G-Protein-Coupled Receptors in Chronic Kidney Disease Induced by Hypertension and Diabetes
Abstract
:1. Introduction
2. GPCRs in HKD
2.1. GPCRs Involved in Renal Vascular Injury and Glomerular Damage Under Hypertensive Conditions
2.2. GPCRs Involved in Podocyte Loss and Glomerulosclerosis Induced by Hypertension
2.3. GPCRs Involved in Renal Tubulointerstitial Fibrosis Induced by Hypertension
3. GPCRs in Diabetic Nephropathy
3.1. GPCRs in RAS
3.2. ET Receptors
3.3. GPR14
3.4. Takeda G-Protein-Coupled Receptor 5
3.5. GPR91
3.6. GPCRs in the Kallikrein–Kinin System
3.7. Lysophosphatidic Acid Receptors
3.8. Sphingosine-1-Phosphate Receptors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HKD | hypertensive kidney disease |
CKD | chronic kidney disease |
GPCR | G-protein-coupled receptor |
DN | diabetic nephropathy |
ESRD | end-stage renal disease |
VEC | vascular endothelial cell |
VSMC | vascular smooth muscle cell |
ECM | extracellular matrix |
HIFα | hypoxia-inducible factor α |
ATR | angiotensin II receptor |
MasR | Mas receptor |
MrgD | Mas-related G-protein-coupled receptor member D |
RXFP | relaxin family receptor |
AR | adenosine receptor |
ETR | endothelin receptor |
RAS | renin–angiotensin system |
AngII | angiotensin II |
PLC | phospholipase C |
PLD | phospholipase D |
PLA | phospholipase A |
MAPK | MAP kinases |
ROS | reactive oxygen species |
NOS | nitric oxide synthase |
NO | nitric oxide |
MKP | MAPK phosphatase |
PP2A | protein phosphatase 2A |
PI3K | phosphoinositide 3-kinase |
SHR | spontaneously hypertensive rat |
GFR | glomerular filtration rate |
MLC | myosin light chain |
IP3 | inositol 1,4,5-trisphosphate |
ENaC | epithelial sodium channel |
ET | endothelin |
RSK | ribosomal S6 kinase |
PKA | protein kinase A |
Hhip | hedgehog interacting protein |
[Ca2+]i | increased cytosolic Ca2+ concentration |
EMT | epithelial–mesenchymal transition |
ERK1/2 | extracellular signal-regulated kinase 1/2 |
MMP | matrix metalloproteinase |
Yap | Yes-associated protein |
STZ | streptozotocin |
SNP | single-nucleotide polymorphism |
UTS2 | urotensin II |
TGR5 | Takeda G protein-coupled receptor 5 |
FXR | farnesoid X receptor |
SIRT | sirtuin |
PPARα | proliferator-activated receptor g coactivator 1-α |
GLP-1 | glucagon-like peptide-1 |
GMC | glomerular mesangial cell |
KKS | kallikrein–kinin system |
LPA | lysophosphatidic acid |
DAG | diacylglycerol |
S1P | sphingosine-1-phosphate |
S1PR | S1P receptor |
References
- Horowitz, B.; Miskulin, D.; Zager, P. Epidemiology of hypertension in CKD. Adv. Chronic Kidney Dis. 2015, 22, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Meyrier, A. Nephrosclerosis: Update on a centenarian. Nephrol. Dial. Transpl. 2015, 30, 1833–1841. [Google Scholar] [CrossRef] [PubMed]
- Kohagura, K.; Zamami, R.; Oshiro, N.; Shinzato, Y.; Uesugi, N. Heterogeneous afferent arteriolopathy: A key concept for understanding blood pressure-dependent renal damage. Hypertens. Res. 2024, 47, 3383–3396. [Google Scholar] [CrossRef] [PubMed]
- Fine, L.G.; Norman, J.T. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: From hypothesis to novel therapeutics. Kidney Int. 2008, 74, 867–872. [Google Scholar] [CrossRef]
- de Boer, I.H.; Rue, T.C.; Hall, Y.N.; Heagerty, P.J.; Weiss, N.S.; Himmelfarb, J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 2011, 305, 2532–2539. [Google Scholar] [CrossRef]
- Li, K.; Tang, H.; Cao, X.; Zhang, X.; Wang, X. PTEN: A Novel Diabetes Nephropathy Protective Gene Related to Cellular Senescence. Int. J. Mol. Sci. 2025, 26, 3088. [Google Scholar] [CrossRef]
- Oldham, W.M.; Hamm, H.E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 2008, 9, 60–71. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.H.; Xu, W.J. Role of endothelial injury in initiation and progression of vascular disease. J. Dalian Med. Univ. 2009, 31, 219–223. [Google Scholar]
- Yu, T.; Yang, Y.; Du, S.H.; Hong, X. Correlation of shearing force and estradiol with hypertension. Chin. Gen. Pr. 2023, 26, 2469–2475. [Google Scholar]
- Costantino, V.V.; Gil Lorenzo, A.F.; Bocanegra, V.; Vallés, P.G. Molecular Mechanisms of Hypertensive Nephropathy: Renoprotective Effect of Losartan through Hsp70. Cells 2021, 10, 3146. [Google Scholar] [CrossRef]
- Liu, D.X.; Zhang, Y.Q.; Hu, B.; Zhang, J.; Zhao, Q. Association of AT1R polymorphism with hypertension risk: An update meta-analysis based on 28,952 subjects. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Norambuena-Soto, I.; Lopez-Crisosto, C.; Martinez-Bilbao, J.; Hernandez-Fuentes, C.; Parra, V.; Lavandero, S.; Chiong, M. Angiotensin-(1-9) in hypertension. Biochem. Pharmacol. 2022, 203, 115183. [Google Scholar] [CrossRef] [PubMed]
- Lymperopoulos, A.; Borges, J.I.; Stoicovy, R.A. RGS proteins and cardiovascular Angiotensin II Signaling: Novel opportunities for therapeutic targeting. Biochem. Pharmacol. 2023, 218, 115904. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Yang, X.; Liu, K.; Zhang, X.; Zuo, X.; Ye, R.; Wang, Z.; Shi, R.; Meng, Q.; et al. Signaling pathways in vascular function and hypertension: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 168. [Google Scholar] [CrossRef]
- Forrester, S.J.; Booz, G.W.; Sigmund, C.D.; Coffman, T.M.; Kawai, T.; Rizzo, V.; Scalia, R.; Eguchi, S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 2018, 98, 1627–1738. [Google Scholar] [CrossRef]
- Steckelings, U.M.; Widdop, R.E.; Sturrock, E.D.; Lubbe, L.; Hussain, T.; Kaschina, E.; Unger, T.; Hallberg, A.; Carey, R.M.; Sumners, C. The Angiotensin AT2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol. Rev. 2022, 74, 1051–1135. [Google Scholar]
- Savoia, C.; Ebrahimian, T.; He, Y.; Gratton, J.-P.; Schiffrin, E.L.; Touyz, R.M. Angiotensin II/AT2 receptor-induced vasodilation in stroke-prone spontaneously hypertensive rats involves nitric oxide and cGMP-dependent protein kinase. J. Hypertens. 2006, 24, 2417–2422. [Google Scholar] [CrossRef]
- Colin, M.; Delaitre, C.; Foulquier, S.; Dupuis, F. The AT1/AT2 Receptor Equilibrium Is a Cornerstone of the Regulation of the Renin Angiotensin System beyond the Cardiovascular System. Molecules 2023, 28, 5481. [Google Scholar] [CrossRef]
- Loot, A.E.; Schreiber, J.G.; Fisslthaler, B.; Fleming, I. Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase. J. Exp. Med. 2009, 206, 2889–2896. [Google Scholar] [CrossRef]
- Schiffrin, E.L.; Touyz, R.M. Multiple actions of angiotensin II in hypertension: Benefits of AT1 receptor blockade. J. Am. Coll. Cardiol. 2003, 42, 911–913. [Google Scholar] [CrossRef]
- Hercule, H.C.; Tank, J.; Plehm, R.; Wellner, M.; da Costa Goncalves, A.C.; Gollasch, M.; Diedrich, A.; Jordan, J.; Luft, F.C.; Gross, V. Regulator of G protein signalling 2 ameliorates angiotensin II-induced hypertension in mice. Exp. Physiol. 2007, 92, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Savoia, C.; Tabet, F.; Yao, G.; Schiffrin, E.L.; Touyz, R.M. Negative regulation of RhoA/Rho kinase by angiotensin II type 2 receptor in vascular smooth muscle cells: Role in angiotensin II-induced vasodilation in stroke-prone spontaneously hypertensive rats. J. Hypertens. 2005, 23, 1037–1045. [Google Scholar] [CrossRef]
- Chow, B.S.; Allen, T.J. Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease. Clin. Sci. 2016, 130, 1307–1326. [Google Scholar] [CrossRef]
- Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol. Rev. 2018, 98, 505–553. [Google Scholar] [CrossRef]
- Sampaio, W.O.; Souza dos Santos, R.A.; Faria-Silva, R.; da Mata Machado, L.T.; Schiffrin, E.L.; Touyz, R.M. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 2007, 49, 185–192. [Google Scholar] [CrossRef]
- Liao, W.; Wu, J. The ACE2/Ang (1-7)/MasR axis as an emerging target for antihypertensive peptides. Crit. Rev. Food Sci. Nutr. 2021, 61, 2572–2586. [Google Scholar] [CrossRef]
- Bader, M.; Steckelings, U.M.; Alenina, N.; Santos, R.A.S.; Ferrario, C.M. Alternative Renin—Angiotensin System. Hypertension 2024, 81, 964–976. [Google Scholar] [CrossRef]
- Qaradakhi, T.; Matsoukas, M.T.; Hayes, A.; Rybalka, E.; Caprnda, M.; Rimarova, K.; Sepsi, M.; Büsselberg, D.; Kruzliak, P.; Matsoukas, J.; et al. Alamandine reverses hyperhomocysteinemia-induced vascular dysfunction via PKA-dependent mechanisms. Cardiovasc. Ther. 2017, 35, e12306. [Google Scholar] [CrossRef]
- Martin, B.; Romero, G.; Salama, G. Cardioprotective actions of relaxin. Mol. Cell Endocrinol. 2019, 487, 45–53. [Google Scholar] [CrossRef]
- Leo, C.H.; Jelinic, M.; Ng, H.H.; Marshall, S.A.; Novak, J.; Tare, M.; Conrad, K.P.; Parry, L.J. Vascular actions of relaxin: Nitric oxide and beyond. Br. J. Pharmacol. 2017, 174, 1002–1014. [Google Scholar] [CrossRef]
- Snowdon, V.K.; Lachlan, N.J.; Hoy, A.M.; Hadoke, P.W.; Semple, S.I.; Patel, D.; Mungall, W.; Kendall, T.J.; Thomson, A.; Lennen, R.J.; et al. Serelaxin as a potential treatment for renal dysfunction in cirrhosis: Preclinical evaluation and results of a randomized phase 2 trial. PLoS Med. 2017, 14, e1002248. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Beer-Hammer, S.; König, G.M.; Kostenis, E.; Nürnberg, B.; Gollasch, M. RXFP1 Receptor Activation by Relaxin-2 Induces Vascular Relaxation in Mice via a Galphai2-Protein/PI3Kss/gamma/Nitric Oxide-Coupled Pathway. Front. Physiol. 2018, 9, 1234. [Google Scholar] [CrossRef]
- Pozdzik, A.A.; Salmon, I.J.; Debelle, F.D.; Decaestecker, C.; Van den Branden, C.; Verbeelen, D.; Deschodt-Lanckman, M.M.; Vanherweghem, J.L.; Nortier, J.L. Aristolochic acid induces proximal tubule apoptosis and epithelial to mesenchymal transformation. Kidney Int. 2008, 73, 595–607. [Google Scholar] [CrossRef]
- Sarwar, M.; Du, X.J.; Dschietzig, T.B.; Summers, R.J. The actions of relaxin on the human cardiovascular system. Br. J. Pharmacol. 2017, 174, 933–949. [Google Scholar] [CrossRef]
- Haddad, M.; Cherchi, F.; Alsalem, M.; Al-Saraireh, Y.M.; Madae’en, S. Adenosine Receptors as Potential Therapeutic Analgesic Targets. Int. J. Mol. Sci. 2023, 24, 13160. [Google Scholar] [CrossRef]
- Persson, A.E.; Lai, E.Y.; Gao, X.; Carlström, M.; Patzak, A. Interactions between adenosine, angiotensin II and nitric oxide on the afferent arteriole influence sensitivity of the tubuloglomerular feedback. Front. Physiol. 2013, 4, 187. [Google Scholar] [CrossRef]
- Pak, E.S.; Cha, J.J.; Cha, D.R.; Kanasaki, K.; Ha, H. Adenosine receptors as emerging therapeutic targets for diabetic kidney disease. Kidney Res. Clin. Pr. 2022, 41 (Suppl. S2), S74–S88. [Google Scholar] [CrossRef]
- McPherson, J.A.; Barringhaus, K.G.; Bishop, G.G.; Sanders, J.M.; Rieger, J.M.; Hesselbacher, S.E.; Gimple, L.W.; Powers, E.R.; Macdonald, T.; Sullivan, G.; et al. Adenosine A(2A) receptor stimulation reduces inflammation and neointimal growth in a murine carotid ligation model. Arter. Thromb. Vasc. Biol. 2001, 21, 791–796. [Google Scholar] [CrossRef]
- Bell, T.D.; Welch, W.J. Regulation of renal arteriolar tone by adenosine: Novel role for type 2 receptors. Kidney Int. 2009, 75, 769–771. [Google Scholar] [CrossRef]
- Woo, S.H.; Trinh, T.N. P2 Receptors in Cardiac Myocyte Pathophysiology and Mechanotransduction. Int. J. Mol. Sci. 2020, 22, 251. [Google Scholar] [CrossRef]
- Rump, L.C.; Bohmann, C.; Schwertfeger, E.; Krumme, B.; von Kügelgen, I.; Schollmeyer, P. Extracellular ATP in the human kidney: Mode of release and vascular effects. J. Auton. Pharmacol. 1996, 16, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Rump, L.C.; Oberhauser, V.; von Kugelgen, I. Purinoceptors mediate renal vasodilation by nitric oxide dependent and independent mechanisms. Kidney Int. 1998, 54, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Stockand, J.D.; Mironova, E.; Bugaj, V.; Rieg, T.; Insel, P.A.; Vallon, V.; Peti-Peterdi, J.; Pochynyuk, O. Purinergic inhibition of ENaC produces aldosterone escape. J. Am. Soc. Nephrol. 2010, 21, 1903–1911. [Google Scholar] [CrossRef] [PubMed]
- Shihoya, W.; Sano, F.K.; Nureki, O. Structural insights into endothelin receptor signalling. J. Biochem. 2023, 174, 317–325. [Google Scholar] [CrossRef]
- Wendel, M.; Knels, L.; Kummer, W.; Koch, T. Distribution of endothelin receptor subtypes ETA and ETB in the rat kidney. J. Histochem. Cytochem. 2006, 54, 1193–1203. [Google Scholar] [CrossRef]
- Qiu, C.; Samsell, L.; Baylis, C. Actions of endogenous endothelin on glomerular hemodynamics in the rat. Am. J. Physiol. 1995, 269 Pt 2, R469–R473. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, J.; Ren, H.; He, D.; Pascua, A.; Armando, M.I.; Yang, C.; Zhou, L.; Felder, R.A.; Jose, P.A.; et al. Inhibitory effect of ETB receptor on Na(+)-K(+) ATPase activity by extracellular Ca(2+) entry and Ca(2+) release from the endoplasmic reticulum in renal proximal tubule cells. Hypertens. Res. 2009, 32, 846–852. [Google Scholar] [CrossRef]
- Herrera, M.; Hong, N.J.; Ortiz, P.A.; Garvin, J.L. Endothelin-1 inhibits thick ascending limb transport via Akt-stimulated nitric oxide production. J. Biol. Chem. 2009, 284, 1454–1460. [Google Scholar] [CrossRef]
- Pavlov, T.S.; Chahdi, A.; Ilatovskaya, D.V.; Levchenko, V.; Vandewalle, A.; Pochynyuk, O.; Sorokin, A.; Staruschenko, A. Endothelin-1 inhibits the epithelial Na+ channel through betaPix/14-3-3/Nedd4-2. J. Am. Soc. Nephrol. 2010, 21, 833–843. [Google Scholar] [CrossRef]
- Morales-Loredo, H.; Jones, D.; Barrera, A.; Mendiola, P.J.; Garcia, J.; Pace, C.; Murphy, M.; Kanagy, N.L.; Gonzalez Bosc, L.V. A dual blocker of endothelin A/B receptors mitigates hypertension but not renal dysfunction in a rat model of chronic kidney disease and sleep apnea. Am. J. Physiol. Ren. Physiol. 2019, 316, F1041–F1052. [Google Scholar] [CrossRef]
- Morla, L.; Edwards, A.; Crambert, G. New insights into sodium transport regulation in the distal nephron: Role of G-protein coupled receptors. World J. Biol. Chem. 2016, 7, 44–63. [Google Scholar] [CrossRef] [PubMed]
- Kriz, W.; Wiech, T.; Gröne, H.J. Mesangial Injury and Capillary Ballooning Precede Podocyte Damage in Nephrosclerosis. Am. J. Pathol. 2022, 192, 1670–1682. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, J.; Zhang, M.; Zhou, M.; Xu, F.; Zhu, X.; Zhou, X.; Lang, Y.; Yang, F.; Yun, S.; et al. Angiotensin II induces calcium/calcineurin signaling and podocyte injury by downregulating microRNA-30 family members. J. Mol. Med. 2017, 95, 887–898. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, L.; Zhou, Y.; Xiao, J.; Li, S.; Chen, Y.; Qiao, Z.; Niu, J.; Gu, Y. Angiotensin-(1-7) attenuates damage to podocytes induced by preeclamptic serum through MAPK pathways. Int. J. Mol. Med. 2014, 34, 1057–1064. [Google Scholar] [CrossRef]
- Cassis, P.; Locatelli, M.; Corna, D.; Villa, S.; Rottoli, D.; Cerullo, D.; Abbate, M.; Remuzzi, G.; Benigni, A.; Zoja, C. Addition of cyclic angiotensin-(1-7) to angiotensin-converting enzyme inhibitor therapy has a positive add-on effect in experimental diabetic nephropathy. Kidney Int. 2019, 96, 906–917. [Google Scholar] [CrossRef]
- Lu, J.; Chen, G.; Shen, G.; Ouyang, W. Ang-(1-7) attenuates podocyte injury induced by high glucose in vitro. Arch. Endocrinol. Metab. 2023, 67, e000643. [Google Scholar] [CrossRef]
- Szrejder, M.; Rachubik, P.; Rogacka, D.; Audzeyenka, I.; Rychłowski, M.; Angielski, S.; Piwkowska, A. Extracellular ATP modulates podocyte function through P2Y purinergic receptors and pleiotropic effects on AMPK and cAMP/PKA signaling pathways. Arch. Biochem. Biophys. 2020, 695, 108649. [Google Scholar] [CrossRef]
- Burford, J.L.; Villanueva, K.; Lam, L.; Riquier-Brison, A.; Hackl, M.J.; Pippin, J.; Shankland, S.J.; Peti-Peterdi, J. Intravital imaging of podocyte calcium in glomerular injury and disease. J. Clin. Investig. 2014, 124, 2050–2058. [Google Scholar] [CrossRef]
- Martínez-Díaz, I.; Martos, N.; Llorens-Cebrià, C.; Álvarez, F.J.; Bedard, P.W.; Vergara, A.; Jacobs-Cachá, C.; Soler, M.J. Endothelin Receptor Antagonists in Kidney Disease. Int. J. Mol. Sci. 2023, 24, 3427. [Google Scholar] [CrossRef]
- Opocenský, M.; Kramer, H.J.; Bäcker, A.; Vernerová, Z.; Eis, V.; Cervenka, L.; Certíková Chábová, V.; Tesar, V.; Vanecková, I. Late-onset endothelin-A receptor blockade reduces podocyte injury in homozygous Ren-2 rats despite severe hypertension. Hypertension 2006, 48, 965–971. [Google Scholar] [CrossRef]
- Romi, M.M.; Arfian, N.; Tranggono, U.; Setyaningsih, W.A.W.; Sari, D.C.R. Uric acid causes kidney injury through inducing fibroblast expansion, Endothelin-1 expression, and inflammation. BMC Nephrol. 2017, 18, 326. [Google Scholar] [CrossRef] [PubMed]
- Bolignano, D.; Zoccali, C. Vasopressin beyond water: Implications for renal diseases. Curr. Opin. Nephrol. Hypertens. 2010, 19, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Oka, T.; Hamano, T.; Ohtani, T.; Doi, Y.; Shimada, K.; Matsumoto, A.; Yamaguchi, S.; Hashimoto, N.; Senda, M.; Sakaguchi, Y.; et al. Renoprotection by long-term low-dose tolvaptan in patients with heart failure and hyponatremia. ESC Heart Fail. 2021, 8, 4904–4914. [Google Scholar] [CrossRef]
- Okada, H.; Suzuki, H.; Kanno, Y.; Saruta, T. Effects of novel, nonpeptide vasopressin antagonists on progressive nephrosclerosis in rats. J. Cardiovasc. Pharmacol. 1995, 25, 847–852. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Li, Y.Y.; Zhang, X.Y.; Tian, Z.H.; Liu, C.; Wang, S.T.; Zhang, F.R. Cellular senescence of renal tubular epithelial cells in renal fibrosis. Front. Endocrinol. 2023, 14, 1085605. [Google Scholar] [CrossRef]
- Humphreys, B.D. Mechanisms of Renal Fibrosis. Annu. Rev. Physiol. 2018, 80, 309–326. [Google Scholar] [CrossRef]
- Han, W.Q.; Xu, L.; Tang, X.F.; Chen, W.D.; Wu, Y.J.; Gao, P.J. Membrane rafts-redox signalling pathway contributes to renal fibrosis via modulation of the renal tubular epithelial-mesenchymal transition. J. Physiol. 2018, 596, 3603–3616. [Google Scholar] [CrossRef]
- Mocker, A.; Hilgers, K.F.; Cordasic, N.; Wachtveitl, R.; Menendez-Castro, C.; Woelfle, J.; Hartner, A.; Fahlbusch, F.B. Renal chemerin expression is induced in models of hypertensive nephropathy and glomerulonephritis and correlates with markers of inflammation and fibrosis. Int. J. Mol. Sci. 2019, 20, 6240. [Google Scholar] [CrossRef]
- Liu, H.; Takagaki, Y.; Kumagai, A.; Kanasaki, K.; Koya, D. The PKM2 activator TEPP-46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIF-1α accumulation. J. Diabetes Investig. 2021, 12, 697–709. [Google Scholar] [CrossRef]
- Liao, M.C.; Miyata, K.N.; Chang, S.Y.; Zhao, X.P.; Lo, C.S.; El-Mortada, M.A.; Peng, J.; Chenier, I.; Yamashita, M.; Ingelfinger, J.R.; et al. Angiotensin II type—2—Receptor stimulation ameliorates focal and segmental glomerulosclerosis in mice. Clin. Sci. 2022, 136, 715–731. [Google Scholar] [CrossRef]
- Mookerjee, I.; Hewitson, T.D.; Halls, M.L.; Summers, R.J.; Mathai, M.L.; Bathgate, R.A.; Tregear, G.W.; Samuel, C.S. Relaxin inhibits renal myofibroblast differentiation via RXFP1, the nitric oxide pathway, and Smad2. Faseb J. 2009, 23, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Lekgabe, E.D.; Kiriazis, H.; Zhao, C.; Xu, Q.; Moore, X.L.; Su, Y.; Bathgate, R.A.; Du, X.J.; Samuel, C.S. Relaxin reverses cardiac and renal fibrosis in spontaneously hypertensive rats. Hypertension 2005, 46, 412–418. [Google Scholar] [CrossRef]
- Yoshida, T.; Kumagai, H.; Suzuki, A.; Kobayashi, N.; Ohkawa, S.; Odamaki, M.; Kohsaka, T.; Yamamoto, T.; Ikegaya, N. Relaxin ameliorates salt-sensitive hypertension and renal fibrosis. Nephrol. Dial. Transplant. 2012, 27, 2190–2197. [Google Scholar] [CrossRef]
- Chow, B.S.M.; Kocan, M.; Shen, M.; Wang, Y.; Han, L.; Chew, J.Y.; Wang, C.; Bosnyak, S.; Mirabito-Colafella, K.M.; Barsha, G.; et al. AT1R-AT2R-RXFP1 Functional Crosstalk in Myofibroblasts: Impact on the Therapeutic Targeting of Renal and Cardiac Fibrosis. J. Am. Soc. Nephrol. 2019, 30, 2191–2207. [Google Scholar] [CrossRef]
- Chow, B.S.; Kocan, M.; Bosnyak, S.; Sarwar, M.; Wigg, B.; Jones, E.S.; Widdop, R.E.; Summers, R.J.; Bathgate, R.A.; Hewitson, T.D.; et al. Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney Int. 2014, 86, 75–85. [Google Scholar] [CrossRef]
- Harada, H.; Chan, C.M.; Loesch, A.; Unwin, R.; Burnstock, G. Induction of proliferation and apoptotic cell death via P2Y and P2X receptors, respectively, in rat glomerular mesangial cells. Kidney Int. 2000, 57, 949–958. [Google Scholar] [CrossRef]
- Seccia, T.M.; Maniero, C.; Belloni, A.S.; Guidolin, D.; Pothen, P.; Pessina, A.C.; Rossi, G.P. Role of angiotensin II, endothelin-1 and L-type calcium channel in the development of glomerular, tubulointerstitial and perivascular fibrosis. J. Hypertens. 2008, 26, 2022–2029. [Google Scholar] [CrossRef]
- Arfian, N.; Suzuki, Y.; Hartopo, A.B.; Anggorowati, N.; Nugrahaningsih, D.A.A.; Emoto, N. Endothelin converting enzyme-1 (ECE-1) deletion in association with Endothelin-1 downregulation ameliorates kidney fibrosis in mice. Life Sci. 2020, 258, 118223. [Google Scholar] [CrossRef]
- Seccia, T.M.; Caroccia, B.; Gioco, F.; Piazza, M.; Buccella, V.; Guidolin, D.; Guerzoni, E.; Montini, B.; Petrelli, L.; Pagnin, E.; et al. Endothelin-1 Drives Epithelial-Mesenchymal Transition in Hypertensive Nephroangiosclerosis. J. Am. Heart Assoc. 2016, 5, e003888. [Google Scholar] [CrossRef]
- Hung, T.W.; Yu, M.H.; Yang, T.Y.; Yang, M.Y.; Chen, J.Y.; Chan, K.C.; Wang, C.J. Acarbose Protects Glucolipotoxicity-Induced Diabetic Nephropathy by Inhibiting Ras Expression in High-Fat Diet-Fed db/db Mice. Int. J. Mol. Sci. 2022, 23, 15312. [Google Scholar] [CrossRef]
- Psyllaki, A.; Tziomalos, K. New perspectives in the management of diabetic nephropathy. World J. Diabetes 2024, 15, 1086–1090. [Google Scholar] [CrossRef] [PubMed]
- Bertaud, A.; Joshkon, A.; Heim, X.; Bachelier, R.; Bardin, N.; Leroyer, A.S.; Blot-Chabaud, M. Signaling Pathways and Potential Therapeutic Strategies in Cardiac Fibrosis. Int. J. Mol. Sci. 2023, 24, 1756. [Google Scholar] [CrossRef] [PubMed]
- Souza-Silva, I.M.; Carregari, V.C.; Steckelings, U.M.; Verano-Braga, T. Phosphoproteomics for studying signaling pathways evoked by hormones of the renin-angiotensin system: A source of untapped potential. Acta Physiol. 2025, 241, e14280. [Google Scholar] [CrossRef]
- Patel, S.N.; Kulkarni, K.; Faisal, T.; Hussain, T. Angiotensin-II type 2 receptor-mediated renoprotection is independent of receptor Mas in obese Zucker rats fed high-sodium diet. Front. Pharmacol. 2024, 15, 1409313. [Google Scholar] [CrossRef]
- Zhang, K.; Meng, X.; Li, D.; Yang, J.; Kong, J.; Hao, P.; Guo, T.; Zhang, M.; Zhang, Y.; Zhang, C. Angiotensin(1-7) attenuates the progression of streptozotocin-induced diabetic renal injury better than angiotensin receptor blockade. Kidney Int. 2015, 87, 359–369. [Google Scholar] [CrossRef]
- Mann, J.F.; Green, D.; Jamerson, K.; Ruilope, L.M.; Kuranoff, S.J.; Littke, T.; Viberti, G.; ASCEND Study Group. Avosentan for overt diabetic nephropathy. J. Am. Soc. Nephrol. 2010, 21, 527–535. [Google Scholar] [CrossRef]
- Kohan, D.E.; Pritchett, Y.; Molitch, M.; Wen, S.; Garimella, T.; Audhya, P.; Andress, D.L. Addition of atrasentan to renin-angiotensin system blockade reduces albuminuria in diabetic nephropathy. J. Am. Soc. Nephrol. 2011, 22, 763–772. [Google Scholar] [CrossRef]
- de Zeeuw, D.; Coll, B.; Andress, D.; Brennan, J.J.; Tang, H.; Houser, M.; Correa-Rotter, R.; Kohan, D.; Lambers Heerspink, H.J.; Makino, H.; et al. The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J. Am. Soc. Nephrol. 2014, 25, 1083–1093. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Parving, H.H.; Andress, D.L.; Bakris, G.; Correa-Rotter, R.; Hou, F.F.; Kitzman, D.W.; Kohan, D.; Makino, H.; McMurray, J.J.V.; et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): A double-blind, randomised, placebo-controlled trial. Lancet 2019, 393, 1937–1947. [Google Scholar] [CrossRef]
- Lenoir, O.; Milon, M.; Virsolvy, A.; Hénique, C.; Schmitt, A.; Massé, J.M.; Kotelevtsev, Y.; Yanagisawa, M.; Webb, D.J.; Richard, S.; et al. Direct action of endothelin-1 on podocytes promotes diabetic glomerulosclerosis. J. Am. Soc. Nephrol. 2014, 25, 1050–1062. [Google Scholar] [CrossRef]
- Kohan, D.E.; Barratt, J.; Heerspink, H.J.L.; Campbell, K.N.; Camargo, M.; Ogbaa, I.; Haile-Meskale, R.; Rizk, D.V.; King, A. Targeting the Endothelin A Receptor in IgA Nephropathy. Kidney Int. Rep. 2023, 8, 2198–2210. [Google Scholar] [CrossRef] [PubMed]
- Thöne-Reinke, C.; Simon, K.; Richter, C.M.; Godes, M.; Neumayer, H.H.; Thormählen, D.; Hocher, B. Inhibition of both neutral endopeptidase and endothelin-converting enzyme by SLV306 reduces proteinuria and urinary albumin excretion in diabetic rats. J. Cardiovasc. Pharmacol. 2004, 44 (Suppl. S1), S76–S79. [Google Scholar] [CrossRef] [PubMed]
- Lehner, U.; Velić, A.; Schroter, R.; Schlatter, E.; Sindić, A. Ligands and signaling of the G-protein-coupled receptor GPR14, expressed in human kidney cells. Cell Physiol. Biochem. 2007, 20, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Gao, S.; Chen, Z.W. Biological actions of human urotensin II on cardiovascularsystem. Chin. J. Clin. Pharmacol. Ther. 2005, 10, 1210–1214. [Google Scholar]
- Xu, S.; Wen, H.; Jiang, H. Urotensin II promotes the proliferation of endothelial progenitor cells through p38 and p44/42 MAPK activation. Mol. Med. Rep. 2012, 6, 197–200. [Google Scholar]
- Ong, K.L.; Wong, L.Y.; Man, Y.B.; Leung, R.Y.; Song, Y.Q.; Lam, K.S.; Cheung, B.M. Haplotypes in the urotensin II gene and urotensin II receptor gene are associated with insulin resistance and impaired glucose tolerance. Peptides 2006, 27, 1659–1667. [Google Scholar] [CrossRef]
- Tian, L.; Li, C.; Qi, J.; Fu, P.; Yu, X.; Li, X.; Cai, L. Diabetes-induced upregulation of urotensin II and its receptor plays an important role in TGF-beta1-mediated renal fibrosis and dysfunction. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1234–E1242. [Google Scholar] [CrossRef]
- Pereira-Castro, J.; Brás-Silva, C.; Fontes-Sousa, A.P. Novel insights into the role of urotensin II in cardiovascular disease. Drug Discov. Today 2019, 24, 2170–2180. [Google Scholar] [CrossRef]
- Vogt, L.; Chiurchiu, C.; Chadha-Boreham, H.; Danaietash, P.; Dingemanse, J.; Hadjadj, S.; Krum, H.; Navis, G.; Neuhart, E.; Parvanova, A.I.; et al. Effect of the urotensin receptor antagonist palosuran in hypertensive patients with type 2 diabetic nephropathy. Hypertension 2010, 55, 1206–1209. [Google Scholar] [CrossRef]
- Watson, A.M.; Olukman, M.; Koulis, C.; Tu, Y.; Samijono, D.; Yuen, D.; Lee, C.; Behm, D.J.; Cooper, M.E.; Jandeleit-Dahm, K.A.; et al. Urotensin II receptor antagonism confers vasoprotective effects in diabetes associated atherosclerosis: Studies in humans and in a mouse model of diabetes. Diabetologia 2013, 56, 1155–1165. [Google Scholar] [CrossRef]
- Cao, Y.K.; Guo, Q.; Ma, H.J.; Wang, R.; Teng, X.; Wu, Y. Microinjection of urotensin II into the rostral ventrolateral medulla increases sympathetic vasomotor tone via the GPR14/ERK pathway in rats. Hypertens. Res. 2020, 43, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, W.; Li, S.; Wang, J.; Sun, D.; Li, H.; Zhang, Z.; Hu, Y.; Fang, J. Astragaloside IV alleviates renal fibrosis by inhibiting renal tubular epithelial cell pyroptosis induced by urotensin II through regulating the cAMP/PKA signaling pathway. PLoS ONE 2024, 19, e0304365. [Google Scholar] [CrossRef] [PubMed]
- Levi, M. Role of Bile Acid-Regulated Nuclear Receptor FXR and G Protein-Coupled Receptor TGR5 in Regulation of Cardiorenal Syndrome (Cardiovascular Disease and Chronic Kidney Disease). Hypertension 2016, 67, 1080–1084. [Google Scholar] [CrossRef]
- He, Y.; Liu, S.; Zhang, Y.; Zuo, Y.; Huang, K.; Deng, L.; Liao, B.; Zhong, Y.; Feng, J. Takeda G protein-coupled receptor 5 (TGR5): An attractive therapeutic target for aging-related cardiovascular diseases. Front. Pharmacol. 2025, 16, 1493662. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, C.E.; Liu, T.; Zhang, M.X.; Niu, Y.; Wang, M.; Yu, J. The roles of gut microbiota and its metabolites in diabetic nephropathy. Front. Microbiol. 2023, 14, 1207132. [Google Scholar] [CrossRef]
- Li, M.; Long, L.S.; Liang, B.E.; Xu, L.; Zhao, X.D.; Wang, W.D.; Li, C.L. Activation of TGR5 Attenuates Renal Fibrosis after Renal Ischemia Reperfusion Injury. J. Sun Yat-Sen Univ. (Med. Sci.) 2023, 44, 617–624. [Google Scholar]
- Xiong, F.; Li, X.; Yang, Z.; Wang, Y.; Gong, W.; Huang, J.; Chen, C.; Liu, P.; Huang, H. TGR5 suppresses high glucose-induced upregulation of fibronectin and transforming growth factor-beta1 in rat glomerular mesangial cells by inhibiting RhoA/ROCK signaling. Endocrine 2016, 54, 657–670. [Google Scholar] [CrossRef]
- Thal, D.M.; Glukhova, A.; Sexton, P.M.; Christopoulos, A. Structural insights into G-protein-coupled receptor allostery. Nature 2018, 559, 45–53. [Google Scholar] [CrossRef]
- Griepke, S.; Trauelsen, M.; Nilsson, M.D.; Hansen, J.; Steffensen, L.B.; Schwartz, T.W.; Ketelhuth, D.F.J. G-Protein-Coupled Receptor 91-Dependent Signalling Does Not Influence Vascular Inflammation and Atherosclerosis in Hyperlipidaemic Mice. Cells 2023, 12, 2580. [Google Scholar] [CrossRef]
- McCreath, K.J.; Espada, S.; Gálvez, B.G.; Benito, M.; de Molina, A.; Sepúlveda, P.; Cervera, A.M. Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes 2015, 64, 1154–1167. [Google Scholar] [CrossRef]
- van Diepen, J.A.; Robben, J.H.; Hooiveld, G.J.; Carmone, C.; Alsady, M.; Boutens, L.; Bekkenkamp-Grovenstein, M.; Hijmans, A.; Engelke, U.F.H.; Wevers, R.A.; et al. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes. Diabetologia 2017, 60, 1304–1313. [Google Scholar] [CrossRef]
- Toma, I.; Kang, J.J.; Sipos, A.; Vargas, S.; Bansal, E.; Hanner, F.; Meer, E.; Peti-Peterdi, J. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J. Clin. Investig. 2008, 118, 2526–2534. [Google Scholar] [CrossRef] [PubMed]
- Robben, J.H.; Fenton, R.A.; Vargas, S.L.; Schweer, H.; Peti-Peterdi, J.; Deen, P.M.; Milligan, G. Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int. 2009, 76, 1258–1267. [Google Scholar] [CrossRef] [PubMed]
- Spillmann, F.; Van Linthout, S.; Schultheiss, H.P.; Tschöpe, C. Cardioprotective mechanisms of the kallikrein-kinin system in diabetic cardiopathy. Curr. Opin. Nephrol. Hypertens. 2006, 15, 22–29. [Google Scholar] [CrossRef]
- Zhou, X.; Prado, G.N.; Taylor, L.; Yang, X.; Polgar, P. Regulation of inducible bradykinin B1 receptor gene expression through absence of internalization and resensitization. J. Cell Biochem. 2000, 78, 351–362. [Google Scholar] [CrossRef]
- Harvey, J.N.; Edmundson, A.W.; Jaffa, A.A.; Martin, L.L.; Mayfield, R.K. Renal excretion of kallikrein and eicosanoids in patients with type 1 (insulin-dependent) diabetes mellitus. Relationship to glomerular and tubular function. Diabetologia 1992, 35, 857–862. [Google Scholar] [CrossRef]
- Montanari, D.; Yin, H.; Dobrzynski, E.; Agata, J.; Yoshida, H.; Chao, J.; Chao, L. Kallikrein gene delivery improves serum glucose and lipid profiles and cardiac function in streptozotocin-induced diabetic rats. Diabetes 2005, 54, 1573–1580. [Google Scholar] [CrossRef]
- Buléon, M.; Allard, J.; Jaafar, A.; Praddaude, F.; Dickson, Z.; Ranera, M.T.; Pecher, C.; Girolami, J.P.; Tack, I. Pharmacological blockade of B2-kinin receptor reduces renal protective effect of angiotensin-converting enzyme inhibition in db/db mice model. Am. J. Physiol.-Ren. Physiol. 2008, 294, F1249–F1256. [Google Scholar] [CrossRef]
- Harris, M.B.; Ju, H.; Venema, V.J.; Liang, H.; Zou, R.; Michell, B.J.; Chen, Z.P.; Kemp, B.E.; Venema, R.C. Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. J. Biol. Chem. 2001, 276, 16587–16591. [Google Scholar] [CrossRef]
- Vitova, L.; Tuma, Z.; Moravec, J.; Kvapil, M.; Matejovic, M.; Mares, J. Early urinary biomarkers of diabetic nephropathy in type 1 diabetes mellitus show involvement of kallikrein-kinin system. BMC Nephrol. 2017, 18, 112. [Google Scholar] [CrossRef]
- Yuan, G.; Deng, J.; Wang, T.; Zhao, C.; Xu, X.; Wang, P.; Voltz, J.W.; Edin, M.L.; Xiao, X.; Chao, L.; et al. Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 5′-monophosphate-activated protein kinase signaling pathways. Endocrinology 2007, 148, 2016–2026. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yang, Y.; Liu, Y.; Lu, X.; Guo, S.; Wu, M.; Wang, M.; Yan, L.; Wang, Q.; Zhao, X.; et al. Exogenous kallikrein protects against diabetic nephropathy. Kidney Int. 2016, 90, 1023–1036. [Google Scholar] [CrossRef]
- Kayashima, Y.; Smithies, O.; Kakoki, M. The kallikrein-kinin system and oxidative stress. Curr. Opin. Nephrol. Hypertens. 2012, 21, 92–96. [Google Scholar] [CrossRef]
- Bledsoe, G.; Crickman, S.; Mao, J.; Xia, C.F.; Murakami, H.; Chao, L.; Chao, J. Kallikrein/kinin protects against gentamicin-induced nephrotoxicity by inhibition of inflammation and apoptosis. Nephrol. Dial. Transplant. 2006, 21, 624–633. [Google Scholar] [CrossRef]
- Yiu, W.H.; Wong, D.W.; Wu, H.J.; Li, R.X.; Yam, I.; Chan, L.Y.; Leung, J.C.; Lan, H.Y.; Lai, K.N.; Tang, S.C. Kallistatin protects against diabetic nephropathy in db/db mice by suppressing AGE-RAGE-induced oxidative stress. Kidney Int. 2016, 89, 386–398. [Google Scholar] [CrossRef]
- Qadri, F.; Bader, M. Kinin B1 receptors as a therapeutic target for inflammation. Expert Opin. Ther. Targets 2018, 22, 31–44. [Google Scholar] [CrossRef]
- Aikawa, S.; Hashimoto, T.; Kano, K.; Aoki, J. JB Special Review-Recent Progress in Lipid Mediators Lysophosphatidic acid as a lipid mediator with multiple biological actions. J. Biochem. 2015, 157, 81–89. [Google Scholar] [CrossRef]
- Ishii, I.; Contos, J.J.; Fukushima, N.; Chun, J. Functional comparisons of the lysophosphatidic acid receptors, LP(A1)NVZG-1/EDG-2, LPA2/EDG-4, and LPA3/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol. Pharmacol. 2000, 58, 895–902. [Google Scholar] [CrossRef]
- Lee, C.W.; Rivera, R.; Gardell, S.; Dubin, A.E.; Chun, J. GPR92 as a new G(12/13)- and G(q)-coupled lysophosphatidic acid receptor that increases cAMP, LPA(5). J. Biol. Chem. 2006, 281, 23589–23597. [Google Scholar] [CrossRef]
- Riaz, A.; Huang, Y.; Johansson, S. G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling. Int. J. Mol. Sci. 2016, 17, 215. [Google Scholar] [CrossRef]
- Sasagawa, T.; Suzuki, K.; Shiota, T.; Kondo, T.; Okita, M. The significance of plasma lysophospholipids in patients with renal failure on hemodialysis. J. Nutr. Sci. Vitaminol. 1998, 44, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Sakai, N.; Chun, J.; Duffield, J.S.; Lagares, D.; Wada, T.; Luster, A.D.; Tager, A.M. Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor. Kidney Int. 2017, 91, 628–641. [Google Scholar] [CrossRef]
- Li, H.Y.; Oh, Y.S.; Choi, J.W.; Jung, J.Y.; Jun, H.S. Blocking lysophosphatidic acid receptor 1 signaling inhibits diabetic nephropathy in db/db mice. Kidney Int. 2017, 91, 1362–1373. [Google Scholar] [CrossRef]
- Kim, D.; Li, H.Y.; Lee, J.H.; Oh, Y.S.; Jun, H.S. Lysophosphatidic acid increases mesangial cell proliferation in models of diabetic nephropathy via Rac1/MAPK/KLF5 signaling. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [CrossRef]
- Lucaciu, A.; Brunkhorst, R.; Pfeilschifter, J.M.; Pfeilschifter, W.; Subburayalu, J. The S1P-S1PR Axis in Neurological Disorders-Insights into Current and Future Therapeutic Perspectives. Cells 2020, 9, 1515. [Google Scholar] [CrossRef]
- Gandy, K.A.O.; Obeid, L.M. Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: Review of sphingosine kinase inhibitors. Biochim. Et. Biophys. Acta-Mol. Cell Biol. Lipids 2013, 1831, 157–166. [Google Scholar] [CrossRef]
- Masuda-Kuroki, K.; Di Nardo, A. Sphingosine 1-Phosphate Signaling at the Skin Barrier Interface. Biology 2022, 11, 809. [Google Scholar] [CrossRef]
- Ishizawa, S.; Takahashi-Fujigasaki, J.; Kanazawa, Y.; Matoba, K.; Kawanami, D.; Yokota, T.; Iwamoto, T.; Tajima, N.; Manome, Y.; Utsunomiya, K. Sphingosine-1-phosphate induces differentiation of cultured renal tubular epithelial cells under Rho kinase activation via the S1P2 receptor. Clin. Exp. Nephrol. 2014, 18, 853–854. [Google Scholar] [CrossRef]
- Chen, C.; Gong, W.; Li, C.; Xiong, F.; Wang, S.; Huang, J.; Wang, Y.; Chen, Z.; Chen, Q.; Liu, P.; et al. Sphingosine kinase 1 mediates AGEs-induced fibronectin upregulation in diabetic nephropathy. Oncotarget 2017, 8, 78660–78676. [Google Scholar] [CrossRef]
- Sauer, B.; Vogler, R.; von Wenckstern, H.; Fujii, M.; Anzano, M.B.; Glick, A.B.; Schäfer-Korting, M.; Roberts, A.B.; Kleuser, B. Involvement of Smad signaling in sphingosine 1-phosphate-mediated biological responses of keratinocytes. J. Biol. Chem. 2004, 279, 38471–38479. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Li, K.; Shi, Z.; Wu, J. G-Protein-Coupled Receptors in Chronic Kidney Disease Induced by Hypertension and Diabetes. Cells 2025, 14, 729. https://doi.org/10.3390/cells14100729
Tang H, Li K, Shi Z, Wu J. G-Protein-Coupled Receptors in Chronic Kidney Disease Induced by Hypertension and Diabetes. Cells. 2025; 14(10):729. https://doi.org/10.3390/cells14100729
Chicago/Turabian StyleTang, Huidi, Kang Li, Zhan Shi, and Jichao Wu. 2025. "G-Protein-Coupled Receptors in Chronic Kidney Disease Induced by Hypertension and Diabetes" Cells 14, no. 10: 729. https://doi.org/10.3390/cells14100729
APA StyleTang, H., Li, K., Shi, Z., & Wu, J. (2025). G-Protein-Coupled Receptors in Chronic Kidney Disease Induced by Hypertension and Diabetes. Cells, 14(10), 729. https://doi.org/10.3390/cells14100729