SOS3 from Avicennia marina Enhances Salt Stress Tolerance of Arabidopsis thaliana
Abstract
1. Introduction
2. Materials and Method
2.1. Amplification of AmSOS3 cDNA and Plasmid Construction
2.2. Analysis of AmSOS3 cDNA Sequence and Protein Prediction
2.3. Salt Stress of Transgenic Arabidopsis thaliana
2.4. RT-qPCR of Arabidopsis thaliana and Avicennia marina
2.5. Biochemical Staining
2.6. Enzymatic Assay
2.7. Statistical Analyses
3. Results
3.1. Sequence Analysis and Phylogenetic Tree Comparison of AmSOS3
3.2. Structural Modeling of AmSOS3
3.3. AmSOS3 Complements sos3-1 Mutantation in Arabidopsis thaliana
3.4. AmSOS3 Enhanced Salt Stress in Arabidopsis thaliana
3.5. AmSOS3 Mitigates Oxidative Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOS | Salt Overly Sensitive (pathway) |
CBL | Calcineurin B-like |
EF-hand | Helix–Loop–Helix Calcium-Binding Motif |
Ca2⁺ | Calcium Ion |
Na⁺ | Sodium Ion |
H⁺ | Proton (Hydrogen ion) |
ROS | Reactive Oxygen Species |
CAT | Catalase |
POD | Peroxidase |
SOD | Superoxide Dismutase |
DAB | 3,3′-Diaminobenzidine |
NBT | Nitro-blue Tetrazolium |
MS | Murashige and Skoog Medium |
CTAB | Cetyltrimethylammonium Bromide |
PVP | Polyvinylpyrrolidone |
EDTA | Ethylenediaminetetraacetic Acid |
PCR | Polymerase Chain Reaction |
qPCR/RT-qPCR | Quantitative Real-Time Polymerase Chain Reaction |
cDNA | Complementary DNA |
ORF | Open Reading Frame |
RACE | Rapid Amplification of cDNA Ends |
WT | Wild-Type |
References
- FAO Launches First Major Global Assessment of Salt-Affected Soils in 50 Years. Available online: https://www.fao.org/newsroom/detail/fao-launches-first-major-global-assessment-of-salt-affected-soils-in-50-years/en (accessed on 7 April 2025).
- El-Ramady, H.; Prokisch, J.; Mansour, H.; Bayoumi, Y.A.; Shalaby, T.A.; Veres, S.; Brevik, E.C. Review of Crop Response to Soil Salinity Stress: Possible Approaches from Leaching to Nano-Management. Soil Syst. 2024, 8, 11. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Pardo, J.M.; Batelli, G.; Van Oosten, M.J.; Bressan, R.A.; Li, X. The Salt Overly Sensitive (SOS) Pathway: Established and Emerging Roles. Mol. Plant 2013, 6, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guo, Y. Elucidating the Molecular Mechanisms Mediating Plant Salt-Stress Responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity Tolerance in Halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Zhu, J.-K. Regulation of Ion Homeostasis under Salt Stress. Curr. Opin. Plant Biol. 2003, 6, 441–445. [Google Scholar] [CrossRef]
- Ali, A.; Petrov, V.; Yun, D.-J.; Gechev, T. Revisiting Plant Salt Tolerance: Novel Components of the SOS Pathway. Trends Plant Sci. 2023, 28, 1060–1069. [Google Scholar] [CrossRef]
- Shi, H.; Ishitani, M.; Kim, C.; Zhu, J.K. The Arabidopsis thaliana Salt Tolerance Gene SOS1 Encodes a Putative Na+/H+ Antiporter. Proc. Natl. Acad. Sci. USA 2000, 97, 6896–6901. [Google Scholar] [CrossRef]
- Wu, S.J.; Ding, L.; Zhu, J.K. SOS1, a Genetic Locus Essential for Salt Tolerance and Potassium Acquisition. Plant Cell 1996, 8, 617–627. [Google Scholar] [CrossRef]
- Liu, J.; Ishitani, M.; Halfter, U.; Kim, C.-S.; Zhu, J.-K. The Arabidopsis thaliana SOS2 Gene Encodes a Protein Kinase That Is Required for Salt Tolerance. Proc. Natl. Acad. Sci. USA 2000, 97, 3730–3734. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, J.K. A Calcium Sensor Homolog Required for Plant Salt Tolerance. Science 1998, 280, 1943–1945. [Google Scholar] [CrossRef] [PubMed]
- Kolukisaoglu, Ü.; Weinl, S.; Blazevic, D.; Batistic, O.; Kudla, J. Calcium Sensors and Their Interacting Protein Kinases: Genomics of the Arabidopsis and Rice CBL-CIPK Signaling Networks. Plant Physiol. 2004, 134, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Halfter, U.; Ishitani, M.; Zhu, J.K. The Arabidopsis SOS2 Protein Kinase Physically Interacts with and Is Activated by the Calcium-Binding Protein SOS3. Proc. Natl. Acad. Sci. USA 2000, 97, 3735–3740. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.-S.; Guo, Y.; Quintero, F.J.; Pardo, J.M.; Schumaker, K.S.; Zhu, J.-K. Regulation of Vacuolar Na+/H+ Exchange in Arabidopsis thaliana by the Salt-Overly-Sensitive (SOS) Pathway *. J. Biol. Chem. 2004, 279, 207–215. [Google Scholar] [CrossRef]
- Sánchez-Barrena, M.J.; Martínez-Ripoll, M.; Zhu, J.-K.; Albert, A. The Structure of the Arabidopsis thaliana SOS3: Molecular Mechanism of Sensing Calcium for Salt Stress Response. J. Mol. Biol. 2005, 345, 1253–1264. [Google Scholar] [CrossRef]
- Ishitani, M.; Liu, J.; Halfter, U.; Kim, C.S.; Shi, W.; Zhu, J.K. SOS3 Function in Plant Salt Tolerance Requires N-Myristoylation and Calcium Binding. Plant Cell 2000, 12, 1667–1678. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, Z.-Z.; Zhou, X.-F.; Yin, H.-B.; Li, X.; Xin, X.-F.; Hong, X.-H.; Zhu, J.-K.; Gong, Z. Overexpression of SOS (Salt Overly Sensitive) Genes Increases Salt Tolerance in Transgenic Arabidopsis. Mol. Plant 2009, 2, 22–31. [Google Scholar] [CrossRef]
- Gámez-Arjona, F.; Park, H.J.; García, E.; Aman, R.; Villalta, I.; Raddatz, N.; Carranco, R.; Ali, A.; Ali, Z.; Zareen, S.; et al. Inverse Regulation of SOS1 and HKT1 Protein Localization and Stability by SOS3/CBL4 in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2023, 121, e2320657121. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, Q.; Tang, F.; Wu, J.; Dong, W.; Wang, C.; Gao, C. The ThSOS3 Gene Improves the Salt Tolerance of Transgenic Tamarix hispida and Arabidopsis thaliana. Front. Plant Sci. 2021, 11, 597480. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Liu, Y.; Hou, Q.; Jian, S.; Deng, S. Molecular Cloning and Characterization of a Salt Overly Sensitive3 (SOS3) Gene from the Halophyte Pongamia. Plant Mol. Biol. 2024, 114, 1–14. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, W.; Guo, Y. Arabidopsis SOS3 Plays an Important Role in Salt Tolerance by Mediating Calcium-Dependent Microfilament Reorganization. Plant Cell Rep. 2013, 32, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Lewit-Bentley, A.; Réty, S. EF-Hand Calcium-Binding Proteins. Curr. Opin. Struct. Biol. 2000, 10, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Villalta, I.; García, E.; Hornero-Mendez, D.; Carranco, R.; Tello, C.; Mendoza, I.; De Luca, A.; Andrés, Z.; Schumacher, K.; Pardo, J.M.; et al. Distinct Roles of N-Terminal Fatty Acid Acylation of the Salinity-Sensor Protein SOS3. Front. Plant Sci. 2021, 12, 691124. [Google Scholar] [CrossRef] [PubMed]
- Friis, G.; Vizueta, J.; Smith, E.G.; Nelson, D.R.; Khraiwesh, B.; Qudeimat, E.; Salehi-Ashtiani, K.; Ortega, A.; Marshell, A.; Duarte, C.M.; et al. A High-Quality Genome Assembly and Annotation of the Gray Mangrove, Avicennia marina. G3 2021, 11, jkaa025. [Google Scholar] [CrossRef]
- Friis, G.; Killilea, M.E. Mangrove Ecosystems of the United Arab Emirates. In A Natural History of the Emirates; Springer: Cham, Switzerland, 2024; pp. 217–240. ISBN 978-3-031-37397-8. [Google Scholar]
- Saghai-Maroof, M.A.; Soliman, K.M.; Jorgensen, R.A.; Allard, R.W. Ribosomal DNA Spacer-Length Polymorphisms in Barley: Mendelian Inheritance, Chromosomal Location, and Population Dynamics. Proc. Natl. Acad. Sci. USA 1984, 81, 8014–8018. [Google Scholar] [CrossRef]
- Šali, A.; Blundell, T.L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef]
- UCSF ChimeraX Home Page. Available online: https://www.cgl.ucsf.edu/chimerax/ (accessed on 28 March 2025).
- Clough, S.J.; Bent, A.F. Floral Dip: A Simplified Method for Agrobacterium -Mediated Transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Kumar, D.; Yusuf, M.; Singh, P.; Sardar, M.; Sarin, N. Histochemical Detection of Superoxide and H2O2 Accumulation in Brassica Juncea Seedlings. BIO-Protoc. 2014, 4, e1108. [Google Scholar] [CrossRef]
- Arnnok, P.; Ruangviriyachai, C.; Techawongstien, S.; Mahachai, R. Optimization and Determination of Polyphenol Oxidase and Peroxidase Activities in Hot Pepper (Capsicum annuum L.) Pericarb. Int. Food Res. J. 2010, 17, 385–392. [Google Scholar]
- Cakmak, I.; Marschner, H. Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase, Ascorbate Peroxidase, and Glutathione Reductase in Bean Leaves 1. Plant Physiol. 1992, 98, 1222–1227. [Google Scholar] [CrossRef] [PubMed]
- Monnet, F.; Bordas, F.; Deluchat, V.; Baudu, M. Toxicity of Copper Excess on the Lichen Dermatocarpon Luridum: Antioxidant Enzyme Activities. Chemosphere 2006, 65, 1806–1813. [Google Scholar] [CrossRef] [PubMed]
- Gifford, J.L.; Walsh, M.P.; Vogel, H.J. Structures and Metal-Ion-Binding Properties of the Ca2+-Binding Helix-Loop-Helix EF-Hand Motifs. Biochem. J. 2007, 405, 199–221. [Google Scholar] [CrossRef] [PubMed]
- Sunilkumar, G.; Mohr, L.; Lopata-Finch, E.; Emani, C.; Rathore, K.S. Developmental and Tissue-Specific Expression of CaMV 35S Promoter in Cotton as Revealed by GFP. Plant Mol. Biol. 2002, 50, 463–474. [Google Scholar] [CrossRef]
- Kiselev, K.V.; Aleynova, O.A.; Ogneva, Z.V.; Suprun, A.R.; Dubrovina, A.S. 35S Promoter-Driven Transgenes Are Variably Expressed in Different Organs of Arabidopsis thaliana and in Response to Abiotic Stress. Mol. Biol. Rep. 2021, 48, 2235–2241. [Google Scholar] [CrossRef]
- de Souza-Vieira, Y.; Felix-Mendes, E.; Galhego, V.; Bastos, G.A.; Felix-Cordeiro, T.; Ding, X.; Zhang, Y.; Corrêa, R.L.; Wang, X.; Sachetto-Martins, G.; et al. Euphorbiaceae Superoxide Dismutase, Catalase, and Glutathione Peroxidase as Clues to Better Comprehend High Drought Tolerance in Castor Bean. Ind. Crops Prod. 2024, 222, 119510. [Google Scholar] [CrossRef]
- Cao, Y.; Shan, T.; Fang, H.; Sun, K.; Shi, W.; Tang, B.; Wu, J.; Wang, K.; Li, P.; Wang, B. Genome-Wide Analysis Reveals the Spatiotemporal Expression Patterns of SOS3 Genes in the Maize B73 Genome in Response to Salt Stress. BMC Genom. 2022, 23, 60. [Google Scholar] [CrossRef]
- Sathee, L.; Sairam, R.K.; Chinnusamy, V.; Jha, S.K. Differential Transcript Abundance of Salt Overly Sensitive (SOS) Pathway Genes Is a Determinant of Salinity Stress Tolerance of Wheat. Acta Physiol. Plant. 2015, 37, 169. [Google Scholar] [CrossRef]
- Martínez-Atienza, J.; Jiang, X.; Garciadeblas, B.; Mendoza, I.; Zhu, J.-K.; Pardo, J.M.; Quintero, F.J. Conservation of the Salt Overly Sensitive Pathway in Rice. Plant Physiol. 2007, 143, 1001–1012. [Google Scholar] [CrossRef]
- Maier, H.J.; Marienfeld, R.; Wirth, T.; Baumann, B. Critical Role of RelB Serine 368 for Dimerization and P100 Stabilization. J. Biol. Chem. 2003, 278, 39242–39250. [Google Scholar] [CrossRef]
- Catalano, C.; AL Mughram, M.H.; Guo, Y.; Kellogg, G.E. 3D Interaction Homology: Hydropathic Interaction Environments of Serine and Cysteine Are Strikingly Different and Their Roles Adapt in Membrane Proteins. Curr. Res. Struct. Biol. 2021, 3, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Gámez-Arjona, F.M.; Lindahl, M.; Aman, R.; Villalta, I.; Cha, J.-Y.; Carranco, R.; Lim, C.J.; García, E.; Bressan, R.A.; et al. S-Acylated and Nucleus-Localized SALT OVERLY SENSITIVE3/CALCINEURIN B-LIKE4 Stabilizes GIGANTEA to Regulate Arabidopsis Flowering Time under Salt Stress. Plant Cell 2023, 35, 298–317. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, J.; Jiang, F.; Liu, M.; Chen, Z.; Zhou, R.; Wu, Z. Identification and Expression Pattern Analysis of the SOS Gene Family in Tomatoes. Agronomy 2024, 14, 773. [Google Scholar] [CrossRef]
- Kant Nutan, K.; Kumar, G.; Lata Singla-Pareek, S.; Pareek, A. A Salt Overly Sensitive Pathway Member from Brassica Juncea BjSOS3 Can Functionally Complement ΔAtsos3 in Arabidopsis. Curr. Genom. 2018, 19, 60–69. [Google Scholar] [CrossRef]
- Wang, M.; Gu, D.; Liu, T.; Wang, Z.; Guo, X.; Hou, W.; Bai, Y.; Chen, X.; Wang, G. Overexpression of a Putative Maize Calcineurin B-like Protein in Arabidopsis Confers Salt Tolerance. Plant Mol. Biol. 2007, 65, 733–746. [Google Scholar] [CrossRef]
Primers used to amplify the AmSOS3 cDNA | |
Primer Type | Sequence (5′→3′) |
Degenerate primers | F: CSACYRTTCTTGCTGCYGAG |
R: CCTTSAGATATGGRAGRGTCA | |
RACE primers | F: GATTACGCCAAGCTTTCTTCCACCCCAAGACGGCCACATC |
R: GATTACGCCAAGCTTGAGGTTCGCTCGCTTGCTGTTCCTG | |
Full-length specific primers | F: CATATGCTCCGATGGGCTGCTTTC |
R: GTCGACATTTACACGTCTGAGTCTTCAACTTC | |
Primers used in real-time RT-PCR analysis | |
SOS3 | F: GGATGTCGTTGAAATGATCGTGG |
R: TTCCTTCCACTCTTCTAGGTCGA | |
ACTIN | F: TGGTGATGAAGCTCAGTCCA |
R: TGAGTAGAACTGGGTGCTCC | |
EF-1a | F: AACGGTGATGCTGGATTTGT |
R: CCACGCTCTTTATGACACCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzaabi, M.; Orpilla, J.; Hazzouri, K.M.; Li, L.; Amiri, K. SOS3 from Avicennia marina Enhances Salt Stress Tolerance of Arabidopsis thaliana. Cells 2025, 14, 935. https://doi.org/10.3390/cells14120935
Alzaabi M, Orpilla J, Hazzouri KM, Li L, Amiri K. SOS3 from Avicennia marina Enhances Salt Stress Tolerance of Arabidopsis thaliana. Cells. 2025; 14(12):935. https://doi.org/10.3390/cells14120935
Chicago/Turabian StyleAlzaabi, Mariam, John Orpilla, Khaled Michel Hazzouri, Ling Li, and Khaled Amiri. 2025. "SOS3 from Avicennia marina Enhances Salt Stress Tolerance of Arabidopsis thaliana" Cells 14, no. 12: 935. https://doi.org/10.3390/cells14120935
APA StyleAlzaabi, M., Orpilla, J., Hazzouri, K. M., Li, L., & Amiri, K. (2025). SOS3 from Avicennia marina Enhances Salt Stress Tolerance of Arabidopsis thaliana. Cells, 14(12), 935. https://doi.org/10.3390/cells14120935