodriguez, A.; Briley, S.M.; Patton, B.K.; Tripurani, S.K.; Rajapakshe, K.; Coarfa, C.; Rajkovic, A.; Andrieux, A.; Dejean, A.; Pangas, S.A. Loss of the E2 SUMO-conjugating enzyme Ube2i in oocytes during ovarian folliculogenesis causes infertility in mice. Development 2019, 146, dev176701. [Google Scholar] [CrossRef]
- Patton, B.K.; Madadi, S.; Briley, S.M.; Ahmed, A.A.; Pangas, S.A. Sumoylation regulates functional properties of the oocyte transcription factors SOHLH1 and NOBOX. FASEB J. 2023, 37, e22747. [Google Scholar] [CrossRef]
- Feitosa, W.B.; Morris, P.L. SUMOylation regulates germinal vesicle breakdown and the Akt/PKB pathway during mouse oocyte maturation. Am. J. Physiol.-Cell Physiol. 2018, 315, C115–C121. [Google Scholar] [CrossRef]
- Rishi, J.K.; Montes, C.; Walley, J.W.; Keating, A.F. Ovarian SUMO-2/3 targets and their differential response to genotoxic stress induced by 7,12-dimethylbenz(a)anthracene exposure in lean and obese female mice. Biol. Reprod. 2025, ioaf101. [Google Scholar] [CrossRef]
- Akutsu, M.; Ye, Y.; Virdee, S.; Chin, J.W.; Komander, D. Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Proc. Natl. Acad. Sci. USA 2011, 108, 2228–2233. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, X.; Fan, J.; Xie, C.; Huang, T.; Fu, Y.; Zhou, R. CREBRF regulates apoptosis and estradiol via ISG15/ISGylation in pig granulosa cells. Free. Radic. Biol. Med. 2024, 225, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, J.; Wu, S.; Wang, L.; Chen, G.; Chen, D.; Peng, X.; Miao, Y.L.; Mei, S.; Li, F. ISG15 suppresses ovulation and female fertility by ISGylating ADAMTS1. Cell Biosci. 2023, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gong, S.; Li, H.; Jiang, J.; Jia, Y.; Zhang, R.; Liu, H.; Wang, A.; Jin, Y.; Lin, P. USP18 promotes endometrial receptivity via the JAK/STAT1 and the ISGylation pathway. Theriogenology 2023, 202, 110–118. [Google Scholar] [CrossRef]
- Feitosa, W.B.; Morris, P.L. Post-ovulatory aging is associated with altered patterns for small ubiquitin-like modifier (SUMO) proteins and SUMO-specific proteases. FASEB J. 2023, 37, e22816. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Liu, B.Q.; Zhang, Q.; Hao, L.; Li, C.; Yan, J.; Zhao, F.Y.; Qiao, H.Y.; Jiang, J.Y.; Wang, H.Q. ISG15 suppresses translation of ABCC2 via ISGylation of hnRNPA2B1 and enhances drug sensitivity in cisplatin resistant ovarian cancer cells. Biochim. Biophys. Acta BBA-Mol. Cell Res. 2020, 1867, 118647. [Google Scholar] [CrossRef]
- Huang, C.J.; Wu, D.; Khan, F.A.; Huo, L.J. The SUMO Protease SENP3 Orchestrates G2-M Transition and Spindle Assembly in Mouse Oocytes. Sci. Rep. 2015, 5, 15600. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Feng, Y.; Wu, J.; Zhou, J.; Li, Z.; Qiao, M.; Chen, T.; Xu, Z.; Peng, X.; Mei, S. Post-Translational Modifications in Mammalian Folliculogenesis and Ovarian Pathologies. Cells 2025, 14, 1292. https://doi.org/10.3390/cells14161292
Chen D, Feng Y, Wu J, Zhou J, Li Z, Qiao M, Chen T, Xu Z, Peng X, Mei S. Post-Translational Modifications in Mammalian Folliculogenesis and Ovarian Pathologies. Cells. 2025; 14(16):1292. https://doi.org/10.3390/cells14161292
Chicago/Turabian StyleChen, Dake, Yue Feng, Junjing Wu, Jiawei Zhou, Zipeng Li, Mu Qiao, Tong Chen, Zhong Xu, Xianwen Peng, and Shuqi Mei. 2025. "Post-Translational Modifications in Mammalian Folliculogenesis and Ovarian Pathologies" Cells 14, no. 16: 1292. https://doi.org/10.3390/cells14161292
APA StyleChen, D., Feng, Y., Wu, J., Zhou, J., Li, Z., Qiao, M., Chen, T., Xu, Z., Peng, X., & Mei, S. (2025). Post-Translational Modifications in Mammalian Folliculogenesis and Ovarian Pathologies. Cells, 14(16), 1292. https://doi.org/10.3390/cells14161292