Toll-like Receptors in Immuno-Metabolic Regulation of Emotion and Memory
Abstract
:1. Introduction
2. Toll-like Receptors and Their Associated Immune Mechanisms
3. Role of Toll-like Receptors in Emotional Regulation
4. Implications of TLRs in Cognition and Memory
5. Metabolic Regulation
6. Gut Microbiome
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marshall, J.S.; Warrington, R.; Watson, W.; Kim, H.L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2018, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Medina, K.L. Overview of the immune system. Handb. Clin. Neurol. 2016, 133, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Weavers, H.; Martin, P. The cell biology of inflammation: From common traits to remarkable immunological adaptations. J. Cell Biol. 2020, 219, e202004003. [Google Scholar] [CrossRef]
- Schupbach, T.; Wieschaus, E. Female Sterile Mutations on the Second Chromosome of Drosophila melanogaster. I. Maternal Effect Mutations. Genetics 1989, 121, 101–117. Available online: https://academic.oup.com/genetics/article/121/1/101/5997919 (accessed on 28 April 2025). [CrossRef] [PubMed]
- Anderson, K.V.; Nüsslein-Volhard, C. Information for the dorsal–ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 1984, 311, 223–227. [Google Scholar] [CrossRef]
- Lemaitre, B.; Nicolas, E.; Michaut, L. The Dorsoventral Regulatory Gene Cassette spä tzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults. Cell 1996, 86, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Poltorak, A.; He, X.; Smirnova, I.; Liu, M.-Y.; Van Huffel, C.; Du, X.; Birdwell, D.; Alejos, E.; Silva, M.; Galanos, C.; et al. Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene. Science 1998, 282, 2085–2088. [Google Scholar] [CrossRef]
- Lemaitre, B.; Hoffmann, J. The Host Defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743. [Google Scholar] [CrossRef] [PubMed]
- Nüsslein-Volhard, C. The Toll gene in Drosophila pattern formation. Trends Genet. 2022, 38, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhao, Y. Toll-like receptors and immune regulation: Their direct and indirect modulation on regulatory CD4+ CD25+ T cells. Immunology 2007, 122, 149–156. [Google Scholar] [CrossRef]
- Amarante-Mendes, G.P.; Adjemian, S.; Branco, L.M.; Zanetti, L.C.; Weinlich, R.; Bortoluci, K.R. Pattern recognition receptors and the host cell death molecular machinery. Front. Immunol. 2018, 9, 2379. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Oncotarget 1 Inflammatory Responses and Inflammation-Associated Diseases in Organs. 2017. Available online: https://www.oncotarget.com/article/23208/text/ (accessed on 28 April 2025).
- de Heredia, F.P.; Gómez-Martínez, S.; Marcos, A. Obesity, inflammation and the immune system. Proc. Nutr. Soc. 2012, 71, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Parkin, J.; Cohen, B. An overview of the immune system. Lancet 2001, 357, 1777–1789. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.-Y.; Gildengers, A.G.; Hsu, J.-L.; Chung, K.-H.; Chen, P.-H.; Huang, Y.-J. Inflammation associated with volume reduction in the gray matter and hippocampus of older patients with bipolar disorder. J. Affect. Disord. 2019, 244, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, G.J.; Vallender, E.J.; Garrett, M.R.; Challagundla, L.; Overholser, J.C.; Jurjus, G.; Dieter, L.; Syed, M.; Romero, D.G.; Benghuzzi, H.; et al. Altered neuro-inflammatory gene expression in hippocampus in major depressive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 82, 177–186. [Google Scholar] [CrossRef]
- Cortés, M.; Brischetto, A.; Martinez-Campanario, M.C.; Ninfali, C.; Domínguez, V.; Fernández, S.; Celis, R.; Esteve-Codina, A.; Lozano, J.J.; Sidorova, J.; et al. Inflammatory macrophages reprogram to immunosuppression by reducing mitochondrial translation. Nat. Commun. 2023, 14, 7471. [Google Scholar] [CrossRef]
- van de Vyver, M. Immunology of chronic low-grade inflammation: Relationship with metabolic function. J. Endocrinol. 2023, 257, e220271. [Google Scholar] [CrossRef]
- Hu, T.; Liu, C.-H.; Lei, M.; Zeng, Q.; Li, L.; Tang, H.; Zhang, N. Metabolic regulation of the immune system in health and diseases: Mechanisms and interventions. Signal Transduct. Target. Ther. 2024, 9, 268. [Google Scholar] [CrossRef]
- Penninx, B.W.; Lamers, F.; Jansen, R.; Berk, M.; Khandaker, G.M.; De Picker, L.; Milaneschi, Y. Immuno-metabolic depression: From concept to implementation. Lancet Reg. Health-Eur. 2025, 48, 101166. [Google Scholar] [CrossRef]
- Jayatissa, M.N.; Bisgaard, C.; Tingström, A.; Papp, M.; Wiborg, O. Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology 2006, 31, 2395–2404. [Google Scholar] [CrossRef]
- Xi, G.; Hui, J.; Zhang, Z.; Liu, S.; Zhang, X.; Teng, G.; Chan, K.C.; Wu, E.X.; Nie, B.; Shan, B.; et al. Learning and memory alterations are associated with hippocampal N-acetylaspartate in a rat model of depression as measured by 1H-MRS. PLoS ONE 2011, 6, e28686. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jiang, W.; Wang, X.; Cai, Z.; Liu, Z.; Liu, G. Exercise, brain plasticity, and depression. CNS Neurosci. Ther. 2020, 26, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Mahati, K.; Bhagya, V.; Christofer, T.; Sneha, A.; Rao, B.S. Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity. Neurobiol. Learn. Mem. 2016, 134, 379–391. [Google Scholar] [CrossRef]
- Garcia-Castillo, V.; Komatsu, R.; Clua, P.; Indo, Y.; Takagi, M.; Salva, S.; Islam, A.; Alvarez, S.; Takahashi, H.; Garcia-Cancino, A.; et al. Evaluation of the Immunomodulatory Activities of the Probiotic Strain Lactobacillus fermentum UCO-979C. Front. Immunol. 2019, 10, 1376. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, A.; Foey, A. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events. Nutrients 2017, 9, 1156. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. TLR signaling. Cell Death Differ. 2006, 13, 816–825. [Google Scholar] [CrossRef]
- Takeuchi, O.; Hoshino, K.; Kawai, T.; Sanjo, H.; Takada, H.; Ogawa, T.; Takeda, K.; Akira, S. Differential Roles of TLR2 and TLR4 in Recognition of Gram-Negative and Gram-Positive Bacterial Cell Wall Components. Immunity 1999, 11, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, F.; Smith, K.D.; Ozinsky, A.; Hawn, T.R.; Yi, E.C.; Goodlett, D.R.; Eng, J.K.; Akira, S.; Underhill, D.M.; Aderem, A. The innate immune response to bacterial ¯agellin ismediated by Toll-like receptor 5. Nature 2001, 410, 1099–1103. [Google Scholar] [CrossRef]
- Brightbill, H.D.; Libraty, D.H.; Krutzik, S.R.; Yang, R.-B.; Belisle, J.T.; Bleharski, J.R.; Maitland, M.; Norgard, M.V.; Plevy, S.E.; Smale, S.T.; et al. Host Defense Mechanisms Triggered by Microbial Lipoproteins Through Toll-Like Receptors. Science 1999, 285, 732–736. [Google Scholar] [CrossRef]
- Takeda, K.; Kaisho, T.; Akira, S. Toll-like receptors. Annu. Rev. Immunol. 2003, 21, 335–376. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Callaway, J.B.; Ting, J.P.-Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med. 2015, 21, 677–687. [Google Scholar] [CrossRef]
- Hanamsagar, R.; Hanke, M.L.; Kielian, T. Toll-like receptor (TLR) and inflammasome actions in the central nervous system. Trends Immunol. 2012, 33, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Okun, E.; Griffioen, K.J.; Mattson, M.P. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci. 2011, 34, 269–281. [Google Scholar] [CrossRef]
- Kaul, D.; Habbel, P.; Derkow, K.; Krüger, C.; Franzoni, E.; Wulczyn, F.G.; Bereswill, S.; Nitsch, R.; Schott, E.; Veh, R.; et al. Expression of toll-like receptors in the developing brain. PLoS ONE 2012, 7, e37767. [Google Scholar] [CrossRef] [PubMed]
- Barak, B.; Feldman, N.; Okun, E. Toll-like receptors as developmental tools that regulate neurogenesis during development: An update. Front. Neurosci. 2014, 8, 272. [Google Scholar] [CrossRef]
- Hanke, M.L.; Kielian, T. Toll-like receptors in health and disease in the brain: Mechanisms and therapeutic potential. Clin. Sci. 2011, 121, 367–387. [Google Scholar] [CrossRef]
- Frederiksen, H.R.; Haukedal, H.; Freude, K. Cell type specific expression of toll-like receptors in human brains and implications in Alzheimer’s disease. BioMed Res. Int. 2019, 2019, 7420189. [Google Scholar] [CrossRef]
- Nishimura, M.; Naito, S. Tissue-specific mRNA Expression Profiles of Human Solute Carrier Transporter Superfamilies. Drug Metab. Pharmacokinet. 2008, 23, 22–44. [Google Scholar] [CrossRef]
- Hung, Y.-Y.; Huang, K.-W.; Kang, H.-Y.; Huang, G.Y.-L.; Huang, T.-L. Antidepressants normalize elevated Toll-like receptor profile in major depressive disorder. Psychopharmacology 2016, 233, 1707–1714. [Google Scholar] [CrossRef]
- Wu, S.; Jiang, Q.; Wang, J.; Wu, D.; Ren, Y. Immune-related gene characterization and biological mechanisms in major depressive disorder revealed based on transcriptomics and network pharmacology. Front. Psychiatry 2024, 15, 1485957. [Google Scholar] [CrossRef]
- Pandey, G.N.; Rizavi, H.S.; Bhaumik, R.; Ren, X. Innate immunity in the postmortem brain of depressed and suicide subjects: Role of Toll-like receptors. Brain Behav. Immun. 2019, 75, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; He, S.; Ma, C.; Wen, Y.; Song, W.; Xu, Q.; Zhao, N.; Wang, Q.; Yu, Y.; Shen, Y.; et al. Network-based approach to identify molecular signatures in the brains of depressed suicides. Psychiatry Res. 2020, 294, 113513. [Google Scholar] [CrossRef]
- Hung, Y.-Y. Antidepressants Improve Negative Regulation of Toll-Like Receptor Signaling in Monocytes from Patients with Major Depression. Neuroimmunomodulation 2018, 25, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Wieck, A.; Grassi-Oliveira, R.; Prado, C.H.D.; Viola, T.W.; Petersen, L.E.; Porto, B.; Teixeira, A.L.; Bauer, M.E. Toll-like receptor expression and function in type I bipolar disorder. Brain Behav. Immun. 2016, 54, 110–121. [Google Scholar] [CrossRef]
- Sales, M.C.; Kasahara, T.M.; Sacramento, P.M.; Rossi, Á.D.; Cafasso, M.O.S.; Oyamada, H.A.; Hygino, J.; Alvim, F.; Andrade, R.M.; Vasconcelos, C.C.; et al. Selective serotonin reuptake inhibitor attenuates the hyperresponsiveness of TLR2+ and TLR4+ Th17/Tc17-like cells in multiple sclerosis patients with major depression. Immunology 2020, 162, 290–305. [Google Scholar] [CrossRef]
- Ahuja, S.; Uniyal, A.; Akhtar, A.; Sah, S.P. Alpha lipoic acid and metformin alleviates experimentally induced insulin resistance and cognitive deficit by modulation of TLR2 signalling. Pharmacol. Rep. 2019, 71, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Morgese, M.G.; Schiavone, S.; Maffione, A.B.; Tucci, P.; Trabace, L. Depressive-like phenotype evoked by lifelong nutritional omega-3 deficiency in female rats: Crosstalk among kynurenine, Toll-like receptors and amyloid beta oligomers. Brain Behav. Immun. 2020, 87, 444–454. [Google Scholar] [CrossRef]
- Agusti, A.; Moya-Pérez, A.; Campillo, I.; la Paz, S.M.-D.; Cerrudo, V.; Perez-Villalba, A.; Sanz, Y. Bifidobacterium pseudocatenulatum CECT 7765 Ameliorates Neuroendocrine Alterations Associated with an Exaggerated Stress Response and Anhedonia in Obese Mice. Mol. Neurobiol. 2018, 55, 5337–5352. [Google Scholar] [CrossRef]
- Dutheil, S.; Ota, K.T.; Wohleb, E.S.; Rasmussen, K.; Duman, R.S. High-Fat Diet Induced Anxiety and Anhedonia: Impact on Brain Homeostasis and Inflammation. Neuropsychopharmacology 2016, 41, 1874–1887. [Google Scholar] [CrossRef]
- Betanzos-Cabrera, D.E.-L.G. El tejido adiposo y el tejido hepático de los ratones alimentados con una dieta alta en grasa tienen un decremento en la expresión del mRNA del ‘toll like receptor’ (TLR)2 y del TLR6. Nutr. Hosp. 2012, 27, 1196–1203. [Google Scholar] [CrossRef]
- Himes, R.W.; Smith, C.W. Tlr2 is critical for diet-induced metabolic syndrome in a murine model. FASEB J. 2010, 24, 731–739. [Google Scholar] [CrossRef]
- Kuo, L.-H.; Tsai, P.-J.; Jiang, M.-J.; Chuang, Y.-L.; Yu, L.; Lai, K.-T.A.; Tsai, Y.-S. Toll-like receptor 2 deficiency improves insulin sensitivity and hepatic insulin signalling in the mouse. Diabetologia 2011, 54, 168–179. [Google Scholar] [CrossRef]
- Ehses, J.A.; Meier, D.T.; Wueest, S.; Rytka, J.; Boller, S.; Wielinga, P.Y.; Schraenen, A.; Lemaire, K.; Debray, S.; Van Lommel, L.; et al. Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia 2010, 53, 1795–1806. [Google Scholar] [CrossRef] [PubMed]
- Okun, E.; Griffioen, K.J.; Rothman, S.; Wan, R.; Cong, W.-N.; De Cabo, R.; Martin-Montalvo, A.; Levette, A.; Maudsley, S.; Martin, B.; et al. Toll-like receptors 2 and 4 modulate autonomic control of heart rate and energy metabolism. Brain Behav. Immun. 2013, 36, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Rau, C.-S.; Wu, S.-C.; Lu, T.-H.; Wu, Y.-C.; Wu, C.-J.; Chien, P.-C.; Kuo, P.-J.; Lin, C.-W.; Tsai, C.-W.; Hsieh, C.-H. Effect of low-fat diet in obese mice lacking toll-like receptors. Nutrients 2018, 10, 1464. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Zhang, P.; Zhou, Y.; Zhao, J.; Liu, H. Dexmedetomidine pretreatment attenuates isoflurane-induced neurotoxicity via inhibiting the TLR2/NF-κB signaling pathway in neonatal rats. Exp. Mol. Pathol. 2020, 112, 104328. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Z.; Lin, Q.; Hou, X.; Jiang, Y.; Le, Q.; Liu, X.; Ma, L.; Wang, F. Destabilization of fear memory by Rac1-driven engram-microglia communication in hippocampus. Brain Behav. Immun. 2024, 119, 621–636. [Google Scholar] [CrossRef]
- Madar, R.; Rotter, A.; Ben-Asher, H.W.; Mughal, M.R.; Arumugam, T.V.; Wood, W.; Becker, K.; Mattson, M.P.; Okun, E. Postnatal TLR2 activation impairs learning and memory in adulthood. Brain Behav. Immun. 2015, 48, 301–312. [Google Scholar] [CrossRef]
- Mohseni-Moghaddam, P.; Dogani, M.; Hatami, M.; Roohollahi, S.; Amiresmaeli, A.; Askari, N. A behavioral and molecular study; ameliorated anxiety-like behavior and cognitive dysfunction in a rat model of chronic unpredictable stress treated with oregano extract. Brain Behav. 2022, 12, e2727. [Google Scholar] [CrossRef]
- Lin, F.; Shan, W.; Zheng, Y.; Pan, L.; Zuo, Z. Toll-like receptor 2 activation and up-regulation by high mobility group box-1 contribute to post-operative neuroinflammation and cognitive dysfunction in mice. J. Neurochem. 2021, 158, 328–341. [Google Scholar] [CrossRef]
- Bae, H.J.; Kim, J.; Bae, H.J.; Park, K.; Yang, X.; Cho, Y.-J.; Jung, S.Y.; Park, S.J.; Ryu, J.H. Effects of repetitive training on learning and memory performance of TLR2 KO mice. Behav. Brain Res. 2022, 426, 113836. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Sun, X.; Wang, S.; Zhou, C.; Lin, L.; Ding, X.; Han, J.; Zhou, Y.; Jin, G.; Wang, Y.; et al. Toll-like receptor-2 gene knockout results in neurobehavioral dysfunctions and multiple brain structural and functional abnormalities in mice. Brain Behav. Immun. 2021, 91, 257–266. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, J.Y.; Kim, S.J.; Choi, S.-Y.; Yune, T.Y.; Ryu, J.H. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice. Sci. Rep. 2015, 5, 8502. [Google Scholar] [CrossRef]
- Nie, X.; Kitaoka, S.; Tanaka, K.; Segi-Nishida, E.; Imoto, Y.; Ogawa, A.; Nakano, F.; Tomohiro, A.; Nakayama, K.; Taniguchi, M.; et al. The Innate Immune Receptors TLR2/4 Mediate Repeated Social Defeat Stress-Induced Social Avoidance through Prefrontal Microglial Activation. Neuron 2018, 99, 464–479.e7. [Google Scholar] [CrossRef]
- Kitaoka, S.; Tomohiro, A.; Ukeshima, S.; Liu, K.; Wake, H.; Kimura, S.H.; Yamamoto, Y.; Nishibori, M.; Furuyashiki, T. Repeated Social Defeat Stress Induces HMGB1 Nuclear Export in Prefrontal Neurons, Leading to Social Avoidance in Mice. Cells 2023, 12, 1789. [Google Scholar] [CrossRef] [PubMed]
- Giridharan, V.V.; Réus, G.Z.; Selvaraj, S.; Scaini, G.; Barichello, T.; Quevedo, J. Maternal deprivation increases microglial activation and neuroinflammatory markers in the prefrontal cortex and hippocampus of infant rats. J. Psychiatr. Res. 2019, 115, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Medina-Rodriguez, E.M.; Cheng, Y.; Michalek, S.M.; Beurel, E.; Jope, R.S. Toll-like receptor 2 (TLR2)-deficiency impairs male mouse recovery from a depression-like state. Brain Behav. Immun. 2020, 89, 51–58. [Google Scholar] [CrossRef]
- Salmina, A.B.; Komleva, Y.K.; Lopatina, O.L.; Kuvacheva, N.V.; Gorina, Y.V.; Panina, Y.A.; Uspenskaya, Y.A.; Petrova, M.M.; Demko, I.V.; Zamay, A.S.; et al. Astroglial control of neuroinflammation: TLR3-mediated dsRNA-sensing pathways are in the focus. Prog. Neurobiol. 2015, 26, 143–159. [Google Scholar] [CrossRef]
- Latorre, J.; Moreno-Navarrete, J.M.; Sabater, M.; Buxo, M.; Rodriguez-Hermosa, J.I.; Girones, J.; Fort, J.M.; Vilallonga, R.; Ricart, W.; Simo, R.; et al. Decreased TLR3 in Hyperplastic Adipose Tissue, Blood and Inflamed Adipocytes is Related to Metabolic Inflammation. Cell Physiol. Biochem. 2018, 51, 1051–1068. [Google Scholar] [CrossRef]
- Viola, T.W.; Creutzberg, K.C.; Zaparte, A.; Kestering-Ferreira, É.; Tractenberg, S.G.; Centeno-Silva, A.; Orso, R.; Lumertz, F.S.; Brietzke, E.; Wearick-Silva, L.E.; et al. Acute neuroinflammation elicited by TLR-3 systemic activation combined with early life stress induces working memory impairments in male adolescent mice. Behav. Brain Res. 2019, 376, 112221. [Google Scholar] [CrossRef] [PubMed]
- Baghel, M.S.; Singh, B.; Dhuriya, Y.K.; Shukla, R.K.; Patro, N.; Khanna, V.K.; Patro, I.K.; Thakur, M.K. Postnatal exposure to poly (I:C) impairs learning and memory through changes in synaptic plasticity gene expression in developing rat brain. Neurobiol. Learn. Mem. 2018, 155, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Mendoza, E.H.; Camblor-Perujo, S.; Nascentes-Melo, L.M.; Dzyubenko, E.; Fleischer, M.; de Carvalho, T.S.; Schmitt, L.-I.; Leo, M.; Hagenacker, T.; Herring, A.; et al. Compromised Hippocampal Neuroplasticity in the Interferon-α and Toll-like Receptor-3 Activation-Induced Mouse Depression Model. Mol. Neurobiol. 2020, 57, 3171–3182. [Google Scholar] [CrossRef] [PubMed]
- Hoyo-Becerra, C.; Liu, Z.; Yao, J.; Kaltwasser, B.; Gerken, G.; Hermann, D.M.; Schlaak, J.F. Rapid Regulation of Depression-Associated Genes in a New Mouse Model Mimicking Interferon-α-Related Depression in Hepatitis C Virus Infection. Mol. Neurobiol. 2014, 52, 318–329. [Google Scholar] [CrossRef]
- Hoyo-Becerra, C.; Huebener, A.; Trippler, M.; Lutterbeck, M.; Liu, Z.J.; Truebner, K.; Bajanowski, T.; Gerken, G.; Hermann, D.M.; Schlaak, J.F.; et al. Concomitant interferon alpha stimulation and TLR3 activation induces neuronal expression of depression-related genes that are elevated in the brain of suicidal persons. PLoS ONE 2013, 8, e83149. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, R.; Zhang, C.; Teng, Y.; Chen, H.; Li, Q.; Liu, C.; Wu, J.; Wei, L.; Deng, L.; et al. Extracellular RNAs-TLR3 signaling contributes to cognitive impairment after chronic neuropathic pain in mice. Signal Transduct. Target. Ther. 2023, 8, 292. [Google Scholar] [CrossRef]
- Okun, E.; Griffioen, K.; Barak, B.; Roberts, N.J.; Castro, K.; Pita, M.A.; Cheng, A.; Mughal, M.R.; Wan, R.; Ashery, U.; et al. Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 15625–15630. [Google Scholar] [CrossRef]
- Vargas-Calderón, H.; Ortega-Robles, E.; Rocha, L.; Yu, P.; Arias-Carrión, O. Motor, Cognitive, and Behavioral Impairment in TLR3 and TLR9 Deficient Male Mice: Insights into the Non-Immunological Roles of Toll-Like Receptors. Arch. Med. Res. 2024, 55, 102985. [Google Scholar] [CrossRef]
- Pandey, G.N.; Rizavi, H.S.; Ren, X.; Bhaumik, R.; Dwivedi, Y. Toll-like receptors in the depressed and suicide brain. J. Psychiatr. Res. 2014, 53, 62–68. [Google Scholar] [CrossRef]
- Hung, Y.-Y.; Kang, H.-Y.; Huang, K.-W.; Huang, T.-L. Association between toll-like receptors expression and major depressive disorder. Psychiatry Res. 2014, 220, 283–286. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Wang, C.; Liu, Y.; You, J.; Wang, P.; Xu, G.; Shen, H.; Yao, H.; Lan, X.; et al. Chronic ethanol exposure induces neuroinflammation in H4 cells through TLR3 / NF-κB pathway and anxiety-like behavior in male C57BL/6 mice. Toxicology 2020, 446, 152625. [Google Scholar] [CrossRef] [PubMed]
- Flannery, L.E.; Kerr, D.M.; Finn, D.P.; Roche, M. FAAH inhibition attenuates TLR3-mediated hyperthermia, nociceptive- and anxiety-like behaviour in female rats. Behav. Brain Res. 2018, 353, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Khedr, L.; Nassar, N.; Rashed, L.; El-Denshary, E.; Abdel-Tawab, A. TLR4 signaling modulation of PGC1-α mediated mitochondrial biogenesis in the LPS-Chronic mild stress model: Effect of fluoxetine and pentoxiyfylline. Life Sci. 2019, 239, 116869. [Google Scholar] [CrossRef] [PubMed]
- Novoselova, E.G.; Glushkova, O.V.; Lunin, S.M.; Khrenov, M.O.; Novoselova, T.V.; Parfenyuk, S.B.; Fesenko, E.E. Signaling, stress response and apoptosis in pre-diabetes and diabetes: Restoring immune balance in mice with alloxan-induced type 1 diabetes mellitus. Int. Immunopharmacol. 2016, 31, 24–31. [Google Scholar] [CrossRef]
- Habib, M.; Shaker, S.; El-Gayar, N.; Aboul-Fotouh, S.; Resstel, L.B.M. The effects of antidepressants “fluoxetine and imipramine” on vascular abnormalities and toll like receptor-4 expression in diabetic and non-diabetic rats exposed to chronic stress. PLoS ONE 2015, 10, e0120559. [Google Scholar] [CrossRef]
- Kawamoto, E.M.; Cutler, R.G.; Rothman, S.M.; Mattson, M.P.; Camandola, S. TLR4-dependent metabolic changes are associated with cognitive impairment in an animal model of type 1 diabetes. Biochem. Biophys. Res. Commun. 2014, 443, 731–737. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Laurent, I.; Yang, P.; Xiao, X.; Li, X. Gestational diabetes exacerbates intrauterine microbial exposure induced intestinal microbiota change in offspring contributing to increased immune response. Nutr. Diabetes 2024, 14, 860–867. [Google Scholar] [CrossRef]
- Strekalova, T.; Costa-Nunes, J.P.; Veniaminova, E.; Kubatiev, A.; Lesch, K.-P.; Chekhonin, V.P.; Evans, M.C.; Steinbusch, H.W. Insulin receptor sensitizer, dicholine succinate, prevents both Toll-like receptor 4 (TLR4) upregulation and affective changes induced by a high-cholesterol diet in mice. J. Affect. Disord. 2016, 196, 109–116. [Google Scholar] [CrossRef]
- Deschamps, C.; Uyttersprot, F.; Debris, M.; Marié, C.; Fouquet, G.; Marcq, I.; Vilpoux, C.; Naassila, M.; Pierrefiche, O. Anti-inflammatory drugs prevent memory and hippocampal plasticity deficits following initial binge-like alcohol exposure in adolescent male rats. Psychopharmacology 2022, 239, 2245–2262. [Google Scholar] [CrossRef]
- Zaniani, N.R.; Roohbakhsh, A.; Moghimi, A.; Mehri, S. Protective effect of Toll-like receptor 4 antagonist on inflammation, EEG, and memory changes following febrile seizure in Wistar rats. Behav. Brain Res. 2022, 420, 113723. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, M.; Wang, Y.; Ren, J.; Lin, P.; Cui, C.; Song, J.; He, Q.; Hu, H.; Wang, K.; et al. Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway. FASEB J. 2021, 35, e21485. [Google Scholar] [CrossRef] [PubMed]
- Okun, E.; Barak, B.; Saada-Madar, R.; Rothman, S.M.; Griffioen, K.J.; Roberts, N.; Castro, K.; Mughal, M.R.; Pita, M.A.; Stranahan, A.M.; et al. Evidence for a Developmental Role for TLR4 in Learning and Memory. PLoS ONE 2012, 7, e47522. [Google Scholar] [CrossRef] [PubMed]
- Vetreno, R.P.; Lawrimore, C.J.; Rowsey, P.J.; Crews, F.T. Persistent adult neuroimmune activation and loss of hippocampal neurogenesis following adolescent ethanol exposure: Blockade by exercise and the anti-inflammatory drug indomethacin. Front. Neurosci. 2018, 12, 200. [Google Scholar] [CrossRef]
- Motooka, Y.; Shinohara, R.; Kitaoka, S.; Uryu, A.; Li, D.; Neyama, H.; Cui, Y.; Kida, T.; Arakaki, W.; Doi, H.; et al. Alteration of COX-1 and TLR4 expression in the mouse brain during chronic social defeat stress revealed by Positron Emission Tomography study. J. Pharmacol. Sci. 2025, 157, 156–166. [Google Scholar] [CrossRef]
- Gárate, I.; Bueno, B.G.; Madrigal, J.; Caso, J.; Alou, L.; Gomez-Lus, M.L.; Micó, J.A.; Leza, J.C. Stress-induced neuroinflammation: Role of the toll-like receptor-4 pathway. Biol. Psychiatry 2013, 73, 32–43. [Google Scholar] [CrossRef]
- Wang, J.; Yang, C.; Liu, Z.; Li, X.; Liu, M.; Wang, Y.; Zhang, K.; Sun, N. Association of the TLR4 gene with depressive symptoms and antidepressant efficacy in major depressive disorder. Neurosci. Lett. 2020, 736, 135292. [Google Scholar] [CrossRef]
- Gárate, I.; García-Bueno, B.; Madrigal, J.L.M.; Caso, J.R.; Alou, L.; Gómez-Lus, M.L.; Leza, J.C. Toll-like 4 receptor inhibitor TAK-242 decreases neuroinflammation in rat brain frontal cortex after stress. J. Neuroinflammation 2014, 11, 8. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, W.; Zhang, J.; Zhao, Y.; Wang, X.; Zhao, M. Effect of Toll-like receptor 4 on depressive-like behaviors induced by chronic social defeat stress. Brain Behav. 2020, 10, e01525. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zeng, X.; Yang, K.; Peng, H.; Chen, J. n-3 polyunsaturated fatty acids improve depression-like behavior by inhibiting hippocampal neuroinflammation in mice via reducing TLR4 expression. Immun. Inflamm. Dis. 2022, 10, e707. [Google Scholar] [CrossRef]
- Huang, X.; Fei, G.-Q.; Liu, W.-J.; Ding, J.; Wang, Y.; Wang, H.; Ji, J.-L.; Wang, X. Adipose-derived mesenchymal stem cells protect against CMS-induced depression-like behaviors in mice via regulating the Nrf2/HO-1 and TLR4/NF-κB signaling pathways. Acta Pharmacol. Sin. 2020, 41, 612–619. [Google Scholar] [CrossRef]
- Yang, E.-J.; Frolinger, T.; Iqbal, U.; Estill, M.; Shen, L.; Trageser, K.J.; Pasinetti, G.M. The role of the Toll like receptor 4 signaling in sex-specific persistency of depression-like behavior in response to chronic stress. Brain Behav. Immun. 2024, 115, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, S.; Xie, K.; Feng, X.; Chen, L.; Wu, X.; Sun, Z.; Shu, G.; Wang, S.; Zhu, C.; et al. TLR4 in Tph2 neurons modulates anxiety-related behaviors in a sex-dependent manner. Neuropharmacology 2022, 216, 109175. [Google Scholar] [CrossRef]
- Femenia, T.; Qian, Y.; Arentsen, T.; Forssberg, H.; Heijtz, R.D. Toll-like receptor-4 regulates anxiety-like behavior and DARPP-32 phosphorylation. Brain Behav. Immun. 2018, 69, 273–282. [Google Scholar] [CrossRef]
- Quave, C.B.; Nieto, S.J.; Haile, C.N.; Kosten, T.A. Immune receptor toll-like receptor 4 contributes to stress-induced affective responses in a sex-specific manner. Brain Behav. Immun.-Health 2021, 14, 100248. [Google Scholar] [CrossRef]
- Varodayan, F.P.; Khom, S.; Patel, R.R.; Steinman, M.Q.; Hedges, D.M.; Oleata, C.S.; Homanics, G.E.; Roberto, M.; Bajo, M. Role of TLR4 in the Modulation of Central Amygdala GABA Transmission by CRF Following Restraint Stress. Alcohol Alcohol. 2018, 53, 642–649. [Google Scholar] [CrossRef]
- Scheithauer, T.P.; Herrema, H.; Yu, H.; Bakker, G.J.; Winkelmeijer, M.; Soukhatcheva, G.; Dai, D.; Ma, C.; Havik, S.R.; Balvers, M.; et al. Gut-derived bacterial flagellin induces beta-cell inflammation and dysfunction. Gut Microbes 2022, 14, 2111951. [Google Scholar] [CrossRef]
- Pekkala, S.; Munukka, E.; Kong, L.; Pöllänen, E.; Autio, R.; Roos, C.; Wiklund, P.; Fischer-Posovszky, P.; Wabitsch, M.; Alen, M.; et al. Toll-like receptor 5 in obesity: The role of gut microbiota and adipose tissue inflammation. Obesity 2015, 23, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Uchida, M.; Oyanagi, E.; Kawanishi, N.; Iemitsu, M.; Miyachi, M.; Kremenik, M.J.; Onodera, S.; Yano, H. Exhaustive exercise increases the TNF-α production in response to flagellin via the upregulation of toll-like receptor 5 in the large intestine in mice. Immunol. Lett. 2014, 158, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Clerici, M.; Al-Attas, O.; Forni, D.; Alokail, M.S.; Alkharfy, K.M.; Sabico, S.; Mohammed, A.K.; Cagliani, R.; Sironi, M. A Nonsense Polymorphism (R392X) in TLR5 Protects from Obesity but Predisposes to Diabetes. J. Immunol. 2013, 190, 3716–3720. [Google Scholar] [CrossRef]
- Kim, D.; Go, H.S.; Jeon, E.J.; Nguyen, T.Q.T.; Kim, D.Y.; Park, H.; Eom, H.; Kim, S.Y.; Park, S.C.; Cho, K.A. The Impact of Toll-Like Receptor 5 on Liver Function in Age-Related Metabolic Disorders. Aging Cell 2025, 24, e70009. [Google Scholar] [CrossRef]
- Pearson, J.A.; Hu, Y.; Peng, J.; Wong, F.S.; Wen, L. TLR5-deficiency controls dendritic cell subset development in an autoimmune diabetes-susceptible model. Front. Immunol. 2024, 15, 1333967. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-C.; Rau, C.-S.; Lu, T.-H.; Tzeng, S.-L.; Wu, Y.-C.; Wu, C.-J.; Lin, C.-W.; Hsieh, C.-H.; Cantarini, L. Effect of Weight-Reduction in Obese Mice Lacking Toll-Like Receptor 5 and C57BL/6 Mice Fed a Low-Fat Diet. Mediat. Inflamm. 2015, 2015, 852126. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, M.J.; Kim, S.; Zhou, H.; Jing, T.T.; Luna, M.; Guss, J.D.; Reddy, P.; Lai, K.; Leifer, C.A.; Singh, A.; et al. Immunomodulatory nanogels overcome restricted immunity in a murine model of gut microbiome-mediated metabolic syndrome. Sci. Adv. 2019, 5, eaav9788. [Google Scholar] [CrossRef] [PubMed]
- Vijay-Kumar, M.; Aitken, J.D.; Carvalho, F.A.; Cullender, T.C.; Mwangi, S.; Srinivasan, S.; Sitaraman, S.V.; Knight, R.; Ley, R.E.; Gewirtz, A.T. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 2010, 328, 228–231. [Google Scholar] [CrossRef]
- Letran, S.E.; Lee, S.-J.; Atif, S.M.; Flores-Langarica, A.; Uematsu, S.; Akira, S.; Cunningham, A.F.; McSorley, S.J. TLR5-Deficient Mice Lack Basal Inflammatory and Metabolic Defects but Exhibit Impaired CD4 T Cell Responses to a Flagellated Pathogen. J. Immunol. 2011, 186, 5406–5412. [Google Scholar] [CrossRef]
- Zhang, W.; Hartmann, R.; Tun, H.M.; Elson, C.O.; Khafipour, E.; Garvey, W.T.; Claret, M. Deletion of the toll-like receptor 5 gene per se does not determine the gut microbiome profile that induces metabolic syndrome: Environment trumps genotype. PLoS ONE 2016, 11, e0150943. [Google Scholar] [CrossRef]
- Hamieh, A.; Mallaret, G.; Meleine, M.; Lashermes, A.; Roumeau, S.; Boudieu, L.; Barbier, J.; Aissouni, Y.; Ardid, D.; Gewirtz, A.; et al. Toll-like receptor 5 knock-out mice exhibit a specific low level of anxiety. Brain Behav. Immun. 2021, 93, 226–237. [Google Scholar] [CrossRef]
- Arias-Loste, M.T.; Iruzubieta, P.; Puente, Á.; Ramos, D.; Cruz, C.S.; Estébanez, Á.; Llerena, S.; Alonso-Martín, C.; Segundo, D.S.; Álvarez, L.; et al. Increased expression profile and functionality of TLR6 in peripheral blood mononuclear cells and hepatocytes of morbidly obese patients with non-alcoholic fatty liver disease. Int. J. Mol. Sci. 2016, 17, 1878. [Google Scholar] [CrossRef]
- Kakalij, R.M.; Dsouza, D.L.; Boesen, E.I. Development of High Fat Diet-Induced Hyperinsulinemia in Mice Is Enhanced by Co-treatment With a TLR7 Agonist. Front. Physiol. 2022, 13, 930353. [Google Scholar] [CrossRef]
- Kakalij, R.M.; Dsouza, D.L.; Ha, L.; Boesen, E.I. TLR7 activation by imiquimod worsens glycemic control in female FVB/N mice consuming a high-fat diet. Physiol. Rep. 2024, 12, e15949. [Google Scholar] [CrossRef]
- Alshammari, T.K.; Alghamdi, H.; Green, T.A.; Niazy, A.; Alkahdar, L.; Alrasheed, N.; Alhosaini, K.; Alswayyed, M.; Elango, R.; Laezza, F.; et al. Assessing the role of toll-like receptor in isolated, standard and enriched housing conditions. PLoS ONE 2019, 14, e0222818. [Google Scholar] [CrossRef]
- Hanna Kazazian, N.; Wang, Y.; Roussel-Queval, A.; Marcadet, L.; Chasson, L.; Laprie, C.; Desnues, B.; Charaix, J.; Irla, M.; Alexopoulou, L. Lupus Autoimmunity and Metabolic Parameters Are Exacerbated Upon High Fat Diet-Induced Obesity Due to TLR7 Signaling. Front. Immunol. 2019, 10, 2015. [Google Scholar] [CrossRef] [PubMed]
- Kubo, Y.; Yanagawa, Y.; Matsumoto, M.; Hiraide, S.; Kobayashi, M.; Togashi, H. Toll-like receptor 7-mediated enhancement of contextual fear memory in mice. Pharmacol. Biochem. Behav. 2012, 102, 495–501. [Google Scholar] [CrossRef]
- Deng, L.; Gao, R.; Chen, H.; Jiao, B.; Zhang, C.; Wei, L.; Yan, C.; Ye-Lehmann, S.; Zhu, T.; Chen, C. Let-7b-TLR7 Signaling Axis Contributes to the Anesthesia/Surgery-Induced Cognitive Impairment. Mol. Neurobiol. 2024, 61, 1818–1832. [Google Scholar] [CrossRef]
- Hung, Y.-F.; Hsueh, Y.-P. TLR7 and IL-6 differentially regulate the effects of rotarod exercise on the transcriptomic profile and neurogenesis to influence anxiety and memory. iScience 2021, 24, 102384. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.-F.; Chen, C.-Y.; Li, W.-C.; Wang, T.-F.; Hsueh, Y.-P. Tlr7 deletion alters expression profiles of genes related to neural function and regulates mouse behaviors and contextual memory. Brain Behav. Immun. 2018, 72, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.A.; Christenson, J.R.; Schwerdtfeger, L.A.; Tobet, S.A. Maternal immune activation by toll-like receptor 7 agonist during mid-gestation increases susceptibility to blood-brain barrier leakage after puberty. Brain Behav. Immun. Integr. 2024, 8, 100081. [Google Scholar] [CrossRef]
- Sheng, J.A.; Tobet, S.A. Maternal immune activation with toll-like receptor 7 agonist during mid-gestation alters juvenile and adult developmental milestones and behavior. J. Neuroendocr. 2024, 36, e13417. [Google Scholar] [CrossRef]
- Balan, I.; Patterson, R.; Boero, G.; Krohn, H.; O’BUckley, T.K.; Meltzer-Brody, S.; Morrow, A.L. Brexanolone therapeutics in post-partum depression involves inhibition of systemic inflammatory pathways. EBioMedicine 2023, 89, 104473. [Google Scholar] [CrossRef]
- Shintani, Y.; Kapoor, A.; Kaneko, M.; Smolenski, R.; D’Acquisto, F.; Coppen, S.R.; Harada-Shoji, N.; Lee, H.J.; Thiemermann, C.; Takashima, S.; et al. TLR9 mediates cellular protection by modulating energy metabolism in cardiomyocytes and neurons. Proc. Natl. Acad. Sci. USA 2013, 110, 5109–5114. [Google Scholar] [CrossRef]
- Liu, Y.; Nguyen, P.T.; Wang, X.; Zhao, Y.; Meacham, C.E.; Zou, Z.; Bordieanu, B.; Johanns, M.; Vertommen, D.; Wijshake, T.; et al. TLR9 and beclin 1 crosstalk regulates muscle AMPK activation in exercise. Nature 2020, 578, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Pu, D.; Sun, Y.; Chen, J.; Luo, C.; Wang, M.; Zhou, J.; Lv, A.; Zhu, S.; Liao, Z.; et al. High glucose-induced defective thrombospondin-1 release from astrocytes via TLR9 activation contributes to the synaptic protein loss. Exp. Cell Res. 2018, 363, 171–178. [Google Scholar] [CrossRef]
- Scholtzova, H.; Do, E.; Dhakal, S.; Sun, Y.; Liu, S.; Mehta, P.D.; Wisniewski, T. Innate Immunity Stimulation via Toll-Like Receptor 9 Ameliorates Vascular Amyloid Pathology in Tg-SwDI Mice with Associated Cognitive Benefits. J. Neurosci. 2017, 37, 936–959. [Google Scholar] [CrossRef]
- Tauber, S.C.; Ebert, S.; Weishaupt, J.H.; Reich, A.; Nau, R.; Gerber, J. Stimulation of toll-like receptor 9 by chronic intraventricular unmethylated cytosine-guanine DNA infusion causes neuroinflammation and impaired spatial memory. J. Neuropathol. Exp. Neurol. 2009, 68, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Jovasevic, V.; Wood, E.M.; Cicvaric, A.; Zhang, H.; Petrovic, Z.; Carboncino, A.; Parker, K.K.; Bassett, T.E.; Moltesen, M.; Yamawaki, N.; et al. Formation of memory assemblies through the DNA-sensing TLR9 pathway. Nature 2024, 628, 145–153. [Google Scholar] [CrossRef]
- Zimmerman, G.; Shaltiel, G.; Barbash, S.; Cohen, J.; Gasho, C.J.; Shenhar-Tsarfaty, S.; Shalev, H.; Berliner, S.A.; Shelef, I.; Shoham, S.; et al. Post-traumatic anxiety associates with failure of the innate immune receptor TLR9 to evade the pro-inflammatory NFκB pathway. Transl. Psychiatry 2012, 2, e78. [Google Scholar] [CrossRef]
- Wu, H.; Bao, H.; Liu, C.; Zhang, Q.; Huang, A.; Quan, M.; Li, C.; Xiong, Y.; Chen, G.; Hou, L. Extracellular Nucleosomes Accelerate Microglial Inflammation via C-Type Lectin Receptor 2D and Toll-Like Receptor 9 in mPFC of Mice With Chronic Stress. Front. Immunol. 2022, 13, 854202. [Google Scholar] [CrossRef]
- Tripathi, A.; Bartosh, A.; Whitehead, C.; Pillai, A. Activation of cell-free mtDNA-TLR9 signaling mediates chronic stress-induced social behavior deficits. Mol. Psychiatry 2023, 28, 3806–3815. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, J.; Chen, M.; Tan, Y.; Yang, X.; Caudle, Y.; Yin, D. Toll-like receptor 9 is required for chronic stress-induced immune suppression. Neuroimmunomodulation 2013, 21, 1–7. [Google Scholar] [CrossRef]
- Sindhu, S.; Akhter, N.; Kochumon, S.; Thomas, R.; Wilson, A.; Shenouda, S.; Tuomilehto, J.; Ahmad, R. Increased expression of the innate immune receptor TLR10 in obesity and Type-2 diabetes: Association with ROS-mediated oxidative stress. Cell. Physiol. Biochem. 2018, 45, 572–590. [Google Scholar] [CrossRef]
- Boutens, L.; Mirea, A.-M.; Munckhof, I.v.D.; Doppenberg-Oosting, M.; Jaeger, M.; Hijmans, A.; Netea, M.G.; Joosten, L.A.; Stienstra, R. A role for TLR10 in obesity and adipose tissue morphology. Cytokine 2018, 108, 205–212. [Google Scholar] [CrossRef]
- Kim, S.-J.; Choi, Y.; Choi, Y.-H.; Park, T. Obesity activates toll-like receptor-mediated proinflammatory signaling cascades in the adipose tissue of mice. J. Nutr. Biochem. 2012, 23, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Lv, W.; Li, Y.; Nie, P.; Lu, J.; Geng, Y.; Heng, Z.; Song, L. Alleviating the effect of quinoa and the underlying mechanism on hepatic steatosis in high-fat diet-fed rats. Nutr. Metab. 2021, 18, 106. [Google Scholar] [CrossRef]
- Sharma, I.; Priya, I.; Sharma, S.; Gupta, S.; Arora, M.; Mahajan, R.; Kapoor, N. Association of toll-like receptor 2 gene polymorphism (rs3804099) with susceptibility to Schizophrenia risk in the Dogra population of Jammu region, North India. Eur. J. Psychiatry 2022, 36, 106–113. [Google Scholar] [CrossRef]
- Dunstan, I.K.; McLeod, R.; Radford-Smith, D.E.; Xiong, W.; Pate, T.; Probert, F.; Anthony, D.C. Unique pathways downstream of TLR-4 and TLR-7 activation: Sex-dependent behavioural, cytokine, and metabolic consequences. Front. Cell. Neurosci. 2024, 18, 1345441. [Google Scholar] [CrossRef]
- Smith, A.K.; Conneely, K.N.; Kilaru, V.; Mercer, K.B.; Weiss, T.E.; Bradley, B.; Tang, Y.; Gillespie, C.F.; Cubells, J.F.; Ressler, K.J. Differential Immune System DNA Methylation and Cytokine Regulation in Post-Traumatic Stress Disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2011, 156, 700–708. [Google Scholar] [CrossRef]
- Hossack, M.R.; Reid, M.W.; Aden, J.K.; Gibbons, T.; Noe, J.C.; Willis, A.M. Adverse Childhood Experience, Genes, and PTSD Risk in Soldiers: A Methylation Study. Mil. Med. 2020, 185, 377–384. [Google Scholar] [CrossRef]
- Liu, B.; Huang, D.; Guo, Y.; Sun, X.; Chen, C.; Zhai, X.; Jin, X.; Zhu, H.; Li, P.; Yu, W. Recent advances and perspectives of postoperative neurological disorders in the elderly surgical patients. CNS Neurosci. Ther. 2022, 28, 470–483. [Google Scholar] [CrossRef] [PubMed]
- Evered, L.; Silbert, B.; Knopman, D.S.; Scott, D.A.; DeKosky, S.T.; Rasmussen, L.S.; Oh, E.S.; Crosby, G.; Berger, M.; Eckenhoff, R.G.; et al. Recommendations for the nomenclature of cognitive change associated with Anaesthesia and surgery—2018. Anesthesiology 2018, 129, 872–879. [Google Scholar] [CrossRef]
- Safavynia, S.A.; Goldstein, P.A. The role of neuroinflammation in postoperative cognitive dysfunction: Moving from hypothesis to treatment. Front. Psychiatry 2019, 9, 752. [Google Scholar] [CrossRef]
- Femenía, T.; Giménez-Cassina, A.; Codeluppi, S.; Fernández-Zafra, T.; Katsu-Jiménez, Y.; Terrando, N.; Eriksson, L.I.; Gómez-Galán, M. Disrupted neuroglial metabolic coupling after peripheral surgery. J. Neurosci. 2018, 38, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Lin, D.; Chen, Y.; Liu, L.; Wu, Y.; Zheng, X. Fluoxetine alleviates postoperative cognitive dysfunction by attenuating TLR4/MyD88/NF-κB signaling pathway activation in aged mice. Inflamm. Res. 2023, 72, 1161–1173. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.; Jeon, E.J.; Go, H.S.; Kim, H.-J.; Kim, K.Y.; Nguyen, T.Q.T.; Lee, D.Y.; Kim, K.S.; Pietrocola, F.; Hong, S.H.; et al. Mucosal TLR5 activation controls healthspan and longevity. Nat. Commun. 2024, 15, 46. [Google Scholar] [CrossRef]
- Ma, Y.; Li, J.; Chiu, I.; Wang, Y.; Sloane, J.A.; Lü, J.; Kosaras, B.; Sidman, R.L.; Volpe, J.J.; Vartanian, T. Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J. Cell Biol. 2006, 175, 209–215. [Google Scholar] [CrossRef]
- Seizer, L.; Rahimi, S.; Santos-Sierra, S.; Drexel, M.; Biagini, G. Expression of toll like receptor 8 (TLR8) in specific groups of mouse hippocampal interneurons. PLoS ONE 2022, 17, e0267860. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.G.; Nehete, P.N.; Krivoshik, S.R.; Pei, X.; Cho, E.L.; Nehete, B.P.; Ramani, M.D.; Shao, Y.; Williams, L.E.; Wisniewski, T.; et al. Innate immunity stimulation via CpG oligodeoxynucleotides ameliorates Alzheimer’s disease pathology in aged squirrel monkeys. Brain 2021, 144, 2146–2165. [Google Scholar] [CrossRef]
- Atarashi, N.; Morishita, M.; Matsuda, S. Activation of innate immune receptor TLR9 by mitochondrial DNA plays essential roles in the chemical long-term depression of hippocampal neurons. J. Biol. Chem. 2024, 300, 105744. [Google Scholar] [CrossRef]
- Khariv, V.; Pang, K.; Servatius, R.J.; David, B.T.; Goodus, M.T.; Beck, K.D.; Heary, R.F.; Elkabes, S. Toll-like receptor 9 deficiency impacts sensory and motor behaviors. Brain Behav. Immun. 2013, 32, 164–172. [Google Scholar] [CrossRef]
- Patel, V.; Patel, A.; McArdle, J. Synaptic abnormalities of mice lacking toll-like receptor (TLR)-9. Neuroscience 2016, 324, 1–10. [Google Scholar] [CrossRef]
- Capuron, L.; Miller, A.H. Immune system to brain signaling: Neuropsychopharmacological implications. Pharmacol. Ther. 2011, 130, 226–238. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Dasu, M.R.; Devaraj, S.; Park, S.; Jialal, I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 2010, 33, 861–868. [Google Scholar] [CrossRef]
- Scholtes, V.P.; Versteeg, D.; de Vries, J.-P.P.; Hoefer, I.E.; Schoneveld, A.H.; Stella, P.R.; Doevendans, P.A.; van Keulen, K.J.; de Kleijn, D.P.; Moll, F.L.; et al. Toll-like receptor 2 and 4 stimulation elicits an enhanced inflammatory response in human obese patients with atherosclerosis. Clin. Sci. 2011, 121, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Al-Mass, A.; Atizado, V.; Al-Hubail, A.; Al-Ghimlas, F.; Al-Arouj, M.; Bennakhi, A.; Dermime, S.; Behbehani, K. Elevated expression of the toll like receptors 2 and 4 in obese individuals: Its significance for obesity-induced inflammation. J. Inflamm. 2012, 9, 48. [Google Scholar] [CrossRef]
- Shechter, R.; London, A.; Kuperman, Y.; Ronen, A.; Rolls, A.; Chen, A.; Schwartz, M. Hypothalamic neuronal toll-like receptor 2 protects against age-induced obesity. Sci. Rep. 2013, 3, 1254. [Google Scholar] [CrossRef]
- Xu, H.; Tian, X.; Wang, Y.; Lin, J.; Zhu, B.; Zhao, C.; Wang, B.; Zhang, X.; Sun, Y.; Li, N.; et al. Exercise Promotes Hippocampal Neurogenesis in T2DM Mice via Irisin/TLR4/MyD88/NF-κB-Mediated Neuroinflammation Pathway. Biology 2024, 13, 809. [Google Scholar] [CrossRef]
- Thomalla, M.; Schmid, A.; Hehner, J.; Koehler, S.; Neumann, E.; Müller-Ladner, U.; Schäffler, A.; Karrasch, T. Toll-like Receptor 7 (TLR7) Is Expressed in Adipocytes and the Pharmacological TLR7 Agonist Imiquimod and Adipocyte-Derived Cell-Free Nucleic Acids (cfDNA) Regulate Adipocyte Function. Int. J. Mol. Sci. 2022, 23, 8475. [Google Scholar] [CrossRef]
- Li, Q.; Yan, Y.; Liu, J.; Huang, X.; Zhang, X.; Kirschning, C.; Xu, H.C.; Lang, P.A.; Dittmer, U.; Zhang, E.; et al. Toll-Like Receptor 7 Activation Enhances CD8+ T Cell Effector Functions by Promoting Cellular Glycolysis. Front. Immunol. 2019, 10, 2191. [Google Scholar] [CrossRef] [PubMed]
- Yano, H.; Uchida, M.; Nakai, R.; Ishida, K.; Kato, Y.; Kawanishi, N.; Shiva, D. Exhaustive exercise reduces TNF-α and IFN-α production in response to R-848 via toll-like receptor 7 in mice. Eur. J. Appl. Physiol. 2010, 110, 797–803. [Google Scholar] [CrossRef]
- Kochumon, S.; Al Madhoun, A.; Al-Rashed, F.; Thomas, R.; Sindhu, S.; Al-Ozairi, E.; Al-Mulla, F.; Ahmad, R. Elevated adipose tissue associated IL-2 expression in obesity correlates with metabolic inflammation and insulin resistance. Sci. Rep. 2020, 10, 16364. [Google Scholar] [CrossRef]
- Shang, W.; Xu, R.; Xu, T.; Wu, M.; Xu, J.; Wang, F. Ovarian Cancer Cells Promote Glycolysis Metabolism and TLR8-Mediated Metabolic Control of Human CD4+T Cells. Front. Oncol. 2020, 10, 570899. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, X.; Sanders, K.L.; Edwards, J.L.; Ye, J.; Si, F.; Gao, A.; Huang, L.; Hsueh, E.C.; Ford, D.A.; et al. TLR8-Mediated Metabolic Control of Human Treg Function: A Mechanistic Target for Cancer Immunotherapy. Cell Metab. 2019, 29, 103–123.e5. [Google Scholar] [CrossRef] [PubMed]
- Michalek, R.D.; Gerriets, V.A.; Jacobs, S.R.; Macintyre, A.N.; MacIver, N.J.; Mason, E.F.; Sullivan, S.A.; Nichols, A.G.; Rathmell, J.C. Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets. J. Immunol. 2011, 186, 3299–3303. [Google Scholar] [CrossRef]
- Chong, H.; Wei, Z.; Na, M.; Sun, G.; Zheng, S.; Zhu, X.; Xue, Y.; Zhou, Q.; Guo, S.; Xu, J.; et al. The PGC-1α/NRF1/miR-378a axis protects vascular smooth muscle cells from FFA-induced proliferation, migration and inflammation in atherosclerosis. Atherosclerosis 2020, 297, 136–145. [Google Scholar] [CrossRef]
- Banerjee, A.; Chatterji, U. Prevalence of perturbed gut microbiota in pathophysiology of arsenic-induced anxiety- and depression-like behaviour in mice. Chemosphere 2024, 364, 143293. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, L.; Yang, J.; Liu, J.; Li, J.; Liu, Y.; Li, X.; Chen, L.; Hsu, C.; Zeng, J.; et al. Gut microbiota-derived short-chain fatty acids ameliorate methamphetamine-induced depression- and anxiety-like behaviors in a Sigmar-1 receptor-dependent manner. Acta Pharm. Sin. B 2023, 13, 4801–4822. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Miao, F.; Wang, J.; Zheng, M.; Yu, F.; Yi, Y. The Ameliorative and Neuroprotective Effects of Dietary Fibre on Hyperuricaemia Mice: A Perspective from Microbiome and Metabolome. Br. J. Nutr. 2024, 132, 275–288. [Google Scholar] [CrossRef]
- Wei, H.; Yu, C.; Zhang, C.; Ren, Y.; Guo, L.; Wang, T.; Chen, F.; Li, Y.; Zhang, X.; Wang, H.; et al. Butyrate ameliorates chronic alcoholic central nervous damage by suppressing microglia-mediated neuroinflammation and modulating the microbiome-gut-brain axis. Biomed. Pharmacother. 2023, 160, 114308. [Google Scholar] [CrossRef]
- Murray, E.; Sharma, R.; Smith, K.B.; Mar, K.D.; Barve, R.; Lukasik, M.; Pirwani, A.F.; Malette-Guyon, E.; Lamba, S.; Thomas, B.J.; et al. Probiotic consumption during puberty mitigates LPS-induced immune responses and protects against stress-induced depression- and anxiety-like behaviors in adulthood in a sex-specific manner. Brain Behav. Immun. 2019, 81, 198–212. [Google Scholar] [CrossRef]
- Fields, C.T.; Chassaing, B.; Castillo-Ruiz, A.; Osan, R.; Gewirtz, A.T.; de Vries, G.J. Effects of gut-derived endotoxin on anxiety-like and repetitive behaviors in male and female mice. Biol. Sex Differ. 2018, 9, 7. [Google Scholar] [CrossRef]
- Zamani, M.; Alizadeh-Tabari, S.; Zamani, V. Systematic review with meta-analysis: The prevalence of anxiety and depression in patients with irritable bowel syndrome. Aliment. Pharmacol. Ther. 2019, 50, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.; McKernan, D.P.; Gaszner, G.; Quigley, E.M.; Cryan, J.F.; Dinan, T.G. A distinct profile of tryptophan metabolism along the kynurenine pathway downstream of toll-like receptor activation in irritable bowel syndrome. Front. Pharmacol. 2012, 3, 90. [Google Scholar] [CrossRef] [PubMed]
- McKernan, D.P.; Gaszner, G.; Quigley, E.M.; Cryan, J.F.; Dinan, T.G. Altered peripheral toll-like receptor responses in the irritable bowel syndrome. Aliment. Pharmacol. Ther. 2011, 33, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
TLR | Ligand | Chemical Nature | Origin | Pathway |
---|---|---|---|---|
TLR1 | Triacyl lipopeptides | Lipopeptide | Bacterial (lipoproteins) | MyD88 -> NF-kB -> inflammatory mediators |
TLR2 | Glycolipids | Glycolipid | Bacterial (peptidoglycan-associated) | MyD88 -> NF-kB -> inflammatory mediators |
Lipopeptides and proteolipids | Lipopeptide/Proteolipid | Bacterial (peptidoglycan-associated) | ||
Lipoteichoic acid | Glycophospholipid | Gram-positive bacteria | ||
Biglycan | Proteoglycan | Host cells | ||
Versican | Proteoglycan | Host cells | ||
Hyaluronan | Glycosaminoglycan | Host cells (extracellular matrix) | ||
Heat-shock protein 70 (HSP70) | Protein | Host cells | ||
Zymosan (β-glucan) | Polysaccharide (β-glucan) | Fungi | ||
HMGB1 | Protein | Host cells | ||
TLR3 | Double-stranded RNA (dsRNA) | Nucleic acid (dsRNA) | Viral | TRIF -> NF-kB -> inflammatory mediators |
Polyinosinic-polycytidylic acid (poly I:C) | Synthetic dsRNA analog | Experimental/viral mimic | ||
Lipopolysaccharide (LPS) | Glycolipid | Gram-negative bacteria | ||
Heat-shock proteins (various) | Protein | Bacterial and host cells | ||
RNA | Nucleic acid | Host cells | ||
Fibrinogen | Protein | Host cells (extracellular matrix) | ||
TLR4 | Lipopolysaccharide (LPS) | Glycolipid | Gram-negative bacteria | MyD88 -> NF-kB -> inflammatory mediators TRIF -> NF-kB -> inflammatory mediators |
Biglycan | Proteoglycan | Host cells | ||
Heparan sulfate fragments | Glycosaminoglycan | Host cells (extracellular matrix) | ||
Hyaluronan | Glycosaminoglycan | Host cells (extracellular matrix) | ||
Heat-shock protein | Protein | Host cells | ||
Nickel (Ni2+) | Metal ion | Environmental/exogenous metal | ||
HMGB1 | Protein | Host cells | ||
TLR5 | Flagellin | Protein | Bacterial (flagellated species) | MyD88 -> NF-kB -> inflammatory mediators |
Profilin (Toxoplasma gondii) | Protein | Protozoan (T. gondii) | ||
TLR6 | Diacyl lipopeptides | Lipopeptide | Mycoplasma (bacterial lipoproteins) | MyD88 -> NF-kB -> inflammatory mediators |
TLR7 | Imidazoquinoline derivatives | Small synthetic compound | Synthetic | MyD88 -> NF-kB -> inflammatory mediators |
Loxoribine (guanosine analog) | Nucleoside analog | Synthetic | ||
Bropirimine | Small synthetic compound | Synthetic | ||
Resiquimod | Small synthetic compound | Synthetic | ||
Single-stranded RNA (ssRNA) | Nucleic acid (ssRNA) | RNA viruses | ||
TLR8 | Small synthetic compounds | Small organic molecules | Synthetic | MyD88 -> NF-kB -> inflammatory mediators |
Single-stranded viral RNA | Nucleic acid (ssRNA) | RNA viruses | ||
Phagocytosed bacterial RNA | Nucleic acid (ssRNA) | Bacteria (intracellular) | ||
TLR9 | Unmethylated CpG–oligodeoxynucleotides (CpG DNA) | Nucleic acid (DNA) | Bacteria, DNA viruses | MyD88 -> NF-kB -> inflammatory mediators |
DNA (mitochondrial) | Nucleic acid | Host cells | ||
DNA | Nucleic acid | Host cells | ||
HMGB1 | Protein | Host cells | ||
TLR11 | Profilin (Toxoplasma gondii) | Protein | Protozoan (T. gondii) | MyD88 -> NF-kB -> inflammatory mediators |
TLR12 | Profilin (Toxoplasma gondii) | Protein | Protozoan (T. gondii) | MyD88 -> NF-kB -> inflammatory mediators |
TLR13 | Bacterial ribosomal RNA sequences (e.g., 23S rRNA) | Nucleic acid (rRNA) | Bacteria | MyD88 -> NF-kB -> inflammatory mediators |
Metabolism Alteration | Cognition—Memory | Emotional Regulation | |
---|---|---|---|
TLR1 | below normal levels with antidepressant treatment [41] | ||
TLR2 | (+) insulin resistance [48] (+) increased production of kynurenine [49] ↑ in obesity [50] ↓ with HFD [51,52] KO protected from insulin resistance [53,54,55] KO higher BW and reduced food intake [56] KO exhibit a significant reduction in adipocyte size in epididymal fat under low-fat diet [57] | (+) impaired spatial memory and learning [48,58] (+) fear memory destabilization [59] (+) postnatally impairs learning and memory in the adulthood [60] (−) improving learning and memory [61] KO prevents surgery induced memory impairment and fear conditioning [62] KO slower learning speed [63] KO impaired cognitive function [64,65] | (+) necessary in social defeat stress [66,67] ↑ in depression and suicidal behavior [42,43,44,45,68] ↑ in MDD patients with comorbid multiple sclerosis [47] ↑ in poor omega-3 diet depressed female rats [49] (−) attenuate the obesity-associated depressive-like behavior [50] (−)improving anxiety-like behavior [61] below normal levels with antidepressant treatment [41] KO increased anxiety-like state [64] KO increased depression-like state [69] |
TLR3 | Astroglial metabolism alteration [70] ↓ in lymphocytes and adipocytes linked to metabolic inflammation [71] | (+) impaired memory and learning [72,73] (+) reduces apical dendritic spine density [74,75] (+) induces neuronal apoptosis [76] (−) improve chronic constriction injury memory impairment [77] (−) enhanced hippocampus dependent learning and memory [78] (−) impairs amygdala-dependent learning and memory [78] (−) improves cognitive decline induced by chronic neuropathic pain [77] KO impaired spatial but not working memory [79] | ↑ in resistant depression patients [41] ↑ in depression and suicidal behavior [41,43,80,81] (+) inhibition of neuronal plasticity in vitro [76] recover normal levels with antidepressant treatment [41] (−) attenuate anxiety-like behavior in male [82] (−) attenuate anxiety-like behavior in female [83] KO reduce anxiety-like behavior [78,79] |
TLR4 | (+) increased production of kynurenine [49] (+) increases hippocampal energy metabolism and p-AMPK levels [84] ↑ in type 1 and 2 diabetes [85,86,87] ↑ in placenta in models of gestational diabetes mellitus [88] (−) prevents associated affective disturbances induced by a high cholesterol diet [89] KO higher BW and reduced food intake [56] KO exhibit a significant reduction in adipocyte size in epididymal fat under low-fat diet [57] | (+) impaired spatial memory and learning [87,90] (+) fear memory destabilization [59] ↑ neonatally leads to memory deficits in adulthood [91] (−) improving learning and memory [61,92] (−) alters the regulation of spatial reference memory and fear learning [93] (−) protects against alcohol synaptic plasticity and cognitive function impairment [90,94] | (+) necessary in social defeat stress [66,67] (+) in anxiety-like diabetic mice [86] (+) susceptibility to depression-like behavior [41,81] (+) necessary in social defeat stress [66,67] ↑ in social stressed mice [95,96] ↑ in depressed diabetic mice [86] ↑ in depression and suicidal behavior [97] ↑ in poor omega-3 diet depressed female rats [49] ↑ in chronic mild stress and recovered by antidepressants [84] (−) therapeutic role for TLR4 blockade in stress-related neuropsychiatric disorders [98] ↓ exerts an anti-depressive action [99,100,101] ↓ with melatonin treatment [92] below normal levels with antidepressant treatment [41] KO protected against persistent depression in female mice [102] KO decreases anxiety-like behavior in males [103] KO anxiety-like phenotype [104] KO enhances stress-induced responses in females [105] KO protected against corticotropin-releasing factor release induced by stress [106] |
TLR5 | ↑ in type 2 diabetes [107] ↑ in obesity related dysbiosis [108] ↑ by intense exercise [109] ↑ in placenta in models of gestational diabetes mellitus [88] KO glucose intolerance/insulin resistance [110,111,112,113,114,115] KO mice increase adiposity [110,112,113,114,115] KO mice females protected from obesity [112] KO humans protect from weight gain [110] KO exhibit a significant reduction in adipocyte size in epididymal fat under low-fat diet [57] KO do not exhibit metabolic abnormalities [116,117] | ↑ in depression and normalized with antidepressant treatment [41,81] KO reduce anxiety behavior [118] | |
TLR6 | ↑ in non-alcoholic fatty liver patients [119] ↓ with HFD [52] | ↓ below normal levels with antidepressant treatment [41] | |
TLR7 | (+) exacerbates HFD-induced dysregulation of glucose [120,121] (+) increases glycolysis via the AKT-mTOR-IRF4 axis [122] KO reduced BW gain with HFD [123] | (+) enhanced fear memory [124] (−) improved hippocampus-dependent memory [125] KO enhanced fear memory after rotarod [126] KO impairs fear memory [127] KO enhanced spatial memory after rotarod [126] | ↑ in depression and normalized with antidepressant treatment [41,81] ↑ in gestation lead to anxiety-like behavior in adulthood [128,129] (−) helps in models of postpartum depression [130] KO reduce anxiety behavior [101] KO anxiety-like behavior [86] KO blocks chronic stress-induced immune suppression [87] |
TLR8 | (+) inhibits glucose uptake and glycolysis in human [110,111] | (+) inhibits neurite outgrowth and induce apoptosis in vitro [112] | Particular DNA methylation in TLR8 gene in PTSD related with childhood abuse [57]; refuted in [113] |
TLR9 | (+) activates AMPK [131,132] ↑ in diabetes condition [133] KO deficient AMPK and GLUT4 activation [132] | (+) leads to cognitive improvements [134] (+) CpG DNA mediated impaired spatial memory [135] KO impaired working memory [79,136] KO impaired fear memory [136] | (+) prevents post-traumatic consequences in stressed mice [137] (+) depressive- and anxiety-like behaviors induced by CUMS [138] ↑ in depression and normalized with antidepressant treatment [41] (−) attenuates stress-induced social behavior deficits [139] KO shows hyperactivity [79] KO resistant to stress-induced immune suppression [140] |
TLR10 | ↑ in type 2 diabetes [141] (−) higher blood glucose and lower insulin levels [142] (−) obesity resistance [142] | ||
TLR11/12 | ↑ in obesity-associated inflammation [143] ↓ by quinoa while upregulating lipid metabolism [144] |
TLR | Human | Murine (Mouse/Rat) |
---|---|---|
TLR1 | Below normal levels with antidepressant treatment | |
TLR2 | ↑ in obesity, MDD and IBS | Reduction protects against HFD-induced insulin resistance and surgery-induced memory deficits; ↓ anxiety-/depression-like behavior |
TLR3 | ↑ in depression | (+) impaired memmory and increased depressive and anxiety behavior. (−) improves memmory and shows reduced anxiety |
TLR4 | ↑ in obesity, diabetes and depression | (+) impaired memmory and increased depressive and anxiety behavior. (−) improves memmory and shows reduced anxiety and depression |
TLR5 | ↑ in obesity, diabetes and depression | ↑ in diabetes, ↓with HFD. (−) glucose intolerance, increassed adiposity but ptrotected from obesity |
TLR6 | ↑ in non-alcoholic fatty liver patients | ↓ with HFD |
TLR7 | ↓ in obese elderly men and ↑in depression | (+)dysregulation of glucose, enhanced fear memory and anxiety (−) enhanced spatial memory, reduce anxiety and depression sintoms |
TLR8 | (+) inhibits glucose uptake and glycolysis | |
TLR9 | ↑ diabetes and depression | (+) activates AMPK, cognitive improvement and depression and anxiety-like behaviors. (−) deficent in AMPK and GLUT4, impaired memory and reduced stress |
TLR10 | ↑ type 2 diabetes (−) higher blood glucose, lower insulin levels and obesity resistance | |
TLR11–12 | ↑ obessity associated inflammation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crespo-Quiles, C.; Femenía, T. Toll-like Receptors in Immuno-Metabolic Regulation of Emotion and Memory. Cells 2025, 14, 933. https://doi.org/10.3390/cells14120933
Crespo-Quiles C, Femenía T. Toll-like Receptors in Immuno-Metabolic Regulation of Emotion and Memory. Cells. 2025; 14(12):933. https://doi.org/10.3390/cells14120933
Chicago/Turabian StyleCrespo-Quiles, Carla, and Teresa Femenía. 2025. "Toll-like Receptors in Immuno-Metabolic Regulation of Emotion and Memory" Cells 14, no. 12: 933. https://doi.org/10.3390/cells14120933
APA StyleCrespo-Quiles, C., & Femenía, T. (2025). Toll-like Receptors in Immuno-Metabolic Regulation of Emotion and Memory. Cells, 14(12), 933. https://doi.org/10.3390/cells14120933