Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics
Abstract
1. Introduction
2. Methodology of Research
3. ROS: Dusk and Dawn
4. ROS in Cancer Promotion
4.1. ROS and Tumorigenesis
4.1.1. NF-κB Regulation
4.1.2. PI3K/Akt Regulation
4.1.3. MAPKs Regulation
4.1.4. NRF2 Regulation
4.2. ROS and Metastasis
4.2.1. Role of TGF-β
4.2.2. Role of TNF-α
4.2.3. Role of HIF-1α
4.2.4. Role of TPA
4.2.5. Role of MMPs
4.2.6. Further Factors Leading to EMT
4.3. ROS and Angiogenesis
4.3.1. The VEGF-VEGFR2 System
4.3.2. The Role of HIF in Angiogenesis
4.3.3. The Role of p66Shc in Angiogenesis
4.4. Cutting-Edge Tools for Monitoring Redox Signaling Heterogeneity
5. Tumor Suppressive Role of ROS
5.1. Apoptosis
5.1.1. PI3k Pathway
5.1.2. MAPK Pathway
5.2. Autophagy
ROS-Induced Autophagy in Cancer Cells
5.3. Necroptosis
Role of RIPK1 in Signaling Necroptosis
6. Translational Advances in Redox-Based Cancer Therapies
6.1. ROS-Modulating Drugs in Clinical Trials
6.2. Synthetic Lethality Strategies Targeting Redox Vulnerabilities
6.3. Ferroptosis
7. Interplay of ROS, Inflammation, and Cancer
8. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ROS | Reactive oxygen species |
NADPH | Nicotinamide adenine dinucleotide phosphate (reduced form) |
NADP⁺ | Nicotinamide adenine dinucleotide phosphate (oxidized form) |
GR | Glutathione reductase |
GSH | Reduced glutathione |
GSSG | Oxidized glutathione |
GPx/GPX | Glutathione peroxidase |
TRX | Thioredoxin |
TRX red | Reduced thioredoxin |
TRX ox | Oxidized thioredoxin |
PRDX/Prx | Peroxiredoxin |
SOD | Superoxide dismutase |
HO• | Hydroxyl radical |
O22−/O2•− | Superoxide ion/Superoxide anion radical |
H2O2 | Hydrogen peroxide |
MAPK | Mitogen-activated protein kinase |
ERK | Extracellular signal-regulated kinase |
AKT | Protein kinase B |
JNK | c-Jun N-terminal kinase |
PI3K | Phosphoinositide 3-kinase |
mTOR | Mammalian target of rapamycin |
PTEN | Phosphatase and tensin homolog |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
VEGF | Vascular endothelial growth factor |
VEGFR | Vascular endothelial growth factor receptor |
MMPs/MMP-9 | Matrix metalloproteinases/Matrix metalloproteinase-9 |
COX-2 | Cyclooxygenase-2 |
STAT1/3 | Signal transducer and activator of transcription 1/3 |
STAT-3 | Signal transducer and activator of transcription 3 |
IL-6/IL-6R | Interleukin-6/Interleukin-6 receptor |
IL-1β | Interleukin-1 beta |
TNF-α | Tumor necrosis factor-alpha |
TNFR | Tumor necrosis factor receptor |
TLR4 | Toll-like receptor 4 |
TRAF2/TRAF6 | TNF receptor-associated factor 2/6 |
EGFR | Epidermal growth factor receptor |
EGF | Epidermal growth factor |
PDGF | Platelet-derived growth factor |
TKR | Tyrosine kinase receptor |
NOX/NOX2 | NADPH oxidase/NADPH oxidase 2 |
ER | Endoplasmic reticulum |
p53 | Tumor protein p53 |
RAS | Renin–angiotensin system |
RAF | Rapidly accelerated fibrosarcoma |
MEK | Mitogen-activated protein kinase kinase |
MKK | MAP kinase kinase |
ASK | Apoptosis signal-regulating kinase |
IKK-α/IKK-β | IκB kinase alpha/beta |
NEMO | NF-κB essential modulator |
IκB | Inhibitor of kappa B |
p50/p65 | NF-κB subunits 1/3 |
NFAT | Nuclear factor of activated T cells |
CREB | cAMP response element-binding protein |
HO-1 | Heme oxygenase-1 |
GPX1 | Glutathione peroxidase 1 |
SHP-2 | Src homology region 2-containing phosphatase-2 |
PKAc | Protein kinase A catalytic subunit |
Keap1 | Kelch-like ECH-associated protein 1 |
NRF2 | Nuclear factor erythroid 2-related factor 2 |
Cul3 | Cullin-3 |
HIF-1α/HIF-1β | Hypoxia-inducible factor 1-alpha/beta |
PHDs | Prolyl hydroxylases |
P-VHL | von Hippel–Lindau tumor suppressor protein |
c-Myc | Cellular Myc oncogene |
Elk1 | Ets-like protein 1 |
Co-filin | Actin-binding protein cofilin |
SSH-1L | Slingshot protein phosphatase 1L |
p44/42 MAPK | p44/42 mitogen-activated protein kinase |
xCT | Cystine/glutamate antiporter |
GSR | Glutathione reductase |
G6PD | Glucose-6-phosphate dehydrogenase |
GCL | Glutamate-cysteine ligase |
TXNRD1 | Thioredoxin reductase 1 |
PRDX | Peroxiredoxin |
CXCR4 | C-X-C chemokine receptor type 4 |
Bcl-2/Bcl-XL | B-cell lymphoma 2/B-cell lymphoma-extra-large |
LPS | Lipopolysaccharide |
miR-199a-5p | MicroRNA-199a-5p |
As(III) | Arsenite |
Cr(VI) | Hexavalent chromium |
ITGB3 | Integrin beta-3 |
TRPC3 | Transient receptor potential cation channel subfamily C member 3 |
LDL | Low-density lipoprotein |
ECM | Extracellular matrix |
TGF-β | Transforming growth factor-beta |
Cyclin D1 | Cell cycle regulatory protein D1 |
TPA | 12-O-tetradecanoylphorbol-13-acetate |
CYLD | Cylindromatosis tumor suppressor protein |
EMT | Epithelial–mesenchymal transition |
SERS | Surface-Enhanced Raman Spectroscopy |
SUMO | Small ubiquitin-like modifier |
PTM | Post-translational modification |
SL | Synthetic lethality |
References
- Krieghoff-Henning, E.; Folkerts, J.; Penzkofer, A.; Weg-Remers, S. Cancer—An Overview. Med. Monatsschr. Pharm. 2017, 40, 48–54. [Google Scholar] [PubMed]
- Behl, T.; Kumar, A.; Vishakha; Sehgal, A.; Singh, S.; Sharma, N.; Yadav, S.; Rashid, S.; Ali, N.; Ahmed, A.S.; et al. Understanding the Mechanistic Pathways and Clinical Aspects Associated with Protein and Gene Based Biomarkers in Breast Cancer. Int. J. Biol. Macromol. 2023, 253, 126595. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Nigam, M.; Mishra, A.P.; Deb, V.K.; Dimri, D.B.; Tiwari, V.; Bungau, S.G.; Bungau, A.F.; Radu, A.-F. Evaluation of the Association of Chronic Inflammation and Cancer: Insights and Implications. Biomed. Pharmacother. 2023, 164, 115015. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, M.U.; Azhar Ud Din, M.; Khan, I.M.; Khan, M.I.; Bungau, S.; Hassan, S.S. ul Reprogramming Tumor-Associated Macrophages as a Unique Approach to Target Tumor Immunotherapy. Front. Immunol. 2023, 14, 1–14. [Google Scholar] [CrossRef]
- Cordani, M.; Donadelli, M.; Strippoli, R.; Bazhin, A.V.; Sánchez-Álvarez, M. Interplay between ROS and Autophagy in Cancer and Aging: From Molecular Mechanisms to Novel Therapeutic Approaches. Oxid. Med. Cell. Longev. 2019, 2019, 8794612. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Peoples, J.N.; Saraf, A.; Ghazal, N.; Pham, T.T.; Kwong, J.Q. Mitochondrial Dysfunction and Oxidative Stress in Heart Disease. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef]
- Auten, R.L.; Davis, J.M. Oxygen Toxicity and Reactive Oxygen Species: The Devil Is in the Details. Pediatr. Res. 2009, 66, 121–127. [Google Scholar] [CrossRef]
- Liang, Y.; Liang, N.; Yin, L.; Xiao, F. Cellular and Molecular Mechanisms of Xenobiotics-Induced Premature Senescence. Toxicol. Res. 2020, 9, 669–675. [Google Scholar] [CrossRef]
- Manuguerra, S.; Carli, F.; Scoditti, E.; Santulli, A.; Gastaldelli, A.; Messina, C.M. Effects of Mixtures of Emerging Pollutants and Drugs on Modulation of Biomarkers Related to Toxicity, Oxidative Stress, and Cancer. Metabolites 2024, 14, 559. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, H.; Liu, Y.; Duan, C.; Liu, X.; Xia, T.; Chen, D.; Piao, H.-L.; Liu, H.-X. The Double-Edged Roles of ROS in Cancer Prevention and Therapy. Theranostics 2021, 11, 4839–4857. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules 2019, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Yang, Y.; Karakhanova, S.; Werner, J.; Bazhin, A. V Reactive Oxygen Species in Cancer Biology and Anticancer Therapy. Curr. Med. Chem. 2013, 20, 3677–3692. [Google Scholar] [CrossRef]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in Cancer Therapy: The Bright Side of the Moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef]
- Ramalingam, V.; Rajaram, R. A Paradoxical Role of Reactive Oxygen Species in Cancer Signaling Pathway: Physiology and Pathology. Process Biochem. 2021, 100, 69–81. [Google Scholar] [CrossRef]
- Kardeh, S.; Ashkani-Esfahani, S.; Alizadeh, A.M. Paradoxical Action of Reactive Oxygen Species in Creation and Therapy of Cancer. Eur. J. Pharmacol. 2014, 735, 150–168. [Google Scholar] [CrossRef]
- Muller, F.L.; Liu, Y.; Van Remmen, H. Complex III Releases Superoxide to Both Sides of the Inner Mitochondrial Membrane. J. Biol. Chem. 2004, 279, 49064–49073. [Google Scholar] [CrossRef]
- Sumimoto, H. Structure, Regulation and Evolution of Nox-Family NADPH Oxidases That Produce Reactive Oxygen Species. FEBS J. 2008, 275, 3249–3277. [Google Scholar] [CrossRef]
- Nauseef, W.M. Biological Roles for the NOX Family NADPH Oxidases. J. Biol. Chem. 2008, 283, 16961–16965. [Google Scholar] [CrossRef]
- Bonini, M.G.; Miyamoto, S.; Di Mascio, P.; Augusto, O. Production of the Carbonate Radical Anion during Xanthine Oxidase Turnover in the Presence of Bicarbonate. J. Biol. Chem. 2004, 279, 51836–51843. [Google Scholar] [CrossRef] [PubMed]
- Schrader, M.; Fahimi, H.D. Peroxisomes and Oxidative Stress. Biochim. Biophys. Acta 2006, 1763, 1755–1766. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Boeglin, W.E.; Schneider, C.; Brash, A.R. A 49-KDa Mini-Lipoxygenase from Anabaena Sp. PCC 7120 Retains Catalytically Complete Functionality. J. Biol. Chem. 2008, 283, 5138–5147. [Google Scholar] [CrossRef] [PubMed]
- Furge, L.L.; Guengerich, F.P. Cytochrome P450 Enzymes in Drug Metabolism and Chemical Toxicology: An Introduction. Biochem. Mol. Biol. Educ. 2006, 34, 66–74. [Google Scholar] [CrossRef]
- Farooqi, A.A.; Li, K.-T.; Fayyaz, S.; Chang, Y.-T.; Ismail, M.; Liaw, C.-C.; Yuan, S.-S.F.; Tang, J.-Y.; Chang, H.-W. Anticancer Drugs for the Modulation of Endoplasmic Reticulum Stress and Oxidative Stress. Tumour Biol. 2015, 36, 5743–5752. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z. Crosstalk of Reactive Oxygen Species and NF-ΚB Signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef]
- Azzam, E.I.; Jay-Gerin, J.-P.; Pain, D. Ionizing Radiation-Induced Metabolic Oxidative Stress and Prolonged Cell Injury. Cancer Lett. 2012, 327, 48–60. [Google Scholar] [CrossRef]
- Ramalingam, V.; Sundaramoorthy, R.; Shanmuganayagam, T.; Muthulakshmi, L.; Rajaram, R. Biogenic Gold Nanoparticles Induces Cell Cycle Arrest through Oxidative Stress and Sensitize Mitochondrial Membrane in A549 Lung Cancer Cells. RSC Adv. 2016, 6, 20598–20608. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef]
- Li, Y.; Hecht, S.S. Carcinogenic Components of Tobacco and Tobacco Smoke: A 2022 Update. Food Chem. Toxicol. 2022, 165, 113179. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef]
- Lakey, P.S.J.; Berkemeier, T.; Tong, H.; Arangio, A.M.; Lucas, K.; Pöschl, U.; Shiraiwa, M. Chemical Exposure-Response Relationship between Air Pollutants and Reactive Oxygen Species in the Human Respiratory Tract. Sci. Rep. 2016, 6, 32916. [Google Scholar] [CrossRef]
- Domocos, D.; Popovici, R.; Bei, M.; Anchidin, O.; Todor, L.; Bodog, F.D.; Marcu, O.A.; Bodog, A.; Ciavoi, G.; Pogan, M.D. The Effect of Antioxidants on the Evolution of Precancerous Oral Lesions. Int. J. Med. Dent. 2021, 25, 154–158. [Google Scholar]
- Hanschmann, E.-M.; Godoy, J.R.; Berndt, C.; Hudemann, C.; Lillig, C.H. Thioredoxins, Glutaredoxins, and Peroxiredoxins--Molecular Mechanisms and Health Significance: From Cofactors to Antioxidants to Redox Signaling. Antioxid. Redox Signal. 2013, 19, 1539–1605. [Google Scholar] [CrossRef] [PubMed]
- Abreu, I.A.; Cabelli, D.E. Superoxide Dismutases—A Review of the Metal-Associated Mechanistic Variations. Biochim. Biophys. Acta—Proteins Proteom. 2010, 1804, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione Peroxidases. Biochim. Biophys. Acta 2013, 1830, 3289–3303. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive Oxygen Species (ROS) and Cancer: Role of Antioxidative Nutraceuticals. Cancer Lett. 2017, 387, 95–105. [Google Scholar] [CrossRef]
- Wang, N.; Zhan, T.; Ke, T.; Huang, X.; Ke, D.; Wang, Q.; Li, H. Increased Expression of RRM2 by Human Papillomavirus E7 Oncoprotein Promotes Angiogenesis in Cervical Cancer. Br. J. Cancer 2014, 110, 1034–1044. [Google Scholar] [CrossRef]
- Gao, N.; Shen, L.; Zhang, Z.; Leonard, S.S.; He, H.; Zhang, X.-G.; Shi, X.; Jiang, B.-H. Arsenite Induces HIF-1alpha and VEGF through PI3K, Akt and Reactive Oxygen Species in DU145 Human Prostate Carcinoma Cells. Mol. Cell. Biochem. 2004, 255, 33–45. [Google Scholar] [CrossRef]
- Zhu, D.; Shen, Z.; Liu, J.; Chen, J.; Liu, Y.; Hu, C.; Li, Z.; Li, Y. The ROS-Mediated Activation of STAT-3/VEGF Signaling Is Involved in the 27-Hydroxycholesterol-Induced Angiogenesis in Human Breast Cancer Cells. Toxicol. Lett. 2016, 264, 79–86. [Google Scholar] [CrossRef]
- Kim, Y.M.; Kim, K.E.; Koh, G.Y.; Ho, Y.-S.; Lee, K.-J. Hydrogen Peroxide Produced by Angiopoietin-1 Mediates Angiogenesis. Cancer Res. 2006, 66, 6167–6174. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Magesh, V.; Lee, J.-J.; Kim, S.; Knaus, U.G.; Lee, K.-J. Ubiquitin C-Terminal Hydrolase-L1 Increases Cancer Cell Invasion by Modulating Hydrogen Peroxide Generated via NADPH Oxidase 4. Oncotarget 2015, 6, 16287–16303. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-Z.; Hu, X.-W.; Xia, C.; He, J.; Zhou, Q.; Shi, X.; Fang, J.; Jiang, B.-H. Reactive Oxygen Species Regulate Epidermal Growth Factor-Induced Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor-1alpha Expression through Activation of AKT and P70S6K1 in Human Ovarian Cancer Cells. Free Radic. Biol. Med. 2006, 41, 1521–1533. [Google Scholar] [CrossRef]
- Dewangan, J.; Kaushik, S.; Rath, S.K.; Balapure, A.K. Centchroman Regulates Breast Cancer Angiogenesis via Inhibition of HIF-1α/VEGFR2 Signalling Axis. Life Sci. 2018, 193, 9–19. [Google Scholar] [CrossRef]
- He, J.; Wang, M.; Jiang, Y.; Chen, Q.; Xu, S.; Xu, Q.; Jiang, B.-H.; Liu, L.-Z. Chronic Arsenic Exposure and Angiogenesis in Human Bronchial Epithelial Cells via the ROS/MiR-199a-5p/HIF-1α/COX-2 Pathway. Environ. Health Perspect. 2014, 122, 255–261. [Google Scholar] [CrossRef]
- Li, Q.; Fu, G.-B.; Zheng, J.-T.; He, J.; Niu, X.-B.; Chen, Q.-D.; Yin, Y.; Qian, X.; Xu, Q.; Wang, M.; et al. NADPH Oxidase Subunit P22(Phox)-Mediated Reactive Oxygen Species Contribute to Angiogenesis and Tumor Growth through AKT and ERK1/2 Signaling Pathways in Prostate Cancer. Biochim. Biophys. Acta 2013, 1833, 3375–3385. [Google Scholar] [CrossRef]
- Wang, Y.-D.; Chen, W.-D.; Li, C.; Guo, C.; Li, Y.; Qi, H.; Shen, H.; Kong, J.; Long, X.; Yuan, F.; et al. Farnesoid X Receptor Antagonizes JNK Signaling Pathway in Liver Carcinogenesis by Activating SOD3. Mol. Endocrinol. 2015, 29, 322–331. [Google Scholar] [CrossRef]
- Saini, M.K.; Sanyal, S.N. PTEN Regulates Apoptotic Cell Death through PI3-K/Akt/GSK3β Signaling Pathway in DMH Induced Early Colon Carcinogenesis in Rat. Exp. Mol. Pathol. 2012, 93, 135–146. [Google Scholar] [CrossRef]
- Hayashi, J.; Aoki, H.; Kajino, K.; Moriyama, M.; Arakawa, Y.; Hino, O. Hepatitis C Virus Core Protein Activates the MAPK/ERK Cascade Synergistically with Tumor Promoter TPA, but Not with Epidermal Growth Factor or Transforming Growth Factor Alpha. Hepatology 2000, 32, 958–961. [Google Scholar] [CrossRef]
- Cerimele, F.; Battle, T.; Lynch, R.; Frank, D.A.; Murad, E.; Cohen, C.; Macaron, N.; Sixbey, J.; Smith, K.; Watnick, R.S.; et al. Reactive Oxygen Signaling and MAPK Activation Distinguish Epstein-Barr Virus (EBV)-Positive versus EBV-Negative Burkitt’s Lymphoma. Proc. Natl. Acad. Sci. USA 2005, 102, 175–179. [Google Scholar] [CrossRef]
- Piao, J.-Y.; Lee, H.G.; Kim, S.-J.; Kim, D.-H.; Han, H.-J.; Ngo, H.-K.-C.; Park, S.-A.; Woo, J.-H.; Lee, J.-S.; Na, H.-K.; et al. Helicobacter Pylori Activates IL-6-STAT3 Signaling in Human Gastric Cancer Cells: Potential Roles for Reactive Oxygen Species. Helicobacter 2016, 21, 405–416. [Google Scholar] [CrossRef]
- Pluchino, L.A.; Wang, H.-C.R. Chronic Exposure to Combined Carcinogens Enhances Breast Cell Carcinogenesis with Mesenchymal and Stem-like Cell Properties. PLoS ONE 2014, 9, e108698. [Google Scholar] [CrossRef]
- Soberanes, S.; Gonzalez, A.; Urich, D.; Chiarella, S.E.; Radigan, K.A.; Osornio-Vargas, A.; Joseph, J.; Kalyanaraman, B.; Ridge, K.M.; Chandel, N.S.; et al. Particulate Matter Air Pollution Induces Hypermethylation of the P16 Promoter Via a Mitochondrial ROS-JNK-DNMT1 Pathway. Sci. Rep. 2012, 2, 275. [Google Scholar] [CrossRef]
- Maciag, A.; Sithanandam, G.; Anderson, L.M. Mutant K-RasV12 Increases COX-2, Peroxides and DNA Damage in Lung Cells. Carcinogenesis 2004, 25, 2231–2237. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Wei, J.-Y.; Wang, L.; Huang, S.; Chen, J.-L. Human T-Cell Lymphotropic Virus Type 1 and Its Oncogenesis. Acta Pharmacol. Sin. 2017, 38, 1093–1103. [Google Scholar] [CrossRef]
- Kim, J.-S.; Huang, T.Y.; Bokoch, G.M. Reactive Oxygen Species Regulate a Slingshot-Cofilin Activation Pathway. Mol. Biol. Cell 2009, 20, 2650–2660. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Bak, E.-J.; Lee, B.-C.; Kim, Y.-S.; Park, J.-B.; Choi, I.-G. Neuregulin Induces HaCaT Keratinocyte Migration via Rac1-Mediated NADPH-Oxidase Activation. J. Cell. Physiol. 2011, 226, 3014–3021. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Li, C.; Zheng, W.; Guo, Q.; Zhang, Y.; Kang, M.; Zhang, B.; Yang, B.; Li, B.; Yang, H.; et al. Inhibition of Autophagy Promotes Metastasis and Glycolysis by Inducing ROS in Gastric Cancer Cells. Oncotarget 2015, 6, 39839–39854. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Huang, K.; Gao, C.; Lau, Q.C.; Pan, H.; Xie, K.; Li, J.; Liu, R.; Zhang, T.; Xie, N.; et al. Proteomics Identification of ITGB3 as a Key Regulator in Reactive Oxygen Species-Induced Migration and Invasion of Colorectal Cancer Cells. Mol. Cell. Proteom. 2011, 10, M110.005397. [Google Scholar] [CrossRef]
- Yang, J.; Li, T.Z.; Xu, G.H.; Luo, B.B.; Chen, Y.X.; Zhang, T. Low-Concentration Capsaicin Promotes Colorectal Cancer Metastasis by Triggering ROS Production and Modulating Akt/MTOR and STAT-3 Pathways. Neoplasma 2013, 60, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Jeong, E.K.; Ju, M.K.; Jeon, H.M.; Kim, M.Y.; Kim, C.H.; Park, H.G.; Han, S.I.; Kang, H.S. Induction of Metastasis, Cancer Stem Cell Phenotype, and Oncogenic Metabolism in Cancer Cells by Ionizing Radiation. Mol. Cancer 2017, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Xu, Y.; Ji, W.; Song, L.; Dai, C.; Zhan, L. Effects of Exposure to Benzo[a]Pyrene on Metastasis of Breast Cancer Are Mediated through ROS-ERK-MMP9 Axis Signaling. Toxicol. Lett. 2015, 234, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Huang, W.; Tian, D.; Zhu, H.; Zhang, Y.; Hu, H.; Fan, D.; Nie, Y.; Wu, K. Upregulated FoxM1 Expression Induced by Hepatitis B Virus X Protein Promotes Tumor Metastasis and Indicates Poor Prognosis in Hepatitis B Virus-Related Hepatocellular Carcinoma. J. Hepatol. 2012, 57, 600–612. [Google Scholar] [CrossRef]
- Wang, X.; Mandal, A.K.; Saito, H.; Pulliam, J.F.; Lee, E.Y.; Ke, Z.-J.; Lu, J.; Ding, S.; Li, L.; Shelton, B.J.; et al. Arsenic and Chromium in Drinking Water Promote Tumorigenesis in a Mouse Colitis-Associated Colorectal Cancer Model and the Potential Mechanism Is ROS-Mediated Wnt/β-Catenin Signaling Pathway. Toxicol. Appl. Pharmacol. 2012, 262, 11–21. [Google Scholar] [CrossRef]
- Lin, D.-C.; Zheng, S.-Y.; Zhang, Z.-G.; Luo, J.-H.; Zhu, Z.-L.; Li, L.; Chen, L.-S.; Lin, X.; Sham, J.S.K.; Lin, M.-J.; et al. TRPC3 Promotes Tumorigenesis of Gastric Cancer via the CNB2/GSK3β/NFATc2 Signaling Pathway. Cancer Lett. 2021, 519, 211–225. [Google Scholar] [CrossRef]
- Wu, C.; Du, X.; Tang, L.; Wu, J.; Zhao, W.; Guo, X.; Liu, D.; Hu, W.; Helmby, H.; Chen, G.; et al. Schistosoma Japonicum SjE16.7 Protein Promotes Tumor Development via the Receptor for Advanced Glycation End Products (RAGE). Front. Immunol. 2020, 11, 1767. [Google Scholar] [CrossRef]
- Jing, Y.; Liu, L.-Z.; Jiang, Y.; Zhu, Y.; Guo, N.L.; Barnett, J.; Rojanasakul, Y.; Agani, F.; Jiang, B.-H. Cadmium Increases HIF-1 and VEGF Expression through ROS, ERK, and AKT Signaling Pathways and Induces Malignant Transformation of Human Bronchial Epithelial Cells. Toxicol. Sci. 2012, 125, 10–19. [Google Scholar] [CrossRef]
- Wang, C.; Li, P.; Xuan, J.; Zhu, C.; Liu, J.; Shan, L.; Du, Q.; Ren, Y.; Ye, J. Cholesterol Enhances Colorectal Cancer Progression via ROS Elevation and MAPK Signaling Pathway Activation. Cell. Physiol. Biochem. 2017, 42, 729–742. [Google Scholar] [CrossRef]
- Ma, Q.; Cavallin, L.E.; Leung, H.J.; Chiozzini, C.; Goldschmidt-Clermont, P.J.; Mesri, E.A. A Role for Virally Induced Reactive Oxygen Species in Kaposi’s Sarcoma Herpesvirus Tumorigenesis. Antioxid. Redox Signal. 2013, 18, 80–90. [Google Scholar] [CrossRef]
- Seitz, H.K.; Mueller, S. Alcohol and Cancer: An Overview with Special Emphasis on the Role of Acetaldehyde and Cytochrome P450 2E1. Adv. Exp. Med. Biol. 2015, 815, 59–70. [Google Scholar] [PubMed]
- Tafani, M.; Sansone, L.; Limana, F.; Arcangeli, T.; De Santis, E.; Polese, M.; Fini, M.; Russo, M.A. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression. Oxid. Med. Cell. Longev. 2016, 2016, 3907147. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Yunes, J.A.; Cardoso, B.A.; Martins, L.R.; Jotta, P.Y.; Abecasis, M.; Nowill, A.E.; Leslie, N.R.; Cardoso, A.A.; Barata, J.T. PTEN Posttranslational Inactivation and Hyperactivation of the PI3K/Akt Pathway Sustain Primary T Cell Leukemia Viability. J. Clin. Investig. 2008, 118, 3762–3774. [Google Scholar] [CrossRef] [PubMed]
- Savaraj, N.; Wei, Y.; Unate, H.; Liu, P.-M.; Wu, C.J.; Wangpaichitr, M.; Xia, D.; Xu, H.-J.; Hu, S.-X.; Tien Kuo, M. Redox Regulation of Matrix Metalloproteinase Gene Family in Small Cell Lung Cancer Cells. Free Radic. Res. 2005, 39, 373–381. [Google Scholar] [CrossRef]
- Poli, G.; Leonarduzzi, G.; Biasi, F.; Chiarpotto, E. Oxidative Stress and Cell Signalling. Curr. Med. Chem. 2004, 11, 1163–1182. [Google Scholar] [CrossRef]
- Rudolph, J. Redox Regulation of the Cdc25 Phosphatases. Antioxid. Redox Signal. 2005, 7, 761–767. [Google Scholar] [CrossRef]
- Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB System. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016, 8, 227–241. [Google Scholar] [CrossRef]
- Schoonbroodt, S.; Ferreira, V.; Best-Belpomme, M.; Boelaert, J.R.; Legrand-Poels, S.; Korner, M.; Piette, J. Crucial Role of the Amino-Terminal Tyrosine Residue 42 and the Carboxyl-Terminal PEST Domain of I Kappa B Alpha in NF-Kappa B Activation by an Oxidative Stress. J. Immunol. 2000, 164, 4292–4300. [Google Scholar] [CrossRef]
- Nowak, D.E.; Tian, B.; Jamaluddin, M.; Boldogh, I.; Vergara, L.A.; Choudhary, S.; Brasier, A.R. RelA Ser276 Phosphorylation Is Required for Activation of a Subset of NF-KappaB-Dependent Genes by Recruiting Cyclin-Dependent Kinase 9/Cyclin T1 Complexes. Mol. Cell. Biol. 2008, 28, 3623–3638. [Google Scholar] [CrossRef]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- Nakajima, S.; Kitamura, M. Bidirectional Regulation of NF-ΚB by Reactive Oxygen Species: A Role of Unfolded Protein Response. Free Radic. Biol. Med. 2013, 65, 162–174. [Google Scholar] [CrossRef]
- Kelleher, Z.T.; Matsumoto, A.; Stamler, J.S.; Marshall, H.E. NOS2 Regulation of NF-KappaB by S-Nitrosylation of P65. J. Biol. Chem. 2007, 282, 30667–30672. [Google Scholar] [CrossRef] [PubMed]
- Kil, I.S.; Kim, S.Y.; Park, J.-W. Glutathionylation Regulates IκB. Biochem. Biophys. Res. Commun. 2008, 373, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Fernando, V.; Letson, J.; Walia, Y.; Zheng, X.; Fackelman, D.; Furuta, S. S-Nitrosylation in Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 4600. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Yi, W. O-GlcNAcylation, a Sweet Link to the Pathology of Diseases. J. Zhejiang Univ. Sci. B 2019, 20, 437–448. [Google Scholar] [CrossRef]
- Pecchillo Cimmino, T.; Ammendola, R.; Cattaneo, F.; Esposito, G. NOX Dependent ROS Generation and Cell Metabolism. Int. J. Mol. Sci. 2023, 24, 2086. [Google Scholar] [CrossRef]
- Kreuz, S.; Fischle, W. Oxidative Stress Signaling to Chromatin in Health and Disease. Epigenomics 2016, 8, 843–862. [Google Scholar] [CrossRef]
- Albini, A.; Di Paola, L.; Mei, G.; Baci, D.; Fusco, N.; Corso, G.; Noonan, D. Inflammation and Cancer Cell Survival: TRAF2 as a Key Player. Cell Death Dis. 2025, 16, 292. [Google Scholar] [CrossRef]
- Oeckinghaus, A.; Ghosh, S. The NF-KappaB Family of Transcription Factors and Its Regulation. Cold Spring Harb. Perspect. Biol. 2009, 1, a000034. [Google Scholar] [CrossRef]
- Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020, 25, 5474. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, B.; Peng, J.; Tang, H.; Wang, S.; Peng, S.; Ye, F.; Wang, J.; Ouyang, K.; Li, J.; et al. Inhibition of NF-ΚB Signaling Unveils Novel Strategies to Overcome Drug Resistance in Cancers. Drug Resist. Updat. 2024, 73, 101042. [Google Scholar] [CrossRef]
- Dolcet, X.; Llobet, D.; Pallares, J.; Matias-Guiu, X. NF-KB in Development and Progression of Human Cancer. Virchows Arch. 2005, 446, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-J.; Yuan, F.; Zhang, Y.; Li, D.-P. Upregulation of Orexin Receptor in Paraventricular Nucleus Promotes Sympathetic Outflow in Obese Zucker Rats. Neuropharmacology 2015, 99, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Martini, M.; De Santis, M.C.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT Signaling Pathway and Cancer: An Updated Review. Ann. Med. 2014, 46, 372–383. [Google Scholar] [CrossRef] [PubMed]
- LoRusso, P.M. Inhibition of the PI3K/AKT/MTOR Pathway in Solid Tumors. J. Clin. Oncol. 2016, 34, 3803–3815. [Google Scholar] [CrossRef]
- Lee, S.-R.; Yang, K.-S.; Kwon, J.; Lee, C.; Jeong, W.; Rhee, S.G. Reversible Inactivation of the Tumor Suppressor PTEN by H2O2. J. Biol. Chem. 2002, 277, 20336–20342. [Google Scholar] [CrossRef]
- Kwon, J.; Lee, S.-R.; Yang, K.-S.; Ahn, Y.; Kim, Y.J.; Stadtman, E.R.; Rhee, S.G. Reversible Oxidation and Inactivation of the Tumor Suppressor PTEN in Cells Stimulated with Peptide Growth Factors. Proc. Natl. Acad. Sci. USA 2004, 101, 16419–16424. [Google Scholar] [CrossRef]
- Connor, K.M.; Subbaram, S.; Regan, K.J.; Nelson, K.K.; Mazurkiewicz, J.E.; Bartholomew, P.J.; Aplin, A.E.; Tai, Y.-T.; Aguirre-Ghiso, J.; Flores, S.C.; et al. Mitochondrial H2O2 Regulates the Angiogenic Phenotype via PTEN Oxidation. J. Biol. Chem. 2005, 280, 16916–16924. [Google Scholar] [CrossRef]
- Lennicke, C.; Cochemé, H.M. Redox Metabolism: ROS as Specific Molecular Regulators of Cell Signaling and Function. Mol. Cell 2021, 81, 3691–3707. [Google Scholar] [CrossRef]
- Gocher, A.M.; Azabdaftari, G.; Euscher, L.M.; Dai, S.; Karacosta, L.G.; Franke, T.F.; Edelman, A.M. Akt Activation by Ca(2+)/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) in Ovarian Cancer Cells. J. Biol. Chem. 2017, 292, 14188–14204. [Google Scholar] [CrossRef]
- Dangelmaier, C.; Manne, B.K.; Liverani, E.; Jin, J.; Bray, P.; Kunapuli, S.P. PDK1 Selectively Phosphorylates Thr(308) on Akt and Contributes to Human Platelet Functional Responses. Thromb. Haemost. 2014, 111, 508–517. [Google Scholar] [CrossRef]
- Ahmad, F.; Nidadavolu, P.; Durgadoss, L.; Ravindranath, V. Critical Cysteines in Akt1 Regulate Its Activity and Proteasomal Degradation: Implications for Neurodegenerative Diseases. Free Radic. Biol. Med. 2014, 74, 118–128. [Google Scholar] [CrossRef]
- Bolanle, I.O.; Palmer, T.M. O-GlcNAcylation and Phosphorylation Crosstalk in Vascular Smooth Muscle Cells: Cellular and Therapeutic Significance in Cardiac and Vascular Pathologies. Int. J. Mol. Sci. 2025, 26, 3303. [Google Scholar] [CrossRef]
- Li, R.; Wei, J.; Jiang, C.; Liu, D.; Deng, L.; Zhang, K.; Wang, P. Akt SUM Oylation Regulates Cell Proliferation and Tumorigenesis. Cancer Res. 2013, 73, 5742–5753. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Liu, S.Y.; Lee, E.H.Y. SUMO Modification of Akt Regulates Global SUMOylation and Substrate SUMOylation Specificity through Akt Phosphorylation of Ubc9 and SUMO1. Oncogene 2016, 35, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Choi, T.G.; Park, S.; Yun, H.R.; Nguyen, N.N.Y.; Jo, Y.H.; Jang, M.; Kim, J.; Kim, J.; Kang, I.; et al. Mitochondrial ROS-Derived PTEN Oxidation Activates PI3K Pathway for MTOR-Induced Myogenic Autophagy. Cell Death Differ. 2018, 25, 1921–1937. [Google Scholar] [CrossRef] [PubMed]
- Kma, L.; Baruah, T.J. The Interplay of ROS and the PI3K/Akt Pathway in Autophagy Regulation. Biotechnol. Appl. Biochem. 2022, 69, 248–264. [Google Scholar] [CrossRef]
- Georgescu, M.-M. PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control. Genes Cancer 2010, 1, 1170–1177. [Google Scholar] [CrossRef]
- Gao, X.; Lowry, P.R.; Zhou, X.; Depry, C.; Wei, Z.; Wong, G.W.; Zhang, J. PI3K/Akt Signaling Requires Spatial Compartmentalization in Plasma Membrane Microdomains. Proc. Natl. Acad. Sci. USA 2011, 108, 14509–14514. [Google Scholar] [CrossRef]
- Zhao, R.-Z.; Jiang, S.; Zhang, L.; Yu, Z.-B. Mitochondrial Electron Transport Chain, ROS Generation and Uncoupling. Int. J. Mol. Med. 2019, 44, 3–15. [Google Scholar] [CrossRef]
- Antico Arciuch, V.G.; Galli, S.; Franco, M.C.; Lam, P.Y.; Cadenas, E.; Carreras, M.C.; Poderoso, J.J. Akt1 Intramitochondrial Cycling Is a Crucial Step in the Redox Modulation of Cell Cycle Progression. PLoS ONE 2009, 4, e7523. [Google Scholar] [CrossRef]
- Wani, R.; Bharathi, N.S.; Field, J.; Tsang, A.W.; Furdui, C.M. Oxidation of Akt2 Kinase Promotes Cell Migration and Regulates G1-S Transition in the Cell Cycle. Cell Cycle 2011, 10, 3263–3268. [Google Scholar] [CrossRef]
- Polytarchou, C.; Hatziapostolou, M.; Yau, T.O.; Christodoulou, N.; Hinds, P.W.; Kottakis, F.; Sanidas, I.; Tsichlis, P.N. Akt3 Induces Oxidative Stress and DNA Damage by Activating the NADPH Oxidase via Phosphorylation of P47(Phox). Proc. Natl. Acad. Sci. USA 2020, 117, 28806–28815. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt Signal Transduction for Cancer Therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, P.C.; Behrmann, I.; Haan, S.; Hermanns, H.M.; Müller-Newen, G.; Schaper, F. Principles of Interleukin (IL)-6-Type Cytokine Signalling and Its Regulation. Biochem. J. 2003, 374, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, W.-Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.-F. Signaling Pathway of MAPK/ERK in Cell Proliferation, Differentiation, Migration, Senescence and Apoptosis. J. Recept. Signal Transduct. Res. 2015, 35, 600–604. [Google Scholar] [CrossRef]
- Son, Y.; Kim, S.; Chung, H.-T.; Pae, H.-O. Reactive Oxygen Species in the Activation of MAP Kinases. In Hydrogen Peroxide and Cell Signaling, Part C; Cadenas, E., Packer, L., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 528, pp. 27–48. [Google Scholar]
- Son, Y.; Cheong, Y.-K.; Kim, N.-H.; Chung, H.-T.; Kang, D.G.; Pae, H.-O. Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? J. Signal Transduct. 2011, 2011, 792639. [Google Scholar] [CrossRef]
- Kundumani-Sridharan, V.; Subramani, J.; Das, K.C. Thioredoxin Activates MKK4-NFκB Pathway in a Redox-Dependent Manner to Control Manganese Superoxide Dismutase Gene Expression in Endothelial Cells. J. Biol. Chem. 2015, 290, 17505–17519. [Google Scholar] [CrossRef]
- León-Buitimea, A.; Rodríguez-Fragoso, L.; Lauer, F.T.; Bowles, H.; Thompson, T.A.; Burchiel, S.W. Ethanol-Induced Oxidative Stress Is Associated with EGF Receptor Phosphorylation in MCF-10A Cells Overexpressing CYP2E1. Toxicol. Lett. 2012, 209, 161–165. [Google Scholar] [CrossRef]
- Thakur, D.; Nandi, A.; Gaur, Y.K.; Chandrabose, K.; Waiker, D.K.; Das Gupta, G.; Sharma, K. Updated Insights on ASK1 Signaling: Mechanisms, Regulation, and Therapeutic Potential in Diseases. Mol. Cell. Biochem. 2025. [Google Scholar] [CrossRef]
- Nadeau, P.J.; Charette, S.J.; Landry, J. REDOX Reaction at ASK1-Cys250 Is Essential for Activation of JNK and Induction of Apoptosis. Mol. Biol. Cell 2009, 20, 3628–3637. [Google Scholar] [CrossRef]
- Song, H.; Ma, J.; Bian, Z.; Chen, S.; Zhu, J.; Wang, J.; Huang, N.; Yin, M.; Sun, F.; Xu, M.; et al. Global Profiling of O-Glcnacylated and/or Phosphorylated Proteins in Hepatoblastoma. Signal Transduct. Target. Ther. 2019, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tobiume, K.; Saitoh, M.; Ichijo, H. Activation of Apoptosis Signal-Regulating Kinase 1 by the Stress-Induced Activating Phosphorylation of Pre-Formed Oligomer. J. Cell. Physiol. 2002, 191, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Pang, L.; He, M.; Wang, Z. Small-Molecule Inhibitors Targeting Apoptosis Signal-Regulated Kinase 1. Eur. J. Med. Chem. 2023, 262, 115889. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Lee, S.H.; Park, D.; Lee, J.S.; Ryu, S.H.; Lee, W.J.; Rhee, S.G.; Bae, Y.S. Sequential Activation of Phosphatidylinositol 3-Kinase, Beta Pix, Rac1, and Nox1 in Growth Factor-Induced Production of H2O2. Mol. Cell. Biol. 2004, 24, 4384–4394. [Google Scholar] [CrossRef]
- Cattaneo, F.; Guerra, G.; Parisi, M.; De Marinis, M.; Tafuri, D.; Cinelli, M.; Ammendola, R. Cell-Surface Receptors Transactivation Mediated by g Protein-Coupled Receptors. Int. J. Mol. Sci. 2014, 15, 19700–19728. [Google Scholar] [CrossRef]
- Chen, C.-H.; Cheng, T.-H.; Lin, H.; Shih, N.-L.; Chen, Y.-L.; Chen, Y.-S.; Cheng, C.-F.; Lian, W.-S.; Meng, T.-C.; Chiu, W.-T.; et al. Reactive Oxygen Species Generation Is Involved in Epidermal Growth Factor Receptor Transactivation through the Transient Oxidization of Src Homology 2-Containing Tyrosine Phosphatase in Endothelin-1 Signaling Pathway in Rat Cardiac Fibroblasts. Mol. Pharmacol. 2006, 69, 1347–1355. [Google Scholar] [CrossRef]
- Weng, M.-S.; Chang, J.-H.; Hung, W.-Y.; Yang, Y.-C.; Chien, M.-H. The Interplay of Reactive Oxygen Species and the Epidermal Growth Factor Receptor in Tumor Progression and Drug Resistance. J. Exp. Clin. Cancer Res. 2018, 37, 61. [Google Scholar] [CrossRef]
- Chattopadhyay, R.; Raghavan, S.; Rao, G.N. Resolvin D1 via Prevention of ROS-Mediated SHP2 Inactivation Protects Endothelial Adherens Junction Integrity and Barrier Function. Redox Biol. 2017, 12, 438–455. [Google Scholar] [CrossRef]
- Kashatus, J.A.; Nascimento, A.; Myers, L.J.; Sher, A.; Byrne, F.L.; Hoehn, K.L.; Counter, C.M.; Kashatus, D.F. Erk2 Phosphorylation of Drp1 Promotes Mitochondrial Fission and MAPK-Driven Tumor Growth. Mol. Cell 2015, 57, 537–551. [Google Scholar] [CrossRef]
- Serasinghe, M.N.; Wieder, S.Y.; Renault, T.T.; Elkholi, R.; Asciolla, J.J.; Yao, J.L.; Jabado, O.; Hoehn, K.; Kageyama, Y.; Sesaki, H.; et al. Mitochondrial Division Is Requisite to RAS-Induced Transformation and Targeted by Oncogenic MAPK Pathway Inhibitors. Mol. Cell 2015, 57, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, G.-D.; Shi, Z.; Qi, L.-L.; Zhou, L.-Y.; Fu, Z.-X. The Ras/Raf/MEK/ERK Signaling Pathway and Its Role in the Occurrence and Development of HCC. Oncol. Lett. 2016, 12, 3045–3050. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, K.; Yamamoto, M. The KEAP1-NRF2 System in Cancer. Front. Oncol. 2017, 7, 85. [Google Scholar] [CrossRef]
- Dodson, M.; de la Vega, M.R.; Cholanians, A.B.; Schmidlin, C.J.; Chapman, E.; Zhang, D.D. Modulating NRF2 in Disease: Timing Is Everything. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 555–575. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, P.C. Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Nutrients 2019, 11, 504. [Google Scholar] [CrossRef]
- Shin, D.; Kim, E.H.; Lee, J.; Roh, J.-L. Nrf2 Inhibition Reverses Resistance to GPX4 Inhibitor-Induced Ferroptosis in Head and Neck Cancer. Free Radic. Biol. Med. 2018, 129, 454–462. [Google Scholar] [CrossRef]
- Wu, Q.; Yao, B.; Li, N.; Ma, L.; Deng, Y.; Yang, Y.; Zeng, C.; Yang, Z.; Liu, B. Nrf2 Mediates Redox Adaptation in NOX4-Overexpressed Non-Small Cell Lung Cancer Cells. Exp. Cell Res. 2017, 352, 245–254. [Google Scholar] [CrossRef]
- Bao, L.; Wu, J.; Dodson, M.; Rojo de la Vega, E.M.; Ning, Y.; Zhang, Z.; Yao, M.; Zhang, D.D.; Xu, C.; Yi, X. ABCF2, an Nrf2 Target Gene, Contributes to Cisplatin Resistance in Ovarian Cancer Cells. Mol. Carcinog. 2017, 56, 1543–1553. [Google Scholar] [CrossRef]
- Lu, K.; Alcivar, A.L.; Ma, J.; Foo, T.K.; Zywea, S.; Mahdi, A.; Huo, Y.; Kensler, T.W.; Gatza, M.L.; Xia, B. NRF2 Induction Supporting Breast Cancer Cell Survival Is Enabled by Oxidative Stress-Induced DPP3-KEAP1 Interaction. Cancer Res. 2017, 77, 2881–2892. [Google Scholar] [CrossRef]
- Friedl, P.; Alexander, S. Cancer Invasion and the Microenvironment: Plasticity and Reciprocity. Cell 2011, 147, 992–1009. [Google Scholar] [CrossRef]
- Rhyu, D.Y.; Yang, Y.; Ha, H.; Lee, G.T.; Song, J.S.; Uh, S.; Lee, H.B. Role of Reactive Oxygen Species in TGF-Beta1-Induced Mitogen-Activated Protein Kinase Activation and Epithelial-Mesenchymal Transition in Renal Tubular Epithelial Cells. J. Am. Soc. Nephrol. 2005, 16, 667–675. [Google Scholar] [CrossRef]
- Xu, J.; Lamouille, S.; Derynck, R. TGF-Beta-Induced Epithelial to Mesenchymal Transition. Cell Res. 2009, 19, 156–172. [Google Scholar] [CrossRef]
- Zhang, K.-H.; Tian, H.-Y.; Gao, X.; Lei, W.-W.; Hu, Y.; Wang, D.-M.; Pan, X.-C.; Yu, M.-L.; Xu, G.-J.; Zhao, F.-K.; et al. Ferritin Heavy Chain-Mediated Iron Homeostasis and Subsequent Increased Reactive Oxygen Species Production Are Essential for Epithelial-Mesenchymal Transition. Cancer Res. 2009, 69, 5340–5348. [Google Scholar] [CrossRef]
- Dong, R.; Wang, Q.; He, X.L.; Chu, Y.K.; Lu, J.G.; Ma, Q.J. Role of Nuclear Factor Kappa B and Reactive Oxygen Species in the Tumor Necrosis Factor-Alpha-Induced Epithelial-Mesenchymal Transition of MCF-7 Cells. Brazilian J. Med. Biol. Res. 2007, 40, 1071–1078. [Google Scholar] [CrossRef]
- Inumaru, J.; Nagano, O.; Takahashi, E.; Ishimoto, T.; Nakamura, S.; Suzuki, Y.; Niwa, S.-I.; Umezawa, K.; Tanihara, H.; Saya, H. Molecular Mechanisms Regulating Dissociation of Cell-Cell Junction of Epithelial Cells by Oxidative Stress. Genes Cells 2009, 14, 703–716. [Google Scholar] [CrossRef]
- Cannito, S.; Novo, E.; Compagnone, A.; Valfrè di Bonzo, L.; Busletta, C.; Zamara, E.; Paternostro, C.; Povero, D.; Bandino, A.; Bozzo, F.; et al. Redox Mechanisms Switch on Hypoxia-Dependent Epithelial-Mesenchymal Transition in Cancer Cells. Carcinogenesis 2008, 29, 2267–2278. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.S. ERK Signaling Pathway Is Involved in P15INK4b/P16INK4a Expression and HepG2 Growth Inhibition Triggered by TPA and Saikosaponin A. Oncogene 2003, 22, 955–963. [Google Scholar]
- Wu, W.-S.; Tsai, R.K.; Chang, C.H.; Wang, S.; Wu, J.-R.; Chang, Y.-X. Reactive Oxygen Species Mediated Sustained Activation of Protein Kinase C Alpha and Extracellular Signal-Regulated Kinase for Migration of Human Hepatoma Cell Hepg2. Mol. Cancer Res. 2006, 4, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Orlichenko, L.S.; Radisky, D.C. Matrix Metalloproteinases Stimulate Epithelial-Mesenchymal Transition during Tumor Development. Clin. Exp. Metastasis 2008, 25, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Illman, S.A.; Lehti, K.; Keski-Oja, J.; Lohi, J. Epilysin (MMP-28) Induces TGF-Beta Mediated Epithelial to Mesenchymal Transition in Lung Carcinoma Cells. J. Cell Sci. 2006, 119, 3856–3865. [Google Scholar] [CrossRef]
- Radisky, D.C.; Levy, D.D.; Littlepage, L.E.; Liu, H.; Nelson, C.M.; Fata, J.E.; Leake, D.; Godden, E.L.; Albertson, D.G.; Nieto, M.A.; et al. Rac1b and Reactive Oxygen Species Mediate MMP-3-Induced EMT and Genomic Instability. Nature 2005, 436, 123–127. [Google Scholar] [CrossRef]
- Nimnual, A.S.; Taylor, L.J.; Bar-Sagi, D. Redox-Dependent Downregulation of Rho by Rac. Nat. Cell Biol. 2003, 5, 236–241. [Google Scholar] [CrossRef]
- Werner, E.; Werb, Z. Integrins Engage Mitochondrial Function for Signal Transduction by a Mechanism Dependent on Rho GTPases. J. Cell Biol. 2002, 158, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, M.; Shirakihara, T.; Miyazono, K. Regulation of the Stability of Cell Surface E-Cadherin by the Proteasome. Biochem. Biophys. Res. Commun. 2009, 381, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Cao, B.; Law, S.; Xie, Y.; Lee, P.Y.; Cheung, L.; Chen, Y.; Huang, X.; Chan, H.M.; Zhao, P.; et al. Hepatocyte Growth Factor Promotes Cancer Cell Migration and Angiogenic Factors Expression: A Prognostic Marker of Human Esophageal Squamous Cell Carcinomas. Clin. Cancer Res. 2005, 11, 6190–6197. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Kim, S.W.; Kim, J.-R. Reactive Oxygen Species Regulate Urokinase Plasminogen Activator Expression and Cell Invasion via Mitogen-Activated Protein Kinase Pathways after Treatment with Hepatocyte Growth Factor in Stomach Cancer Cells. J. Exp. Clin. Cancer Res. 2009, 28, 73. [Google Scholar] [CrossRef]
- Binker, M.G.; Binker-Cosen, A.A.; Richards, D.; Oliver, B.; Cosen-Binker, L.I. EGF Promotes Invasion by PANC-1 Cells through Rac1/ROS-Dependent Secretion and Activation of MMP-2. Biochem. Biophys. Res. Commun. 2009, 379, 445–450. [Google Scholar] [CrossRef]
- Sancho, P.; Bertran, E.; Caja, L.; Carmona-Cuenca, I.; Murillo, M.M.; Fabregat, I. The Inhibition of the Epidermal Growth Factor (EGF) Pathway Enhances TGF-β-Induced Apoptosis in Rat Hepatoma Cells through Inducing Oxidative Stress Coincident with a Change in the Expression Pattern of the NADPH Oxidases (NOX) Isoforms. Biochim. Biophys. Acta—Mol. Cell Res. 2009, 1793, 253–263. [Google Scholar] [CrossRef]
- Simone, N.L.; Soule, B.P.; Ly, D.; Saleh, A.D.; Savage, J.E.; Degraff, W.; Cook, J.; Harris, C.C.; Gius, D.; Mitchell, J.B. Ionizing Radiation-Induced Oxidative Stress Alters MiRNA Expression. PLoS ONE 2009, 4, e6377. [Google Scholar] [CrossRef]
- Ebi, H.; Sato, T.; Sugito, N.; Hosono, Y.; Yatabe, Y.; Matsuyama, Y.; Yamaguchi, T.; Osada, H.; Suzuki, M.; Takahashi, T. Counterbalance between RB Inactivation and MiR-17-92 Overexpression in Reactive Oxygen Species and DNA Damage Induction in Lung Cancers. Oncogene 2009, 28, 3371–3379. [Google Scholar] [CrossRef]
- Kong, D.; Li, Y.; Wang, Z.; Banerjee, S.; Ahmad, A.; Kim, H.-R.C.; Sarkar, F.H. MiR-200 Regulates PDGF-D-Mediated Epithelial-Mesenchymal Transition, Adhesion, and Invasion of Prostate Cancer Cells. Stem Cells 2009, 27, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- de Sá Junior, P.L.; Câmara, D.A.D.; Porcacchia, A.S.; Fonseca, P.M.M.; Jorge, S.D.; Araldi, R.P.; Ferreira, A.K. The Roles of ROS in Cancer Heterogeneity and Therapy. Oxid. Med. Cell. Longev. 2017, 2017, 2467940. [Google Scholar] [CrossRef] [PubMed]
- Schito, L. Hypoxia-Dependent Angiogenesis and Lymphangiogenesis in Cancer. Adv. Exp. Med. Biol. 2019, 1136, 71–85. [Google Scholar] [PubMed]
- Dewhirst, M.W.; Cao, Y.; Moeller, B. Cycling Hypoxia and Free Radicals Regulate Angiogenesis and Radiotherapy Response. Nat. Rev. Cancer 2008, 8, 425–437. [Google Scholar] [CrossRef]
- Ushio-Fukai, M.; Alexander, R.W. Reactive Oxygen Species as Mediators of Angiogenesis Signaling: Role of NAD(P)H Oxidase. Mol. Cell. Biochem. 2004, 264, 85–97. [Google Scholar] [CrossRef]
- Karar, J.; Maity, A. PI3K/AKT/MTOR Pathway in Angiogenesis. Front. Mol. Neurosci. 2011, 4, 51. [Google Scholar] [CrossRef]
- Rezatabar, S.; Karimian, A.; Rameshknia, V.; Parsian, H.; Majidinia, M.; Kopi, T.A.; Bishayee, A.; Sadeghinia, A.; Yousefi, M.; Monirialamdari, M.; et al. RAS/MAPK Signaling Functions in Oxidative Stress, DNA Damage Response and Cancer Progression. J. Cell. Physiol. 2019, 234, 14951–14965. [Google Scholar] [CrossRef]
- Khromova, N.V.; Kopnin, P.B.; Stepanova, E.V.; Agapova, L.S.; Kopnin, B.P. P53 Hot-Spot Mutants Increase Tumor Vascularization via ROS-Mediated Activation of the HIF1/VEGF-A Pathway. Cancer Lett. 2009, 276, 143–151. [Google Scholar] [CrossRef]
- Han, X.; Sun, S.; Zhao, M.; Cheng, X.; Chen, G.; Lin, S.; Guan, Y.; Yu, X. Celastrol Stimulates Hypoxia-Inducible Factor-1 Activity in Tumor Cells by Initiating the ROS/Akt/P70S6K Signaling Pathway and Enhancing Hypoxia-Inducible Factor-1α Protein Synthesis. PLoS ONE 2014, 9, e112470. [Google Scholar] [CrossRef]
- Brewer, T.F.; Garcia, F.J.; Onak, C.S.; Carroll, K.S.; Chang, C.J. Chemical Approaches to Discovery and Study of Sources and Targets of Hydrogen Peroxide Redox Signaling through NADPH Oxidase Proteins. Annu. Rev. Biochem. 2015, 84, 765–790. [Google Scholar] [CrossRef]
- Xia, C.; Meng, Q.; Liu, L.-Z.; Rojanasakul, Y.; Wang, X.-R.; Jiang, B.-H. Reactive Oxygen Species Regulate Angiogenesis and Tumor Growth through Vascular Endothelial Growth Factor. Cancer Res. 2007, 67, 10823–10830. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Wu, Z.; Hu, X.; Zhang, J.; Gao, Z.; Han, X.; Qin, J.; Li, C.; Wang, Y. The PI3K/Akt/GSK-3β/ROS/EIF2B Pathway Promotes Breast Cancer Growth and Metastasis via Suppression of NK Cell Cytotoxicity and Tumor Cell Susceptibility. Cancer Biol. Med. 2019, 16, 38–54. [Google Scholar] [PubMed]
- Govindarajan, B.; Sligh, J.E.; Vincent, B.J.; Li, M.; Canter, J.A.; Nickoloff, B.J.; Rodenburg, R.J.; Smeitink, J.A.; Oberley, L.; Zhang, Y.; et al. Overexpression of Akt Converts Radial Growth Melanoma to Vertical Growth Melanoma. J. Clin. Investig. 2007, 117, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Giannoni, E.; Fiaschi, T.; Ramponi, G.; Chiarugi, P. Redox Regulation of Anoikis Resistance of Metastatic Prostate Cancer Cells: Key Role for Src and EGFR-Mediated pro-Survival Signals. Oncogene 2009, 28, 2074–2086. [Google Scholar] [CrossRef]
- Aydin, E.; Hallner, A.; Grauers Wiktorin, H.; Staffas, A.; Hellstrand, K.; Martner, A. NOX2 Inhibition Reduces Oxidative Stress and Prolongs Survival in Murine KRAS-Induced Myeloproliferative Disease. Oncogene 2019, 38, 1534–1543. [Google Scholar] [CrossRef]
- Binó, L.; Veselá, I.; Papežíková, I.; Procházková, J.; Vašíček, O.; Štefková, K.; Kučera, J.; Hanáčková, M.; Kubala, L.; Pacherník, J. The Depletion of P38alpha Kinase Upregulates NADPH Oxidase 2/NOX2/Gp91 Expression and the Production of Superoxide in Mouse Embryonic Stem Cells. Arch. Biochem. Biophys. 2019, 671, 18–26. [Google Scholar] [CrossRef]
- Komatsu, D.; Kato, M.; Nakayama, J.; Miyagawa, S.; Kamata, T. NADPH Oxidase 1 Plays a Critical Mediating Role in Oncogenic Ras-Induced Vascular Endothelial Growth Factor Expression. Oncogene 2008, 27, 4724–4732. [Google Scholar] [CrossRef]
- De Bessa, T.C.; Pagano, A.; Moretti, A.I.S.; Oliveira, P.V.S.; Mendonça, S.A.; Kovacic, H.; Laurindo, F.R.M. Subverted Regulation of Nox1 NADPH Oxidase-Dependent Oxidant Generation by Protein Disulfide Isomerase A1 in Colon Carcinoma Cells with Overactivated KRas. Cell Death Dis. 2019, 10, 143. [Google Scholar] [CrossRef]
- Gupte, A.; Mumper, R.J. Elevated Copper and Oxidative Stress in Cancer Cells as a Target for Cancer Treatment. Cancer Treat. Rev. 2009, 35, 32–46. [Google Scholar] [CrossRef]
- Rigiracciolo, D.C.; Scarpelli, A.; Lappano, R.; Pisano, A.; Santolla, M.F.; De Marco, P.; Cirillo, F.; Cappello, A.R.; Dolce, V.; Belfiore, A.; et al. Copper Activates HIF-1α/GPER/VEGF Signalling in Cancer Cells. Oncotarget 2015, 6, 34158–34177. [Google Scholar] [CrossRef]
- Sauer, H.; Wartenberg, M. Reactive Oxygen Species as Signaling Molecules in Cardiovascular Differentiation of Embryonic Stem Cells and Tumor-Induced Angiogenesis. Antioxid. Redox Signal. 2005, 7, 1423–1434. [Google Scholar] [CrossRef]
- Coso, S.; Harrison, I.; Harrison, C.B.; Vinh, A.; Sobey, C.G.; Drummond, G.R.; Williams, E.D.; Selemidis, S. NADPH Oxidases as Regulators of Tumor Angiogenesis: Current and Emerging Concepts. Antioxid. Redox Signal. 2012, 16, 1229–1247. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Wang, Q.; Li, C.; Wang, Y.; Chen, X. VEGF Stimulated the Angiogenesis by Promoting the Mitochondrial Functions. Oncotarget 2017, 8, 77020–77027. [Google Scholar] [CrossRef]
- Harrison, I.P.; Vinh, A.; Johnson, I.R.D.; Luong, R.; Drummond, G.R.; Sobey, C.G.; Tiganis, T.; Williams, E.D.; O’ Leary, J.J.; Brooks, D.A.; et al. NOX2 Oxidase Expressed in Endosomes Promotes Cell Proliferation and Prostate Tumour Development. Oncotarget 2018, 9, 35378–35393. [Google Scholar] [CrossRef]
- Matsuda, S.; Nakagawa, Y.; Kitagishi, Y.; Nakanishi, A.; Murai, T. Reactive Oxygen Species, Superoxide Dimutases, and PTEN-P53-AKT-MDM2 Signaling Loop Network in Mesenchymal Stem/Stromal Cells Regulation. Cells 2018, 7, 36. [Google Scholar] [CrossRef]
- Mori, K.; Uchida, T.; Yoshie, T.; Mizote, Y.; Ishikawa, F.; Katsuyama, M.; Shibanuma, M. A Mitochondrial ROS Pathway Controls Matrix Metalloproteinase 9 Levels and Invasive Properties in RAS-Activated Cancer Cells. FEBS J. 2019, 286, 459–478. [Google Scholar] [CrossRef]
- Ma, L.; Fu, Q.; Xu, B.; Zhou, H.; Gao, J.; Shao, X.; Xiong, J.; Gu, Q.; Wen, S.; Li, F.; et al. Breast Cancer-Associated Mitochondrial DNA Haplogroup Promotes Neoplastic Growth via ROS-Mediated AKT Activation. Int. J. Cancer 2018, 142, 1786–1796. [Google Scholar] [CrossRef]
- Monteiro, H.P.; Rodrigues, E.G.; Amorim Reis, A.K.C.; Longo, L.S.J.; Ogata, F.T.; Moretti, A.I.S.; da Costa, P.E.; Teodoro, A.C.S.; Toledo, M.S.; Stern, A. Nitric Oxide and Interactions with Reactive Oxygen Species in the Development of Melanoma, Breast, and Colon Cancer: A Redox Signaling Perspective. Nitric oxide Biol. Chem. 2019, 89, 1–13. [Google Scholar] [CrossRef]
- Zhou, X.; Yue, G.G.-L.; Chan, A.M.-L.; Tsui, S.K.-W.; Fung, K.-P.; Sun, H.; Pu, J.; Lau, C.B.-S. Eriocalyxin B, a Novel Autophagy Inducer, Exerts Anti-Tumor Activity through the Suppression of Akt/MTOR/P70S6K Signaling Pathway in Breast Cancer. Biochem. Pharmacol. 2017, 142, 58–70. [Google Scholar] [CrossRef]
- Burgoyne, J.R.; Rudyk, O.; Cho, H.-J.; Prysyazhna, O.; Hathaway, N.; Weeks, A.; Evans, R.; Ng, T.; Schröder, K.; Brandes, R.P.; et al. Deficient Angiogenesis in Redox-Dead Cys17Ser PKARIα Knock-in Mice. Nat. Commun. 2015, 6, 7920. [Google Scholar] [CrossRef]
- Kang, D.H.; Lee, D.J.; Lee, K.W.; Park, Y.S.; Lee, J.Y.; Lee, S.-H.; Koh, Y.J.; Koh, G.-Y.; Choi, C.; Yu, D.-Y.; et al. Peroxiredoxin II Is an Essential Antioxidant Enzyme That Prevents the Oxidative Inactivation of VEGF Receptor-2 in Vascular Endothelial Cells. Mol. Cell 2011, 44, 545–558. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Youn, S.-W.; Sudhahar, V.; Das, A.; Chandhri, R.; Cuervo Grajal, H.; Kweon, J.; Leanhart, S.; He, L.; Toth, P.T.; et al. Redox Regulation of Mitochondrial Fission Protein Drp1 by Protein Disulfide Isomerase Limits Endothelial Senescence. Cell Rep. 2018, 23, 3565–3578. [Google Scholar] [CrossRef]
- Hickey, M.M.; Simon, M.C. Regulation of Angiogenesis by Hypoxia and Hypoxia-Inducible Factors. Curr. Top. Dev. Biol. 2006, 76, 217–257. [Google Scholar] [PubMed]
- Maynard, M.A.; Ohh, M. The Role of Hypoxia-Inducible Factors in Cancer. Cell. Mol. Life Sci. 2007, 64, 2170–2180. [Google Scholar] [CrossRef] [PubMed]
- Prager, G.W.; Poettler, M.; Unseld, M.; Zielinski, C.C. Angiogenesis in Cancer: Anti-VEGF Escape Mechanisms. Transl. Lung Cancer Res. 2012, 1, 14–25. [Google Scholar] [PubMed]
- Tang, N.; Wang, L.; Esko, J.; Giordano, F.J.; Huang, Y.; Gerber, H.-P.; Ferrara, N.; Johnson, R.S. Loss of HIF-1alpha in Endothelial Cells Disrupts a Hypoxia-Driven VEGF Autocrine Loop Necessary for Tumorigenesis. Cancer Cell 2004, 6, 485–495. [Google Scholar] [CrossRef]
- Raval, R.R.; Lau, K.W.; Tran, M.G.B.; Sowter, H.M.; Mandriota, S.J.; Li, J.-L.; Pugh, C.W.; Maxwell, P.H.; Harris, A.L.; Ratcliffe, P.J. Contrasting Properties of Hypoxia-Inducible Factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-Associated Renal Cell Carcinoma. Mol. Cell. Biol. 2005, 25, 5675–5686. [Google Scholar] [CrossRef]
- Geis, T.; Döring, C.; Popp, R.; Grossmann, N.; Fleming, I.; Hansmann, M.-L.; Dehne, N.; Brüne, B. HIF-2alpha-Dependent PAI-1 Induction Contributes to Angiogenesis in Hepatocellular Carcinoma. Exp. Cell Res. 2015, 331, 46–57. [Google Scholar] [CrossRef]
- Oshikawa, J.; Kim, S.-J.; Furuta, E.; Caliceti, C.; Chen, G.-F.; McKinney, R.D.; Kuhr, F.; Levitan, I.; Fukai, T.; Ushio-Fukai, M. Novel Role of P66Shc in ROS-Dependent VEGF Signaling and Angiogenesis in Endothelial Cells. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H724–H732. [Google Scholar] [CrossRef]
- Aldosari, S.; Awad, M.; Harrington, E.O.; Sellke, F.W.; Abid, M.R. Subcellular Reactive Oxygen Species (ROS) in Cardiovascular Pathophysiology. Antioxidants 2018, 7, 14. [Google Scholar] [CrossRef]
- Bosutti, A.; Grassi, G.; Zanetti, M.; Aleksova, A.; Zecchin, M.; Sinagra, G.; Biolo, G.; Guarnieri, G. Relation between the Plasma Levels of LDL-Cholesterol and the Expression of the Early Marker of Inflammation Long Pentraxin PTX3 and the Stress Response Gene P66ShcA in Pacemaker-Implanted Patients. Clin. Exp. Med. 2007, 7, 16–23. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Kim, S.-J.; Tatsunami, R.; Yamamura, H.; Fukai, T.; Ushio-Fukai, M. ROS-Induced ROS Release Orchestrated by Nox4, Nox2, and Mitochondria in VEGF Signaling and Angiogenesis. Am. J. Physiol. Cell Physiol. 2017, 312, C749–C764. [Google Scholar] [CrossRef] [PubMed]
- Erard, M.; Dupré-Crochet, S.; Nüße, O. Biosensors for Spatiotemporal Detection of Reactive Oxygen Species in Cells and Tissues. Am. J. Physiol.—Regul. Integr. Comp. Physiol. 2018, 314, R667–R683. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Jeong, K.; Murphy, J.M.; Rodriguez, Y.A.R.; Lim, S.T.S. A Quantitative Method to Measure Low Levels of ROS in Nonphagocytic Cells by Using a Chemiluminescent Imaging System. Oxid. Med. Cell. Longev. 2019, 2019, 1754593. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, M.; Ronda, L.; Cozzi, M.; Bettati, S.; Bruno, S. Genetically Encoded Biosensors for the Fluorescence Detection of O2 and Reactive O2 Species. Sensors 2023, 23, 8517. [Google Scholar] [CrossRef]
- Sugiura, K.; Nagai, T.; Nakano, M.; Ichinose, H.; Nakabayashi, T.; Ohta, N.; Hisabori, T. Redox Sensor Proteins for Highly Sensitive Direct Imaging of Intracellular Redox State. Biochem. Biophys. Res. Commun. 2015, 457, 242–248. [Google Scholar] [CrossRef]
- Reuter, W.H.; Masuch, T.; Ke, N.; Lenon, M.; Radzinski, M.; Van Loi, V.; Ren, G.; Riggs, P.; Antelmann, H.; Reichmann, D.; et al. Utilizing Redox-Sensitive GFP Fusions to Detect in Vivo Redox Changes in a Genetically Engineered Prokaryote. Redox Biol. 2019, 26, 101280. [Google Scholar] [CrossRef]
- Flores-Ibarra, A.; Maia, R.N.A.; Olasz, B.; Church, J.R.; Gotthard, G.; Schapiro, I.; Heberle, J.; Nogly, P. Light-Oxygen-Voltage (LOV)-Sensing Domains: Activation Mechanism and Optogenetic Stimulation. J. Mol. Biol. 2024, 436, 168356. [Google Scholar] [CrossRef]
- Hall, A.; Karplus, P.A.; Poole, L.B. Typical 2-Cys Peroxiredoxins--Structures, Mechanisms and Functions. FEBS J. 2009, 276, 2469–2477. [Google Scholar] [CrossRef]
- Yu, H.; Li, H.; Zhou, Y.; Zhou, S.; Wang, P. Ultra-Sensitive Hydrogen Peroxide Sensor Based on Peroxiredoxin and Fluorescence Resonance Energy Transfer. Appl. Sci. 2020, 10, 3508. [Google Scholar] [CrossRef]
- Liu, W.; Deng, M.; Yang, C.; Liu, F.; Guan, X.; Du, Y.; Wang, L.; Chu, J. Genetically Encoded Single Circularly Permuted Fluorescent Protein-Based Intensity Indicators. J. Phys. D. Appl. Phys. 2020, 53, 113001. [Google Scholar] [CrossRef]
- Mendoza-Martínez, A.E.; Cano-Domínguez, N.; Aguirre, J. Yap1 Homologs Mediate More than the Redox Regulation of the Antioxidant Response in Filamentous Fungi. Fungal Biol. 2020, 124, 253–262. [Google Scholar] [CrossRef]
- Dacquay, L.C.; McMillen, D.R. Improving the Design of an Oxidative Stress Sensing Biosensor in Yeast. FEMS Yeast Res. 2021, 21, foab025. [Google Scholar] [CrossRef] [PubMed]
- Pedre, B. A Guide to Genetically-Encoded Redox Biosensors: State of the Art and Opportunities. Arch. Biochem. Biophys. 2024, 758, 110067. [Google Scholar] [CrossRef] [PubMed]
- Abbas, G.; Cui, M.; Wang, D.; Li, M.; Zhang, X.-E. Construction of Genetically Encoded Biosensors to Monitor Subcellular Compartment-Specific Glutathione Response to Chemotherapeutic Drugs in Acute Myeloid Leukemia Cells. Anal. Chem. 2023, 95, 2838–2847. [Google Scholar] [CrossRef] [PubMed]
- Maulucci, G.; Bačić, G.; Bridal, L.; Schmidt, H.H.; Tavitian, B.; Viel, T.; Utsumi, H.; Yalçın, A.S.; De Spirito, M. Imaging Reactive Oxygen Species-Induced Modifications in Living Systems. Antioxid. Redox Signal. 2016, 24, 939–958. [Google Scholar] [CrossRef]
- Habibalahi, A.; Moghari, M.D.; Campbell, J.M.; Anwer, A.G.; Mahbub, S.B.; Gosnell, M.; Saad, S.; Pollock, C.; Goldys, E.M. Non-Invasive Real-Time Imaging of Reactive Oxygen Species (ROS) Using Auto-Fluorescence Multispectral Imaging Technique: A Novel Tool for Redox Biology. Redox Biol. 2020, 34, 101561. [Google Scholar] [CrossRef]
- Chen, H.-Y.; He, Y.; Wang, X.-Y.; Ye, M.-J.; Chen, C.; Qian, R.-C.; Li, D.-W. Deep Learning-Assisted Surface-Enhanced Raman Spectroscopy Detection of Intracellular Reactive Oxygen Species. Talanta 2025, 284, 127222. [Google Scholar] [CrossRef]
- Yang, D.; Youden, B.; Yu, N.; Carrier, A.J.; Jiang, R.; Servos, M.R.; Oakes, K.D.; Zhang, X. Surface-Enhanced Raman Spectroscopy for the Detection of Reactive Oxygen Species. ACS Nano 2025, 19, 2013–2028. [Google Scholar] [CrossRef]
- Abdesselem, M.; Pétri, N.; Kuhner, R.; Mousseau, F.; Rouffiac, V.; Gacoin, T.; Laplace-Builhé, C.; Alexandrou, A.; Bouzigues, C.I. Real-Time in Vivo ROS Monitoring with Luminescent Nanoparticles Reveals Skin Inflammation Dynamics. Biomed. Opt. Express 2023, 14, 5392–5404. [Google Scholar] [CrossRef]
- Cheung, E.; Vousden, K. The Role of ROS in Tumour Development and Progression. Nat. Rev. Cancer 2022, 22, 1–18. [Google Scholar] [CrossRef]
- Kuo, P.-L.; Chen, C.-Y.; Hsu, Y.-L. Isoobtusilactone A Induces Cell Cycle Arrest and Apoptosis through Reactive Oxygen Species/Apoptosis Signal-Regulating Kinase 1 Signaling Pathway in Human Breast Cancer Cells. Cancer Res. 2007, 67, 7406–7420. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, T.; Zhu, X.; Yang, C.; Wang, Y.; Zhou, N.; Ju, B.; Zhou, T.; Deng, G.; Qiu, C. Hyperoside Induces Breast Cancer Cells Apoptosis via ROS-Mediated NF-ΚB Signaling Pathway. Int. J. Mol. Sci. 2019, 21, 131. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, K.; Hu, Y.; Su, F.; Gao, Z.; Hu, T.; Yang, Y.; Cao, X.; Qian, F. Schisantherin A Induces Cell Apoptosis through ROS/JNK Signaling Pathway in Human Gastric Cancer Cells. Biochem. Pharmacol. 2020, 173, 113673. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-T.; Kwak, D.W.; Lin, S.K.; Kim, H.M.; Kim, Y.M.; Park, O.J. Resveratrol Induces Apoptosis in Chemoresistant Cancer Cells via Modulation of AMPK Signaling Pathway. Ann. N. Y. Acad. Sci. 2007, 1095, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-T.; Ha, J.; Park, O.J. Combination of 5-Fluorouracil and Genistein Induces Apoptosis Synergistically in Chemo-Resistant Cancer Cells through the Modulation of AMPK and COX-2 Signaling Pathways. Biochem. Biophys. Res. Commun. 2005, 332, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Jiang, H.; Liu, Y.; Chen, J.; Zhou, X.; Zhao, C.; Chen, X.; Lin, M. Rhein Induces Liver Cancer Cells Apoptosis via Activating ROS-Dependent JNK/Jun/Caspase-3 Signaling Pathway. J. Cancer 2020, 11, 500–507. [Google Scholar] [CrossRef]
- Yao, W.; Lin, Z.; Shi, P.; Chen, B.; Wang, G.; Huang, J.; Sui, Y.; Liu, Q.; Li, S.; Lin, X.; et al. Delicaflavone Induces ROS-Mediated Apoptosis and Inhibits PI3K/AKT/MTOR and Ras/MEK/Erk Signaling Pathways in Colorectal Cancer Cells. Biochem. Pharmacol. 2020, 171, 113680. [Google Scholar] [CrossRef]
- Zhong, W.-F.; Wang, X.-H.; Pan, B.; Li, F.; Kuang, L.; Su, Z.-X. Eupatilin Induces Human Renal Cancer Cell Apoptosis via ROS-Mediated MAPK and PI3K/AKT Signaling Pathways. Oncol. Lett. 2016, 12, 2894–2899. [Google Scholar] [CrossRef]
- Jo, G.H.; Kim, G.-Y.; Kim, W.-J.; Park, K.Y.; Choi, Y.H. Sulforaphane Induces Apoptosis in T24 Human Urinary Bladder Cancer Cells through a Reactive Oxygen Species-Mediated Mitochondrial Pathway: The Involvement of Endoplasmic Reticulum Stress and the Nrf2 Signaling Pathway. Int. J. Oncol. 2014, 45, 1497–1506. [Google Scholar] [CrossRef]
- Su, Y.-T.; Chang, H.-L.; Shyue, S.-K.; Hsu, S.-L. Emodin Induces Apoptosis in Human Lung Adenocarcinoma Cells through a Reactive Oxygen Species-Dependent Mitochondrial Signaling Pathway. Biochem. Pharmacol. 2005, 70, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Wang, C.-F.; Zhang, Y.; Cai, Y.-J.; Zhang, Y.-Y.; Zhao, Q. The Inhibitory Effects of Carnosic Acid on Cervical Cancer Cells Growth by Promoting Apoptosis via ROS-Regulated Signaling Pathway. Biomed. Pharmacother. 2016, 82, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Liu, D.; He, M.; Li, Q.; Liu, T.; Shao, J. Role of the ROS/AMPK Signaling Pathway in Tetramethylpyrazine-Induced Apoptosis in Gastric Cancer Cells. Oncol. Lett. 2013, 6, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.-N.; Luo, Y.-H.; Liu, S.-B.; Xu, W.-T.; Zhang, Y.; Zhang, T.; Xue, H.; Zuo, W.-B.; Li, Y.-N.; Wang, C.-Y.; et al. Zeaxanthin Induces Apoptosis via ROS-Regulated MAPK and AKT Signaling Pathway in Human Gastric Cancer Cells. Onco. Targets. Ther. 2020, 13, 10995–11006. [Google Scholar] [CrossRef]
- Ishaq, M.; Kumar, S.; Varinli, H.; Han, Z.J.; Rider, A.E.; Evans, M.D.M.; Murphy, A.B.; Ostrikov, K. Atmospheric Gas Plasma-Induced ROS Production Activates TNF-ASK1 Pathway for the Induction of Melanoma Cancer Cell Apoptosis. Mol. Biol. Cell 2014, 25, 1523–1531. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, Y.; Shi, L.; Du, L.; Xu, X.; Wang, E.; Sun, Y.; Guo, X.; Zou, B.; Wang, H.; et al. 7-O-Geranylquercetin Induces Apoptosis in Gastric Cancer Cells via ROS-MAPK Mediated Mitochondrial Signaling Pathway Activation. Biomed. Pharmacother. 2017, 87, 527–538. [Google Scholar] [CrossRef]
- Wang, H.; Wei, L.; Li, C.; Zhou, J.; Li, Z. CDK5RAP1 Deficiency Induces Cell Cycle Arrest and Apoptosis in Human Breast Cancer Cell Line by the ROS/JNK Signaling Pathway. Oncol. Rep. 2015, 33, 1089–1096. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, J.; Xiao, H.; Xiao, C.; Wang, Y.; Liu, X. Isoorientin Induces Apoptosis through Mitochondrial Dysfunction and Inhibition of PI3K/Akt Signaling Pathway in HepG2 Cancer Cells. Toxicol. Appl. Pharmacol. 2012, 265, 83–92. [Google Scholar] [CrossRef]
- Chen, K.; Chu, B.; Liu, F.; Li, B.; Gao, C.; Li, L.; Sun, Q.; Shen, Z.; Jiang, Y. New Benzimidazole Acridine Derivative Induces Human Colon Cancer Cell Apoptosis in Vitro via the ROS-JNK Signaling Pathway. Acta Pharmacol. Sin. 2015, 36, 1074–1084. [Google Scholar] [CrossRef]
- Kwak, A.-W.; Lee, J.-Y.; Lee, S.-O.; Seo, J.-H.; Park, J.W.; Choi, Y.H.; Cho, S.-S.; Yoon, G.; Lee, M.-H.; Shim, J.-H. Echinatin Induces Reactive Oxygen Species-Mediated Apoptosis via JNK/P38 MAPK Signaling Pathway in Colorectal Cancer Cells. Phytother. Res. 2023, 37, 563–577. [Google Scholar] [CrossRef]
- Liu, B.; Yuan, B.; Zhang, L.; Mu, W.; Wang, C. ROS/P38/P53/Puma Signaling Pathway Is Involved in Emodin-Induced Apoptosis of Human Colorectal Cancer Cells. Int. J. Clin. Exp. Med. 2015, 8, 15413–15422. [Google Scholar]
- Lan, H.; Yuan, H.; Lin, C. Sulforaphane Induces P53-deficient SW480 Cell Apoptosis via the ROS-MAPK Signaling Pathway. Mol. Med. Rep. 2017, 16, 7796–7804. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.; Supriady, H.; Goh, B.H.; Kadir, H.A. Elephantopus Scaber Induces Apoptosis through ROS-Dependent Mitochondrial Signaling Pathway in HCT116 Human Colorectal Carcinoma Cells. J. Ethnopharmacol. 2015, 168, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y.; Han, H.-W.; Wang, Y.-S.; He, D.-L.; Sun, W.-X.; Feng, L.; Wen, Z.-L.; Yang, M.-K.; Lu, G.-H.; Wang, X.-M.; et al. Shikonin and 4-Hydroxytamoxifen Synergistically Inhibit the Proliferation of Breast Cancer Cells through Activating Apoptosis Signaling Pathway in Vitro and in Vivo. Chin. Med. 2020, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Deng, S.; Zeng, Q.; Hu, W.; Chen, T. Highly Stable Selenadiazole Derivatives Induce Bladder Cancer Cell Apoptosis and Inhibit Cell Migration and Invasion through the Activation of ROS-Mediated Signaling Pathways. Dalt. Trans. 2016, 45, 18465–18475. [Google Scholar] [CrossRef]
- Hao, W.; Yuan, X.; Yu, L.; Gao, C.; Sun, X.; Wang, D.; Zheng, Q. Licochalcone A-Induced Human Gastric Cancer BGC-823 Cells Apoptosis by Regulating ROS-Mediated MAPKs and PI3K/AKT Signaling Pathways. Sci. Rep. 2015, 5, 10336. [Google Scholar] [CrossRef]
- Lee, C.-H.; Ying, T.-H.; Chiou, H.-L.; Hsieh, S.-C.; Wen, S.-H.; Chou, R.-H.; Hsieh, Y.-H. Alpha-Mangostin Induces Apoptosis through Activation of Reactive Oxygen Species and ASK1/P38 Signaling Pathway in Cervical Cancer Cells. Oncotarget 2017, 8, 47425–47439. [Google Scholar] [CrossRef]
- Qi, S.; Guo, L.; Yan, S.; Lee, R.J.; Yu, S.; Chen, S. Hypocrellin A-Based Photodynamic Action Induces Apoptosis in A549 Cells through ROS-Mediated Mitochondrial Signaling Pathway. Acta Pharm. Sin. B 2019, 9, 279–293. [Google Scholar] [CrossRef]
- Hwang, J.-T.; Ha, J.; Park, I.-J.; Lee, S.-K.; Baik, H.W.; Kim, Y.M.; Park, O.J. Apoptotic Effect of EGCG in HT-29 Colon Cancer Cells via AMPK Signal Pathway. Cancer Lett. 2007, 247, 115–121. [Google Scholar] [CrossRef]
- Lim, W.; Park, S.; Bazer, F.W.; Song, G. Naringenin-Induced Apoptotic Cell Death in Prostate Cancer Cells Is Mediated via the PI3K/AKT and MAPK Signaling Pathways. J. Cell. Biochem. 2017, 118, 1118–1131. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Xu, K.; Lu, G.; Ying, Z.; Wu, L.; Zhan, J.; Fang, R.; Wu, Y.; Zhou, J. Curcumin Induces Apoptosis in Human Lung Adenocarcinoma A549 Cells through a Reactive Oxygen Species-Dependent Mitochondrial Signaling Pathway. Oncol. Rep. 2010, 23, 397–403. [Google Scholar] [CrossRef]
- Zang, Y.-Q.; Feng, Y.-Y.; Luo, Y.-H.; Zhai, Y.-Q.; Ju, X.-Y.; Feng, Y.-C.; Sheng, Y.-N.; Wang, J.-R.; Yu, C.-Q.; Jin, C.-H. Quinalizarin Induces ROS-mediated Apoptosis via the MAPK, STAT3 and NF-κB Signaling Pathways in Human Breast Cancer Cells. Mol. Med. Rep. 2019, 20, 4576–4586. [Google Scholar] [CrossRef]
- Palanivel, K.; Kanimozhi, V.; Kadalmani, B.; Akbarsha, M.A. Verrucarin A Induces Apoptosis through ROS-Mediated EGFR/MAPK/Akt Signaling Pathways in MDA-MB-231 Breast Cancer Cells. J. Cell. Biochem. 2014, 115, 2022–2032. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-M.; Kim, S.-J.; Kim, J.-S.; Kang, H.-S. Reactive Oxygen Species Mediated Ginsenoside Rg3- and Rh2-Induced Apoptosis in Hepatoma Cells through Mitochondrial Signaling Pathways. Food Chem. Toxicol. 2012, 50, 2736–2741. [Google Scholar] [CrossRef] [PubMed]
- Han, M.H.; Lee, D.-S.; Jeong, J.-W.; Hong, S.-H.; Choi, I.-W.; Cha, H.-J.; Kim, S.; Kim, H.-S.; Park, C.; Kim, G.-Y.; et al. Fucoidan Induces ROS-Dependent Apoptosis in 5637 Human Bladder Cancer Cells by Downregulating Telomerase Activity via Inactivation of the PI3K/Akt Signaling Pathway. Drug Dev. Res. 2017, 78, 37–48. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Y.-H.; Shen, G.-N.; Piao, X.-J.; Xu, W.-T.; Zhang, Y.; Wang, J.-R.; Feng, Y.-C.; Li, J.-Q.; Zhang, Y.; et al. Two Novel 1,4-naphthoquinone Derivatives Induce Human Gastric Cancer Cell Apoptosis and Cell Cycle Arrest by Regulating Reactive Oxygen Species-mediated MAPK/Akt/STAT3 Signaling Pathways. Mol. Med. Rep. 2019, 20, 2571–2582. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, P.; Chen, W.; Luo, K.; Shi, X.-J.; Zhai, W. Melatonin Inhibits Proliferation, Migration, and Invasion by Inducing ROS-Mediated Apoptosis via Suppression of the PI3K/Akt/MTOR Signaling Pathway in Gallbladder Cancer Cells. Aging 2021, 13, 22502–22515. [Google Scholar] [CrossRef]
- Yuan, L.; Wei, S.; Wang, J.; Liu, X. Isoorientin Induces Apoptosis and Autophagy Simultaneously by Reactive Oxygen Species (ROS)-Related P53, PI3K/Akt, JNK, and P38 Signaling Pathways in HepG2 Cancer Cells. J. Agric. Food Chem. 2014, 62, 5390–5400. [Google Scholar] [CrossRef]
- Korashy, H.M.; Maayah, Z.H.; Abd-Allah, A.R.; El-Kadi, A.O.S.; Alhaider, A.A. Camel Milk Triggers Apoptotic Signaling Pathways in Human Hepatoma HepG2 and Breast Cancer MCF7 Cell Lines through Transcriptional Mechanism. J. Biomed. Biotechnol. 2012, 2012, 593195. [Google Scholar] [CrossRef]
- Huang, S.-H.; Wu, L.-W.; Huang, A.-C.; Yu, C.-C.; Lien, J.-C.; Huang, Y.-P.; Yang, J.-S.; Yang, J.-H.; Hsiao, Y.-P.; Wood, W.G.; et al. Benzyl Isothiocyanate (BITC) Induces G2/M Phase Arrest and Apoptosis in Human Melanoma A375.S2 Cells through Reactive Oxygen Species (ROS) and Both Mitochondria-Dependent and Death Receptor-Mediated Multiple Signaling Pathways. J. Agric. Food Chem. 2012, 60, 665–675. [Google Scholar] [CrossRef]
- Lee, H.K.; Cha, H.S.; Nam, M.J.; Park, K.; Yang, Y.-H.; Lee, J.; Park, S.-H. Broussochalcone A Induces Apoptosis in Human Renal Cancer Cells via ROS Level Elevation and Activation of FOXO3 Signaling Pathway. Oxid. Med. Cell. Longev. 2021, 2021, 2800706. [Google Scholar] [CrossRef]
- Hamzeloo-Moghadam, M.; Aghaei, M.; Fallahian, F.; Jafari, S.M.; Dolati, M.; Abdolmohammadi, M.H.; Hajiahmadi, S.; Esmaeili, S. Britannin, a Sesquiterpene Lactone, Inhibits Proliferation and Induces Apoptosis through the Mitochondrial Signaling Pathway in Human Breast Cancer Cells. Tumour Biol. 2015, 36, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Veeraraghavan, V.P.; Krishna Mohan, S.; Hussain, S.; Ramamoorthy, K.; Rengarajan, T. Phyllanthin Inhibits MOLT-4 Leukemic Cancer Cell Growth and Induces Apoptosis through the Inhibition of AKT and JNK Signaling Pathway. J. Biochem. Mol. Toxicol. 2021, 35, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shan, F.; Shao, Z.; Jiang, S.; Cheng, Z. Erlotinib Induces the Human Non-Small-Cell Lung Cancer Cells Apoptosis via Activating ROS-Dependent JNK Pathways. Cancer Med. 2016, 5, 3166–3175. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-H.; Li, H.-H.; Li, M.; Wang, S.; Jiang, X.-R.; Li, Y.; Ping, G.-F.; Cao, Q.; Liu, X.; Fang, W.-H.; et al. SL4, a Chalcone-Based Compound, Induces Apoptosis in Human Cancer Cells by Activation of the ROS/MAPK Signalling Pathway. Cell Prolif. 2015, 48, 718–728. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, C.-Z.; Ren, Q.; Chen, Y.; Li, X.; Yang, J.-R.; Li, H.-X.; Tang, W.-T.; Ho, H.-M.; Sun, C.; et al. Activation of Mitochondrial-Associated Apoptosis Signaling Pathway and Inhibition of PI3K/Akt/MTOR Signaling Pathway by Voacamine Suppress Breast Cancer Progression. Phytomedicine 2022, 99, 154015. [Google Scholar] [CrossRef]
- Fan, J.; Ren, D.; Wang, J.; Liu, X.; Zhang, H.; Wu, M.; Yang, G. Bruceine D Induces Lung Cancer Cell Apoptosis and Autophagy via the ROS/MAPK Signaling Pathway in Vitro and in Vivo. Cell Death Dis. 2020, 11, 126. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, C.; Gao, C.-Y.; Ma, T.; Zhang, H.; Zhou, M.-M.; Yang, Y.-W.; Yang, L.; Kong, L.-Y. Anti-Proliferation of Triple-Negative Breast Cancer Cells with Physagulide P: ROS/JNK Signaling Pathway Induces Apoptosis and Autophagic Cell Death. Oncotarget 2017, 8, 64032–64049. [Google Scholar] [CrossRef]
- Mi, Y.; Xiao, C.; Du, Q.; Wu, W.; Qi, G.; Liu, X. Momordin Ic Couples Apoptosis with Autophagy in Human Hepatoblastoma Cancer Cells by Reactive Oxygen Species (ROS)-Mediated PI3K/Akt and MAPK Signaling Pathways. Free Radic. Biol. Med. 2016, 90, 230–242. [Google Scholar] [CrossRef]
- Li, H.-Y.; Zhang, J.; Sun, L.-L.; Li, B.-H.; Gao, H.-L.; Xie, T.; Zhang, N.; Ye, Z.-M. Celastrol Induces Apoptosis and Autophagy via the ROS/JNK Signaling Pathway in Human Osteosarcoma Cells: An in Vitro and in Vivo Study. Cell Death Dis. 2015, 6, e1604. [Google Scholar] [CrossRef]
- Fu, D.; Wu, D.; Cheng, W.; Gao, J.; Zhang, Z.; Ge, J.; Zhou, W.; Xu, Z. Costunolide Induces Autophagy and Apoptosis by Activating ROS/MAPK Signaling Pathways in Renal Cell Carcinoma. Front. Oncol. 2020, 10, 582273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-Y.; Li, X.-B.; Hou, S.-G.; Sun, Y.; Shi, Y.-R.; Lin, S.-S. Cedrol Induces Autophagy and Apoptotic Cell Death in A549 Non-Small Cell Lung Carcinoma Cells through the P13K/Akt Signaling Pathway, the Loss of Mitochondrial Transmembrane Potential and the Generation of ROS. Int. J. Mol. Med. 2016, 38, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Fan, S.; Shi, Y.; Ren, H.; Hong, H.; Gao, X.; Zhang, M.; Qin, Q.; Li, H. Propranolol Induced Apoptosis and Autophagy via the ROS/JNK Signaling Pathway in Human Ovarian Cancer. J. Cancer 2020, 11, 5900–5910. [Google Scholar] [CrossRef]
- Huang, K.; Chen, Y.; Zhang, R.; Wu, Y.; Ma, Y.; Fang, X.; Shen, S. Honokiol Induces Apoptosis and Autophagy via the ROS/ERK1/2 Signaling Pathway in Human Osteosarcoma Cells in Vitro and in Vivo. Cell Death Dis. 2018, 9, 157. [Google Scholar] [CrossRef]
- Wang, F.; Wu, P.; Qin, S.; Deng, Y.; Han, P.; Li, X.; Fan, C.; Xu, Y. Curcin C Inhibit Osteosarcoma Cell Line U2OS Proliferation by ROS Induced Apoptosis, Autophagy and Cell Cycle Arrest through Activating JNK Signal Pathway. Int. J. Biol. Macromol. 2022, 195, 433–439. [Google Scholar] [CrossRef]
- Sun, Z.-L.; Dong, J.-L.; Wu, J. Juglanin Induces Apoptosis and Autophagy in Human Breast Cancer Progression via ROS/JNK Promotion. Biomed. Pharmacother. 2017, 85, 303–312. [Google Scholar] [CrossRef]
- Lu, H.; Mei, C.; Yang, L.; Zheng, J.; Tong, J.; Duan, F.; Liang, H.; Hong, L. PPM-18, an Analog of Vitamin K, Induces Autophagy and Apoptosis in Bladder Cancer Cells Through ROS and AMPK Signaling Pathways. Front. Pharmacol. 2021, 12, 684915. [Google Scholar] [CrossRef]
- Li, B.; Zhou, P.; Xu, K.; Chen, T.; Jiao, J.; Wei, H.; Yang, X.; Xu, W.; Wan, W.; Xiao, J. Metformin Induces Cell Cycle Arrest, Apoptosis and Autophagy through ROS/JNK Signaling Pathway in Human Osteosarcoma. Int. J. Biol. Sci. 2020, 16, 74–84. [Google Scholar] [CrossRef]
- Ghosh, S.; Bishayee, K.; Khuda-Bukhsh, A.R. Graveoline Isolated from Ethanolic Extract of Ruta Graveolens Triggers Apoptosis and Autophagy in Skin Melanoma Cells: A Novel Apoptosis-Independent Autophagic Signaling Pathway. Phytother. Res. 2014, 28, 1153–1162. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, P.; Wang, X.; Wang, L.; Zhu, Y.; Gao, W. Triptolide Induces Glioma Cell Autophagy and Apoptosis via Upregulating the ROS/JNK and Downregulating the Akt/MTOR Signaling Pathways. Front. Oncol. 2019, 9, 387. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, T.; Sun, W.; Wang, Z.; Zuo, D.; Zhou, Z.; Li, S.; Xu, J.; Yin, F.; Hua, Y.; et al. Erianin Induces G2/M-Phase Arrest, Apoptosis, and Autophagy via the ROS/JNK Signaling Pathway in Human Osteosarcoma Cells in Vitro and in Vivo. Cell Death Dis. 2016, 7, e2247. [Google Scholar] [CrossRef]
- Contant, C.; Rouabhia, M.; Loubaki, L.; Chandad, F.; Semlali, A. Anethole Induces Anti-Oral Cancer Activity by Triggering Apoptosis, Autophagy and Oxidative Stress and by Modulation of Multiple Signaling Pathways. Sci. Rep. 2021, 11, 13087. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, T.; Sun, W.; Wang, H.; Yin, F.; Wang, Z.; Zuo, D.; Sun, M.; Zhou, Z.; Lin, B.; et al. Arsenic Sulfide Induces Apoptosis and Autophagy through the Activation of ROS/JNK and Suppression of Akt/MTOR Signaling Pathways in Osteosarcoma. Free Radic. Biol. Med. 2017, 106, 24–37. [Google Scholar] [CrossRef]
- Jeyamohan, S.; Moorthy, R.K.; Kannan, M.K.; Arockiam, A.J.V. Parthenolide Induces Apoptosis and Autophagy through the Suppression of PI3K/Akt Signaling Pathway in Cervical Cancer. Biotechnol. Lett. 2016, 38, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.H.; Iskandar, K.B.; Yadav, S.K.; Hirpara, J.L.; Loh, T.; Pervaiz, S. Simultaneous Induction of Non-Canonical Autophagy and Apoptosis in Cancer Cells by ROS-Dependent ERK and JNK Activation. PLoS ONE 2010, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, X.; Che, D.; Zeng, L.; Zhang, Y.; Nan, K.; Zhang, X.; Zhang, H.; Guo, Z. 6-Methoxydihydrosanguinarine Induces Apoptosis and Autophagy in Breast Cancer MCF-7 Cells by Accumulating ROS to Suppress the PI3K/AKT/MTOR Signaling Pathway. Phytother. Res. 2023, 37, 124–139. [Google Scholar] [CrossRef]
- Sun, J.; Feng, Y.; Wang, Y.; Ji, Q.; Cai, G.; Shi, L.; Wang, Y.; Huang, Y.; Zhang, J.; Li, Q. α-Hederin Induces Autophagic Cell Death in Colorectal Cancer Cells through Reactive Oxygen Species Dependent AMPK/MTOR Signaling Pathway Activation. Int. J. Oncol. 2019, 54, 1601–1612. [Google Scholar] [CrossRef]
- Song, C.; Xu, W.; Wu, H.; Wang, X.; Gong, Q.; Liu, C.; Liu, J.; Zhou, L. Photodynamic Therapy Induces Autophagy-Mediated Cell Death in Human Colorectal Cancer Cells via Activation of the ROS/JNK Signaling Pathway. Cell Death Dis. 2020, 11, 938. [Google Scholar] [CrossRef]
- Zhou, M.; Shen, S.; Zhao, X.; Gong, X. Luteoloside Induces G(0)/G(1) Arrest and pro-Death Autophagy through the ROS-Mediated AKT/MTOR/P70S6K Signalling Pathway in Human Non-Small Cell Lung Cancer Cell Lines. Biochem. Biophys. Res. Commun. 2017, 494, 263–269. [Google Scholar] [CrossRef]
- Jiang, S.; Fan, J.; Wang, Q.; Ju, D.; Feng, M.; Li, J.; Guan, Z.-B.; An, D.; Wang, X.; Ye, L. Diosgenin Induces ROS-Dependent Autophagy and Cytotoxicity via MTOR Signaling Pathway in Chronic Myeloid Leukemia Cells. Phytomedicine 2016, 23, 243–252. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, H.; Zhu, Y.; Wang, H.; Jiang, J.; Chen, L.; Xu, W.; Hu, T.; Cho, C.H. Cryptotanshinone Induces ROS-Dependent Autophagy in Multidrug-Resistant Colon Cancer Cells. Chem. Biol. Interact. 2017, 273, 48–55. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Huang, H.-Y.; Lin, H.-P.; Fang, C.-Y. Piperlongumine Induces Autophagy in Biliary Cancer Cells via Reactive Oxygen Species-Activated Erk Signaling Pathway. Int. J. Mol. Med. 2019, 44, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Meng, Q.; Lu, D.; Liu, X.; Wang, Y.; Hao, J. Mitofusin2 Induces Cell Autophagy of Pancreatic Cancer through Inhibiting the PI3K/Akt/MTOR Signaling Pathway. Oxid. Med. Cell. Longev. 2018, 2018, 2798070. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Kong, L.; Sun, B.; Gao, L.; Chu, P.; Ahsan, A.; Qaed, E.; Lin, Y.; Peng, J.; Ma, X.; et al. Induction of Autophagy by an Oleanolic Acid Derivative, SZC017, Promotes ROS-Dependent Apoptosis through Akt and JAK2/STAT3 Signaling Pathway in Human Lung Cancer Cells. Cell Biol. Int. 2017, 41, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Lin, W.; Zheng, W.; Chen, T.; Yang, H.; Sun, L.; Huang, F.; Wang, Z.; Lin, H.; Chen, L.; et al. Downregulation of G2/Mitotic-Specific CyclinB1 Triggers Autophagy via AMPK-ULK1-Dependent Signal Pathway in Nasopharyngeal Carcinoma Cells. Cell Death Dis. 2019, 10, 94. [Google Scholar] [CrossRef]
- He, Y.; Shi, Y.; Yang, Y.; Huang, H.; Feng, Y.; Wang, Y.; Zhan, L.; Wei, B. Chrysin Induces Autophagy through the Inactivation of the ROS-mediated Akt/MTOR Signaling Pathway in Endometrial Cancer. Int. J. Mol. Med. 2021, 48, 172. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, X.; Wang, J.; Zhou, Y.; Qi, W.; Chen, H.; Nie, S.; Xie, M. Dendrobium Officinale Polysaccharide Triggers Mitochondrial Disorder to Induce Colon Cancer Cell Death via ROS-AMPK-Autophagy Pathway. Carbohydr. Polym. 2021, 264, 118018. [Google Scholar] [CrossRef]
- Sun, W.; Wu, X.; Gao, H.; Yu, J.; Zhao, W.; Lu, J.-J.; Wang, J.; Du, G.; Chen, X. Cytosolic Calcium Mediates RIP1/RIP3 Complex-Dependent Necroptosis through JNK Activation and Mitochondrial ROS Production in Human Colon Cancer Cells. Free Radic. Biol. Med. 2017, 108, 433–444. [Google Scholar] [CrossRef]
- D’Onofrio, N.; Martino, E.; Balestrieri, A.; Mele, L.; Cautela, D.; Castaldo, D.; Balestrieri, M.L. Diet-Derived Ergothioneine Induces Necroptosis in Colorectal Cancer Cells by Activating the SIRT3/MLKL Pathway. FEBS Lett. 2022, 596, 1313–1329. [Google Scholar] [CrossRef]
- Xie, X.; Zhao, Y.; Ma, C.-Y.; Xu, X.-M.; Zhang, Y.-Q.; Wang, C.-G.; Jin, J.; Shen, X.; Gao, J.-L.; Li, N.; et al. Dimethyl Fumarate Induces Necroptosis in Colon Cancer Cells through GSH Depletion/ROS Increase/MAPKs Activation Pathway. Br. J. Pharmacol. 2015, 172, 3929–3943. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Gao, H.; Hou, Y.; Lu, J.-J.; Feng, Y.; Xu, Q.; Liu, B.; Chen, X. Induction of an MLKL Mediated Non-Canonical Necroptosis through Reactive Oxygen Species by Tanshinol A in Lung Cancer Cells. Biochem. Pharmacol. 2020, 171, 113684. [Google Scholar] [CrossRef]
- Khaw-On, P.; Pompimon, W.; Banjerdpongchai, R. Goniothalamin Induces Necroptosis and Anoikis in Human Invasive Breast Cancer MDA-MB-231 Cells. Int. J. Mol. Sci. 2019, 20, 3953. [Google Scholar] [CrossRef]
- Chang, Y.J.; Hsu, S.L.; Liu, Y.T.; Lin, Y.H.; Lin, M.H.; Huang, S.J.; Ho, J.A.; Wu, L.-C. Gallic Acid Induces Necroptosis via TNF-α Signaling Pathway in Activated Hepatic Stellate Cells. PLoS ONE 2015, 10, e0120713. [Google Scholar] [CrossRef]
- Locatelli, S.L.; Cleris, L.; Stirparo, G.G.; Tartari, S.; Saba, E.; Pierdominici, M.; Malorni, W.; Carbone, A.; Anichini, A.; Carlo-Stella, C. BIM Upregulation and ROS-Dependent Necroptosis Mediate the Antitumor Effects of the HDACi Givinostat and Sorafenib in Hodgkin Lymphoma Cell Line Xenografts. Leukemia 2014, 28, 1861–1871. [Google Scholar] [CrossRef] [PubMed]
- Hengartner, M.O. The Biochemistry of Apoptosis. Nature 2000, 407, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Galadari, S.; Rahman, A.; Pallichankandy, S.; Galadari, A.; Thayyullathil, F. Role of Ceramide in Diabetes Mellitus: Evidence and Mechanisms. Lipids Health Dis. 2013, 12, 98. [Google Scholar] [CrossRef] [PubMed]
- Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Tumor Suppressive Functions of Ceramide: Evidence and Mechanisms. Apoptosis 2015, 20, 689–711. [Google Scholar] [CrossRef]
- Liu, G.-Y.; Sun, Y.-Z.; Zhou, N.; Du, X.-M.; Yang, J.; Guo, S.-J. 3,3′-OH Curcumin Causes Apoptosis in HepG2 Cells through ROS-Mediated Pathway. Eur. J. Med. Chem. 2016, 112, 157–163. [Google Scholar] [CrossRef]
- Rastogi, N.; Gara, R.K.; Trivedi, R.; Singh, A.; Dixit, P.; Maurya, R.; Duggal, S.; Bhatt, M.L.B.; Singh, S.; Mishra, D.P. (6)-Gingerolinduced Myeloid Leukemia Cell Death Is Initiated by Reactive Oxygen Species and Activation of MiR-27b Expression. Free Radic. Biol. Med. 2014, 68, 288–301. [Google Scholar] [CrossRef]
- Ito, K.; Nakazato, T.; Yamato, K.; Miyakawa, Y.; Yamada, T.; Hozumi, N.; Segawa, K.; Ikeda, Y.; Kizaki, M. Induction of Apoptosis in Leukemic Cells by Homovanillic Acid Derivative, Capsaicin, through Oxidative Stress: Implication of Phosphorylation of P53 at Ser-15 Residue by Reactive Oxygen Species. Cancer Res. 2004, 64, 1071–1078. [Google Scholar] [CrossRef]
- Kim, D.-H.; Park, K.-W.; Chae, I.G.; Kundu, J.; Kim, E.-H.; Kundu, J.K.; Chun, K.-S. Carnosic Acid Inhibits STAT3 Signaling and Induces Apoptosis through Generation of ROS in Human Colon Cancer HCT116 Cells. Mol. Carcinog. 2016, 55, 1096–1110. [Google Scholar] [CrossRef]
- Hoesel, B.; Schmid, J.A. The Complexity of NF-ΚB Signaling in Inflammation and Cancer. Mol. Cancer 2013, 12, 86. [Google Scholar] [CrossRef]
- He, C.; Klionsky, D.J. Regulation Mechanisms and Signaling Pathways of Autophagy. Annu. Rev. Genet. 2009, 43, 67–93. [Google Scholar] [CrossRef]
- Choi, A.M.K.; Ryter, S.W.; Levine, B. Autophagy in Human Health and Disease. N. Engl. J. Med. 2013, 368, 651–662. [Google Scholar] [CrossRef] [PubMed]
- White, E. Deconvoluting the Context-Dependent Role for Autophagy in Cancer. Nat. Rev. Cancer 2012, 12, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Ávalos, Y.; Canales, J.; Bravo-Sagua, R.; Criollo, A.; Lavandero, S.; Quest, A.F.G. Tumor Suppression and Promotion by Autophagy. Biomed. Res. Int. 2014, 2014, 603980. [Google Scholar] [CrossRef]
- Kenific, C.M.; Debnath, J. Cellular and Metabolic Functions for Autophagy in Cancer Cells. Trends Cell Biol. 2015, 25, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, E.A.; Tee, A.R. MTOR and Autophagy: A Dynamic Relationship Governed by Nutrients and Energy. Semin. Cell Dev. Biol. 2014, 36, 121–129. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, Y.; Zhang, R.; Tu, X.; Gong, X. Ursolic Acid Induces Autophagy in U87MG Cells via ROS-Dependent Endoplasmic Reticulum Stress. Chem. Biol. Interact. 2014, 218, 28–41. [Google Scholar] [CrossRef]
- Verdoodt, B.; Vogt, M.; Schmitz, I.; Liffers, S.-T.; Tannapfel, A.; Mirmohammadsadegh, A. Salinomycin Induces Autophagy in Colon and Breast Cancer Cells with Concomitant Generation of Reactive Oxygen Species. PLoS ONE 2012, 7, e44132. [Google Scholar] [CrossRef]
- Kim, A.; Im, M.; Yim, N.-H.; Kim, T.; Ma, J.Y. A Novel Herbal Medicine, KIOM-C, Induces Autophagic and Apoptotic Cell Death Mediated by Activation of JNK and Reactive Oxygen Species in HT1080 Human Fibrosarcoma Cells. PLoS ONE 2014, 9, e98703. [Google Scholar] [CrossRef]
- Zhou, H.; Shen, T.; Shang, C.; Luo, Y.; Liu, L.; Yan, J.; Li, Y.; Huang, S. Ciclopirox Induces Autophagy through Reactive Oxygen Species-Mediated Activation of JNK Signaling Pathway. Oncotarget 2014, 5, 10140–10150. [Google Scholar] [CrossRef] [PubMed]
- Al Dhaheri, Y.; Attoub, S.; Ramadan, G.; Arafat, K.; Bajbouj, K.; Karuvantevida, N.; AbuQamar, S.; Eid, A.; Iratni, R. Carnosol Induces ROS-Mediated Beclin1-Independent Autophagy and Apoptosis in Triple Negative Breast Cancer. PLoS ONE 2014, 9, e109630. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Zhang, X.; Zhao, W.; Chen, X. Psoralidin Induces Autophagy through ROS Generation Which Inhibits the Proliferation of Human Lung Cancer A549 Cells. PeerJ 2014, 2, e555. [Google Scholar] [CrossRef] [PubMed]
- Miki, H.; Uehara, N.; Kimura, A.; Sasaki, T.; Yuri, T.; Yoshizawa, K.; Tsubura, A. Resveratrol Induces Apoptosis via ROS-Triggered Autophagy in Human Colon Cancer Cells. Int. J. Oncol. 2012, 40, 1020–1028. [Google Scholar] [CrossRef]
- Linkermann, A.; Green, D.R. Necroptosis. N. Engl. J. Med. 2014, 370, 455–465. [Google Scholar] [CrossRef]
- Christofferson, D.E.; Yuan, J. Necroptosis as an Alternative Form of Programmed Cell Death. Curr. Opin. Cell Biol. 2010, 22, 263–268. [Google Scholar] [CrossRef]
- Hitomi, J.; Christofferson, D.E.; Ng, A.; Yao, J.; Degterev, A.; Xavier, R.J.; Yuan, J. Identification of a Molecular Signaling Network That Regulates a Cellular Necrotic Cell Death Pathway. Cell 2008, 135, 1311–1323. [Google Scholar] [CrossRef]
- Wang, K.J.; Meng, X.-Y.; Chen, J.-F.; Wang, K.-Y.; Zhou, C.; Yu, R.; Ma, Q. Emodin Induced Necroptosis and Inhibited Glycolysis in the Renal Cancer Cells by Enhancing ROS. Oxid. Med. Cell. Longev. 2021, 2021, 8840590. [Google Scholar] [CrossRef]
- Sonkusre, P.; Cameotra, S.S. Biogenic Selenium Nanoparticles Induce ROS-Mediated Necroptosis in PC-3 Cancer Cells through TNF Activation. J. Nanobiotechnology 2017, 15, 43. [Google Scholar] [CrossRef]
- Yu, X.; Deng, Q.; Li, W.; Xiao, L.; Luo, X.; Liu, X.; Yang, L.; Peng, S.; Ding, Z.; Feng, T.; et al. Neoalbaconol Induces Cell Death through Necroptosis by Regulating RIPK-Dependent Autocrine TNFα and ROS Production. Oncotarget 2015, 6, 1995–2008. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-J.; Nam, H.-S.; Cho, M.-K.; Lee, S.-H. Arctigenin Induces Necroptosis through Mitochondrial Dysfunction with CCN1 Upregulation in Prostate Cancer Cells under Lactic Acidosis. Mol. Cell. Biochem. 2020, 467, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Lalaoui, N.; Lindqvist, L.M.; Sandow, J.J.; Ekert, P.G. The Molecular Relationships between Apoptosis, Autophagy and Necroptosis. Semin. Cell Dev. Biol. 2015, 39, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-Y.; Kuo, W.-T.; Huang, Y.-C.; Lee, T.-C.; Yu, L.C.H. Resistance to Hypoxia-Induced Necroptosis Is Conferred by Glycolytic Pyruvate Scavenging of Mitochondrial Superoxide in Colorectal Cancer Cells. Cell Death Dis. 2013, 4, e622. [Google Scholar] [CrossRef]
- Fulda, S. The Mechanism of Necroptosis in Normal and Cancer Cells. Cancer Biol. Ther. 2013, 14, 999–1004. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Galluzzi, L.; Vanden Berghe, T.; Kroemer, G. Molecular Mechanisms of Necroptosis: An Ordered Cellular Explosion. Nat. Rev. Mol. Cell Biol. 2010, 11, 700–714. [Google Scholar] [CrossRef]
- Li, J.; McQuade, T.; Siemer, A.B.; Napetschnig, J.; Moriwaki, K.; Hsiao, Y.-S.; Damko, E.; Moquin, D.; Walz, T.; McDermott, A.; et al. The RIP1/RIP3 Necrosome Forms a Functional Amyloid Signaling Complex Required for Programmed Necrosis. Cell 2012, 150, 339–350. [Google Scholar] [CrossRef]
- Wright, A.; Reiley, W.W.; Chang, M.; Jin, W.; Lee, A.J.; Zhang, M.; Sun, S.-C. Regulation of Early Wave of Germ Cell Apoptosis and Spermatogenesis by Deubiquitinating Enzyme CYLD. Dev. Cell 2007, 13, 705–716. [Google Scholar] [CrossRef]
- Tenev, T.; Bianchi, K.; Darding, M.; Broemer, M.; Langlais, C.; Wallberg, F.; Zachariou, A.; Lopez, J.; MacFarlane, M.; Cain, K.; et al. The Ripoptosome, a Signaling Platform That Assembles in Response to Genotoxic Stress and Loss of IAPs. Mol. Cell 2011, 43, 432–448. [Google Scholar] [CrossRef]
- Wu, W.; Liu, P.; Li, J. Necroptosis: An Emerging Form of Programmed Cell Death. Crit. Rev. Oncol. Hematol. 2012, 82, 249–258. [Google Scholar] [CrossRef]
- O’Donnell, M.A.; Perez-Jimenez, E.; Oberst, A.; Ng, A.; Massoumi, R.; Xavier, R.; Green, D.R.; Ting, A.T. Caspase 8 Inhibits Programmed Necrosis by Processing CYLD. Nat. Cell Biol. 2011, 13, 1437–1442. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, S.S.; Zhao, S.; Yang, Z.; Zhong, C.-Q.; Chen, X.; Cai, Q.; Yang, Z.-H.; Huang, D.; Wu, R.; et al. RIP1 Autophosphorylation Is Promoted by Mitochondrial ROS and Is Essential for RIP3 Recruitment into Necrosome. Nat. Commun. 2017, 8, 14329. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; He, W.; Sun, L. Necrosome Core Machinery: MLKL. Cell. Mol. Life Sci. 2016, 73, 2153–2163. [Google Scholar] [CrossRef] [PubMed]
- Moquin, D.M.; McQuade, T.; Chan, F.K.-M. CYLD Deubiquitinates RIP1 in the TNFα-Induced Necrosome to Facilitate Kinase Activation and Programmed Necrosis. PLoS ONE 2013, 8, e76841. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.M.; Czabotar, P.E.; Hildebrand, J.M.; Lucet, I.S.; Zhang, J.-G.; Alvarez-Diaz, S.; Lewis, R.; Lalaoui, N.; Metcalf, D.; Webb, A.I.; et al. The Pseudokinase MLKL Mediates Necroptosis via a Molecular Switch Mechanism. Immunity 2013, 39, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Sivasankarapillai, V.S.; Madhu Kumar Nair, R.; Rahdar, A.; Bungau, S.; Zaha, D.C.; Aleya, L.; Tit, D.M. Overview of the Anticancer Activity of Withaferin A, an Active Constituent of the Indian Ginseng Withania Somnifera. Environ. Sci. Pollut. Res. Int. 2020, 27, 26025–26035. [Google Scholar] [CrossRef]
- Wang, J.; Sun, D.; Huang, L.; Wang, S.; Jin, Y. Targeting Reactive Oxygen Species Capacity of Tumor Cells with Repurposed Drug as an Anticancer Therapy. Oxid. Med. Cell. Longev. 2021, 2021, 8532940. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ (accessed on 21 July 2025).
- Zhou, X.; An, B.; Lin, Y.; Ni, Y.; Zhao, X.; Liang, X. Molecular Mechanisms of ROS-Modulated Cancer Chemoresistance and Therapeutic Strategies. Biomed. Pharmacother. 2023, 165, 115036. [Google Scholar] [CrossRef]
- Karami Fath, M.; Najafiyan, B.; Morovatshoar, R.; Khorsandi, M.; Dashtizadeh, A.; Kiani, A.; Farzam, F.; Kazemi, K.S.; Nabi Afjadi, M. Potential Promising of Synthetic Lethality in Cancer Research and Treatment. Naunyn. Schmiedebergs. Arch. Pharmacol. 2025, 398, 1403–1431. [Google Scholar] [CrossRef]
- Ge, M.; Luo, J.; Wu, Y.; Shen, G.; Kuang, X. The Biological Essence of Synthetic Lethality: Bringing New Opportunities for Cancer Therapy. MedComm—Oncol. 2024, 3, e70. [Google Scholar] [CrossRef]
- Ngoi, N.Y.L.; Gallo, D.; Torrado, C.; Nardo, M.; Durocher, D.; Yap, T.A. Synthetic Lethal Strategies for the Development of Cancer Therapeutics. Nat. Rev. Clin. Oncol. 2024, 22, 46–64. [Google Scholar] [CrossRef]
- Sasaki, M.; Ogiwara, H. Synthetic Lethal Therapy Based on Targeting the Vulnerability of SWI/SNF Chromatin Remodeling Complex-Deficient Cancers. Cancer Sci. 2020, 111, 774–782. [Google Scholar] [CrossRef]
- Jiang, C.; Ward, N.P.; Prieto-Farigua, N.; Kang, Y.P.; Thalakola, A.; Teng, M.; DeNicola, G.M. A CRISPR Screen Identifies Redox Vulnerabilities for KEAP1/NRF2 Mutant Non-Small Cell Lung Cancer. Redox Biol. 2022, 54, 102358. [Google Scholar] [CrossRef]
- Ojo, O.A.; Grant, S.; Nwafor-Ezeh, P.I.; Maduakolam-Aniobi, T.C.; Akinborode, T.I.; Ezenabor, E.H.; Ojo, A.B. Ferroptosis as the New Approach to Cancer Therapy. Cancer Treat. Res. Commun. 2025, 43, 100913. [Google Scholar] [CrossRef]
- Zhou, Q.; Meng, Y.; Li, D.; Yao, L.; Le, J.; Liu, Y.; Sun, Y.; Zeng, F.; Chen, X.; Deng, G. Ferroptosis in Cancer: From Molecular Mechanisms to Therapeutic Strategies. Signal Transduct. Target. Ther. 2024, 9, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Conrad, M. Ferroptosis: When Metabolism Meets Cell Death. Physiol. Rev. 2025, 105, 651–706. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, W.; Abdul Razak, S.R.; Han, T.; Ahmad, N.H.; Li, X. Ferroptosis as a Potential Target for Cancer Therapy. Cell Death Dis. 2023, 14, 1–15. [Google Scholar] [CrossRef]
- Pu, F.; Chen, F.; Zhang, Z.; Shi, D.; Zhong, B.; Lv, X.; Tucker, A.B.; Fan, J.; Li, A.J.; Qin, K.; et al. Ferroptosis as a Novel Form of Regulated Cell Death: Implications in the Pathogenesis, Oncometabolism and Treatment of Human Cancer. Genes Dis. 2022, 9, 347–357. [Google Scholar] [CrossRef]
- Ding, X.; Cui, L.; Mi, Y.; Hu, J.; Cai, Z.; Tang, Q.; Yang, L.; Yang, Z.; Wang, Q.; Li, H.; et al. Ferroptosis in Cancer: Revealing the Multifaceted Functions of Mitochondria. Cell. Mol. Life Sci. 2025, 82, 277. [Google Scholar] [CrossRef]
- Korniluk, A.; Koper, O.; Kemona, H.; Dymicka-Piekarska, V. From Inflammation to Cancer. Ir. J. Med. Sci. 2017, 186, 57–62. [Google Scholar] [CrossRef]
- Kashyap, D.; Tuli, H.S.; Sak, K.; Garg, V.K.; Goel, N.; Punia, S.; Chaudhary, A. Role of Reactive Oxygen Species in Cancer Progression. Curr. Pharmacol. Rep. 2019, 5, 79–86. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Wu, Y.; Antony, S.; Meitzler, J.L.; Doroshow, J.H. Molecular Mechanisms Underlying Chronic Inflammation-Associated Cancers. Cancer Lett. 2014, 345, 164–173. [Google Scholar] [CrossRef]
- Azad, N.; Rojanasakul, Y.; Vallyathan, V. Inflammation and Lung Cancer: Roles of Reactive Oxygen/Nitrogen Species. J. Toxicol. Environ. Health. B. Crit. Rev. 2008, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, Z. The Pathophysiological Role of Mitochondrial Oxidative Stress in Lung Diseases. J. Transl. Med. 2017, 15, 207. [Google Scholar] [CrossRef] [PubMed]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.S.; Shishodia, S.; Ahn, K.S.; Kunnumakkara, A.B.; Sethi, G.; Aggarwal, B.B. Deguelin, an Akt Inhibitor, Suppresses IkappaBalpha Kinase Activation Leading to Suppression of NF-KappaB-Regulated Gene Expression, Potentiation of Apoptosis, and Inhibition of Cellular Invasion. J. Immunol. 2006, 177, 5612–5622. [Google Scholar] [CrossRef]
- Manna, S.K.; Aggarwal, R.S.; Sethi, G.; Aggarwal, B.B.; Ramesh, G.T. Morin (3,5,7,2′,4′-Pentahydroxyflavone) Abolishes Nuclear Factor-KappaB Activation Induced by Various Carcinogens and Inflammatory Stimuli, Leading to Suppression of Nuclear Factor-KappaB-Regulated Gene Expression and up-Regulation of Apoptosis. Clin. Cancer Res. 2007, 13, 2290–2297. [Google Scholar] [CrossRef]
- Ahn, K.S.; Sethi, G.; Chaturvedi, M.M.; Aggarwal, B.B. Simvastatin, 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitor, Suppresses Osteoclastogenesis Induced by Receptor Activator of Nuclear Factor-KappaB Ligand through Modulation of NF-KappaB Pathway. Int. J. Cancer 2008, 123, 1733–1740. [Google Scholar] [CrossRef]
- Chua, A.W.L.; Hay, H.S.; Rajendran, P.; Shanmugam, M.K.; Li, F.; Bist, P.; Koay, E.S.C.; Lim, L.H.K.; Kumar, A.P.; Sethi, G. Butein Downregulates Chemokine Receptor CXCR4 Expression and Function through Suppression of NF-ΚB Activation in Breast and Pancreatic Tumor Cells. Biochem. Pharmacol. 2010, 80, 1553–1562. [Google Scholar] [CrossRef]
- Li, F.; Sethi, G. Targeting Transcription Factor NF-KappaB to Overcome Chemoresistance and Radioresistance in Cancer Therapy. Biochim. Biophys. Acta 2010, 1805, 167–180. [Google Scholar]
- Zheng, H.-C. The Molecular Mechanisms of Chemoresistance in Cancers. Oncotarget 2017, 8, 59950–59964. [Google Scholar] [CrossRef]
Stimulus/Receptor | Model/Cell Line/Cancer Type | Signaling Pathway/ Factor Involved | Ref |
---|---|---|---|
Angiogenesis | |||
Human papillomavirus E7 oncoprotein | Cervical cancer cells | HIF-1α/VEGF/ERK1/2 | [39] |
Arsenite | DU145 human prostate#break# carcinoma cells | PI3K/Akt | [40] |
27-hydroxycholesterol | Human breast cancer cells | STAT-3/VEGF | [41] |
Angiopoietin-1 (Ang1) | Human umbilical vein endothelial cells | p44/42/MAPK | [42] |
Ubiquitin C-terminal hydrolase-L1 (UCH-L1) | B16F10 cells | VEGF | [43] |
EGF/EGFR | Human ovarian cancer cells | AKT/p70S6K1 | [44] |
Centchroman | Human breast cancer cells | AKT/ERK | [45] |
Arsenic | Human lung epithelial BEAS-2B cells | miR-199a-5p/HIF-1α/COX-2 | [46] |
NADPH oxidase subunit p22phox | Human prostate cancer | AKT/ERK/HIF-1/VEGF | [47] |
Carcinogenesis | |||
Farnesoid X Receptor | Liver cell | JNK | [48] |
1,2-dimethylhydrazine (DMH) | Colon cell | PI3-K/Akt/GSK-3β/PTEN | [49] |
Hepatitis C virus (HCV Core, E2, NS3, NS5A) | HUH7 cells | MAPK/ERK | [50] |
Epstein–Barr virus (EBV) nuclear antigen (EBNA)-1 | Lymphoma | NF-κB/MAPK | [51] |
Helicobacter pylori | AGS human gastric cancer cells | STAT3/IL-6 and IL-6R | [52] |
Environmental and dietary carcinogens | Breast cancer | RAS-ERK | [53] |
Particulate matter | Lung cancer | p16 promoter/JNK inhibitor | [54] |
K- rasV12 | Non-transformed peripheral mouse lung epithelial cells (E10 line) | COX-2 | [55] |
Carcinogenesis/Metastasis | |||
Human T-cell lymphotropic virus type 1 (HTLV-1) | CD4+ T lymphocytes | TBK1-mediated phosphorylation of IRF3/IRF7 | [56] |
Invasion/metastasis | |||
Slingshot-1L (SSH-1L) | HeLa cells | Cofilin | [57] |
Neuregulin (NRG) | HaCaT keratinocytes | SSH-1L/cofilin | [58] |
Inhibition of autophagy | Gastric cancer | NF-κB | [59] |
ITGB3 | Colorectal cancer (CRC) | MAPK/AKT | [60] |
Capsaicin | SW480 cells | Akt/mTOR and STAT-3 | [61] |
Ionizing radiation (IR) | Epithelial cells | EGFR/PI3K/Akt/MAPK | [62] |
Benzo[a]pyrene | Breast cancer cells | ROS-ERK-MMP9 | [63] |
Metastasis | |||
Fork head box M1 (FoxM1) of Hepatitis C virus | Liver cells | ERK/CREB | [64] |
Tumorigenesis | |||
As(III) or Cr(VI) | Mouse colitis-linked colorectal cancer model | Wnt/β-catenin | [65] |
TRPC3 | Gastric cancer | CNB2/GSK3β/NFATc2 | [66] |
S. japonicum SjE16.7 Protein | Colorectal cancer | NF-κB/IL-6 and TNF-α. | [67] |
Tumorigenesis and Angiogenesis | |||
Cadmium (CdCl2) | Lung epithelial cell | ERK/AKT | [68] |
Tumorigenesis and Metastasis | |||
Cholesterol (LDL) | Colorectal adenoma and colorectal cancer | MAPK | [69] |
Tumorigenesis/Angiogenesis | |||
Kaposi’s sarcoma herpesvirus (KSHV) | mECK36 | vGPCR/VEGF | [70] |
Tumorigenesis/Angiogenesis/Metastasis | |||
Chronic alcohol | Liver cell | MAPK/RAS/Rb/TGFβ/p53/PTEN/ECM | [71] |
Stimulant/Drug | Model System/Cell Line/Cancer Type | Signaling Pathway/ Factor Involved | Ref. |
---|---|---|---|
Apoptosis | |||
Isoobtusilactone A | Human breast cancer cells | ASK1 | [223] |
Hyperoside (quercetin 3-o-β-d-galactopyranoside) | Breast cancer cells | NF-κB | [224] |
Schisantherin A | Human gastric cancer cells | JNK | [225] |
Resveratrol | HT-29 cells | AMPK | [226] |
5-fluorouracil and genistein | HT-29 colon cancer cells | AMPK/COX-2 | [227] |
Rhein | Liver cancer cells | JNK/Jun/caspase-3 | [228] |
Delicaflavone | Colorectal cancer cells | PI3K/AKT/mTOR and Ras/MEK/Erk | [229] |
Eupatilin | Human renal cancer cells | MAPK and PI3K/AKT | [230] |
Sulforaphane | Human urinary bladder cancer T24 | Nrf2 | [231] |
Emodin | Human lung adenocarcinoma cells | ERK and AKT | [232] |
Carnosic acid | Cervical cancer cells | JNK | [233] |
Tetramethyl pyrazine | Gastric cancer cells | AMPK | [234] |
Zeaxanthin | Human gastric cancer cells | MAPK and AKT | [235] |
Atmospheric gas plasmas (AGPs) | Melanoma cancer cells | TNF-ASK1 | [236] |
7-O-Geranylquercetin | Gastric cancer cell lines SGC-7901 and MGC-803 | MAPK | [237] |
CDK5RAP1 | Human breast cancer cells | JNK | [238] |
Isoorientin | HepG2 cancer cells | PI3K/Akt | [239] |
Benzimidazole acridine derivative (8m) | Human colon cancer cell lines SW480 and HCT116 | JNK1 | [240] |
Echinatin | Colorectal cancer cells HCT116 and HCT8 cell | JNK/p38 MAPK | [241] |
Emodin | Colorectal cancer cells SW480 and SW620 | p38/p53/Puma | [242] |
Sulforaphane | p53-deficient SW480 cells | MAPK | [243] |
E. scaber ethanol extract | Human colorectal carcinoma cells HCT116 | p53 | [244] |
Shikonin and 4-hydroxytamoxifen | Human breast cancer cells | PI3K/AKT/Caspase 9 | [245] |
Selenadiazole | Bladder cancer cells | AKT and MAPKs | [246] |
Licochalcone A | Human gastric cancer BGC-823 | MAPKs and PI3K/AKT | [247] |
Alpha-mangostin | Cervical cancer HeLa and SiHa cells | ASK1/p38 | [248] |
Hypocrellin A | Human lung adenocarcinoma A549 cells | Cytochrome c | [249] |
EGCG [(−) epigallocatechin-3-gallate] | Colon cancer cells HT-29 | AMPK | [250] |
Naringenin | Prostate cancer cells PC3 and LNCaP | PI3K/AKT and MAPK | [251] |
Curcumin | Human lung adenocarcinoma A549 cells | MAPK | [252] |
Quinalizarin | Human Breast cancer cells | MAPK, STAT3 and NF-κB | [253] |
Verrucarin A | Human Breast cancer cells MDA-MB-231 | EGFR/MAPK/Akt | [254] |
Ginsenosides (GRg3 and GRh2) | Human hepatocellular carcinoma cells Hep3B | Cytochrome c | [255] |
Fucoidan | Human bladder cancer cells 5637 | PI3K/Akt | [256] |
BQ and OQ | Gastric cancer cell lines | MAPK/Akt/STAT3 | [257] |
Melatonin | Gallbladder cancer cells NOZ and GBC-SD cells | PI3K/Akt/mTOR | [258] |
Isoorientin | Human hepatoblastoma cancer cells HepG2 | p53, PI3K/Akt, JNK, and p38 | [259] |
Camel Milk | Human hepatoma HepG2 and breast cancer MCF7 | Caspase-3 mRNA | [260] |
Benzyl isothiocyanate | Human melanoma cells A375.S2 | Cytochrome c | [261] |
Broussochalcone A | Human renal cancer cells A498 and ACHN | FOXO3 | [262] |
Britannin, a sesquiterpene lactone | Human breast cancer cells MCF-7 and MDA-MB-468 | Cytochrome c | [263] |
Phyllanthin | Leukemic cancer cells MOLT-4 | AKT/JNK | [264] |
Erlotinib | Lung cancer cell lines A549 | JNK | [265] |
SL4 (chalcone) | Hep3B and MDA-MB-435 | MAPK | [266] |
Voacamine | MCF-7 | PI3K/Akt/mTOR | [267] |
Apoptosis/Autophagy | |||
Bruceine D | Lung cancer cells | MAPK | [268] |
Physagulide P | MDA-MB-231 and MDA-MB-468 cells | JNK | [269] |
Momordin Ic | HepG2 cells | PI3K/Akt and MAPK | [270] |
Celastrol | Human osteosarcoma cells | JNK | [271] |
Costunolide | Renal cell carcinoma 786-O, A-498, ANCH, and 769-P | JNK/MAPK | [272] |
Cedrol | Human lung carcinoma cells A549 | P13K/Akt | [273] |
Propranolol | Human ovarian cancer cell lines SKOV-3 and A2780 | JNK | [274] |
Honokiol | Human osteosarcoma cells | ERK1/2 | [275] |
Curcin C | Osteosarcoma cell lines U2OS | JNK | [276] |
Juglanin | Human breast cancer cells | JNK | [277] |
PPM-18 | Human bladder cancer cell line T24 | AMPK | [278] |
Metformin | Human osteosarcoma cells U2OS and 143B | JNK | [279] |
Graveoline | Skin melanoma A375 cells | PI3K | [280] |
Triptolide | Glioma cell U251, U87-MG | JNK/Akt/mTOR | [281] |
Erianin | Osteosarcoma cells 143B, MG63.2 | JNK | [282] |
Anethole | Oral cancer cells Ca9-22 | NF-κB/MAPK/p53 | [283] |
Arsenic sulfide | Osteosarcoma cell lines 143B, MG-63, HOS and U2OS | JNK/Akt/mTOR | [284] |
Parthenolide | Cervical cancer HeLa cells | PI3K/Akt | [285] |
1,3-dibutyl-2-thiooxo-imidazolidine-4,5-dione | Colorectal carcinoma cells HCT116 | ERK/JNK | [286] |
6-Methoxydihydrosanguinarine | Breast cancer cells MCF-7 | PI3K/AKT/mTOR | [287] |
Autophagy | |||
α-hederin | Colorectal cancer cells HCT116 and HCT8 cell | AMPK/mTOR | [288] |
m-THPC | Human colorectal cancer cells ATG5 or ATG7 | JNK | [289] |
Luteoloside | NSCLC (A549 and H292) cells | AKT/mTOR/p70S6K | [290] |
Diosgenin | Chronic myeloid leukemia cells | mTOR | [291] |
Cryptotanshinone | Human colon cancer cell line SW620 Ad300 | p38/MAPK/NF-κB | [292] |
Piperlongumine | Gallbladder cancer cells OCUG-1 | ErK | [293] |
Mitofusin2 | Pancreatic cancer cell Aspc-1 | PI3K/Akt/mTOR | [294] |
SZC017 Oleanolic acid derivative | Human lung cancer cells A549 | Akt/JAK2/STAT3 | [295] |
Designed siRNAs for cyclinB1 mRNA | Nasopharyngeal carcinoma cells CNE-1 and CNE-2 | AMPK-ULK1 | [296] |
Eriocalyxin B | Breast cancer cell lines MCF-7 and MDA-MB-231 | Akt/mTOR/p70S6K | [190] |
Chrysin | Human endometrioid adenocarcinoma cell line HEC-1A | Akt/mTOR | [297] |
Dendrobium officinale polysaccharide | Colon cancer cell line CT26 | AMPK | [298] |
Necroptosis | |||
2-methoxy-6-acetyl-7-methyljuglone | Colon cancer cells HCT116 and HT29 | JNK | [299] |
Ergothioneine | Colon cancer cells HT-29 | SIRT3/MLKL | [300] |
Dimethyl fumarate | Colon cancer cells CT26 | MAPKs and PI3K/AKT | [301] |
Tanshinol A | Lung cancer cells | MLKL | [302] |
Goniothalamin | Human invasive breast cancer cells MDA-MB-231 | EGFR/FAK/Src | [303] |
Gallic Acid | Primary hepatic cells (HCs) and hepatic stellate cells (HSCs) | TNF–α | [304] |
Givinostat/Sorafenib | Hodgkin’s lymphoma cell lines HDLM-2 and L-540 HL | BIM | [305] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nigam, M.; Punia, B.; Dimri, D.B.; Mishra, A.P.; Radu, A.-F.; Bungau, G. Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics. Cells 2025, 14, 1207. https://doi.org/10.3390/cells14151207
Nigam M, Punia B, Dimri DB, Mishra AP, Radu A-F, Bungau G. Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics. Cells. 2025; 14(15):1207. https://doi.org/10.3390/cells14151207
Chicago/Turabian StyleNigam, Manisha, Bajrang Punia, Deen Bandhu Dimri, Abhay Prakash Mishra, Andrei-Flavius Radu, and Gabriela Bungau. 2025. "Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics" Cells 14, no. 15: 1207. https://doi.org/10.3390/cells14151207
APA StyleNigam, M., Punia, B., Dimri, D. B., Mishra, A. P., Radu, A.-F., & Bungau, G. (2025). Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics. Cells, 14(15), 1207. https://doi.org/10.3390/cells14151207