Micronized Palmitoylethanolamide, Hempseed Oil, and Maritime Pine Bark Dry Extract (Pelvipea®) for Pelvic Pain: An In Vitro Study for Urothelial Inflammation Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of the Titer in the Three Raw Materials
2.2. Bacterial Strain
2.3. In Vitro Model of the Innate Immune System
2.4. Determination of the Cytotoxicity of the Three Functional Ingredients and Their Mixture
2.5. Preparation of Conditioned Medium on THP-1 for the Treatment of the Bladder Urothelium Model In Vitro
2.6. Evaluation of the Anti-Inflammatory Activity of the Three Functional Ingredients and Their Mixture in an In Vitro Bladder Urothelium Model
2.7. Statistical Analyses
3. Results
3.1. Determination of the Impact of the Three Functional Ingredients and Their Mixture on the Vitality of the In Vitro Model of the Immune System
3.2. Impact of Conditioned Media on Inflammation of the Bladder Urothelium In Vitro
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fall, M.; Baranowski, A.P.; Elneil, S.; Engeler, D.; Hughes, J.; Messelink, E.J.; Oberpenning, F.; Williams, A.C.D.C. EAU guidelines on chronic pelvic pain. Eur. Urol. 2010, 57, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Mathias, S.D.; Kuppermann, M.; Liberman, R.F.; Lipschutz, R.C.; Steege, J.F. Chronic pelvic pain: Prevalence, health-related quality of life, and economic correlates. Obstet. Gynecol. 1996, 87, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Marszalek, M.; Wehrberger, C.; Temml, C.; Ponholzer, A.; Berger, I.; Madersbacher, S. Chronic pelvic pain and lower urinary tract symptoms in both sexes: Analysis of 2749 participants of an urban health screening project. Eur. Urol. 2009, 55, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Jhang, J.F.; Kuo, H.C. Pathomechanism of Interstitial Cystitis/Bladder Pain Syndrome and Mapping the Heterogeneity of Disease. Int. Neurourol. J. 2016, 20 (Suppl. S2), S95–S104. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jhang, J.F.; Kuo, H.C. Can We Use Urinary Cytokine/Chemokine Analysis in Discriminating Ulcer-Type Interstitial Cystitis/Bladder Pain Syndrome? Diagnostics 2022, 12, 1093. [Google Scholar] [CrossRef]
- Adamian, L.; Urits, I.; Orhurhu, V.; Hoyt, D.; Driessen, R.; Freeman, J.A.; Kaye, A.D.; Kaye, R.J.; Garcia, A.J.; Cornett, E.M. A comprehensive review of the diagnosis, treatment, and management of urologic chronic pelvic pain syndrome. Curr. Pain Headache Rep. 2020, 24, 27. [Google Scholar] [CrossRef]
- Krieger, J.; Stephens, A.; Landis, J.R.; Afari, N.; Andriole, G.; Clemens, J.Q.; Kreder, K.; Lai, H.H.; Mackey, S.; Rodriguez, L. Non-urological syndromes and severity of urological pain symptoms: Baseline evaluation of the national institutes of health multidisciplinary approach to pelvic pain study. J. Urol. 2013, 189, e181. [Google Scholar] [CrossRef]
- Panunzio, A.; Tafuri, A.; Mazzucato, G.; Cerrato, C.; Orlando, R.; Pagliarulo, V.; Antonelli, A.; Cerruto, M.A. Botulinum Toxin-A Injection in Chronic Pelvic Pain Syndrome Treatment: A Systematic Review and Pooled Meta-Analysis. Toxins 2022, 14, 25. [Google Scholar] [CrossRef]
- Magistro, G.; Wagenlehner, F.M.; Grabe, M.; Weidner, W.; Stief, C.G.; Nickel, J.C. Contemporary management of chronic prostatitis/chronic pelvic pain syndrome. Eur. Urol. 2016, 69, 286–297. [Google Scholar] [CrossRef]
- Grimm, T.; Chovanová, Z.; Muchová, J.; Sumegová, K.; Liptáková, A.; Duracková, Z.; Högger, P. Inhibition of NF-kappaB activation and MMP-9 secretion by plasma of human volunteers after ingestion of maritime pine bark extract (Pycnogenol). J Inflamm 2006, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The seed of industrial hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef]
- Lim, X.Y.; Tan, T.Y.C.; Muhd Rosli, S.H.; Sa’at, M.N.F.; Sirdar Ali, S.; Syed Mohamed, A.F. Cannabis sativa subsp. sativa’s pharmacological properties and health effects: A scoping review of current evidence. PLoS ONE 2021, 16, e0245471. [Google Scholar] [CrossRef]
- Gabrielsson, L.; Mattsson, S.; Fowler, C.J. Palmitoylethanolamide for the treatment of pain: Pharmacokinetics, safety and efficacy. Br. J. Clin. Pharmacol. 2016, 82, 932–942. [Google Scholar] [CrossRef]
- Rinaldi, M. Chronic Pelvic Pain Syndrome, General Conservative and Medical Management and Palmitoylethanolamide (PEA) Efficacy. J. Dis. Disord. Treat. 2022, 2, 2–4. [Google Scholar] [CrossRef]
- Clayton, P.; Hill, M.; Bogoda, N.; Subah, S.; Venkatesh, R. Palmitoylethanolamide: A Natural Compound for Health Management. Int. J. Mol. Sci. 2021, 22, 5305. [Google Scholar] [CrossRef]
- Citti, C.; Linciano, P.; Panseri, S.; Vezzalini, F.; Forni, F.; Vandelli, M.A.; Cannazza, G. Cannabinoid Profiling of Hemp Seed Oil by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Front. Plant Sci. 2019, 10, 120. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Davis, A.; Kumar, S.K.; Murray, B.; Zheljazkov, V.D. Industrial Hemp (Cannabis sativa subsp. sativa) as an Emerging Source for Value-Added Functional Food Ingredients and Nutraceuticals. Molecules 2020, 25, 4078. [Google Scholar] [CrossRef]
- Iseppi, R.; Brighenti, V.; Licata, M.; Lambertini, A.; Sabia, C.; Messi, P.; Pellati, F.; Benvenuti, S. Chemical Characterization and Evaluation of the Antibacterial Activity of Essential Oils from Fibre-Type Cannabis sativa L. (Hemp). Molecules 2019, 24, 2302. [Google Scholar] [CrossRef]
- Callaway, J.; Schwab, U.; Harvima, I.; Halonen, P.; Mykkänen, O.; Hyvönen, P.; Järvinen, T. Efficacy of dietary hempseed oil in patients with atopic dermatitis. J. Dermatol. Treat. 2005, 16, 87–94. [Google Scholar] [CrossRef]
- Del Bo’, C.; Deon, V.; Abello, F.; Massini, G.; Porrini, M.; Riso, P.; Guardamagna, O. Eight-week hempseed oil intervention improves the fatty acid composition of erythrocyte phospholipids and the omega-3 index, but does not affect the lipid profile in children and adolescents with primary hyperlipidemia. Food Res. Int. 2019, 119, 469–476. [Google Scholar] [CrossRef]
- Rezapour-Firouzi, S.; Arefhosseini, S.R.; Farhoudi, M.; Ebrahimi-Mamaghani, M.; Rashidi, M.R.; Torbati, M.A.; Baradaran, B. Association of Expanded Disability Status Scale and Cytokines after Intervention with Co-supplemented Hemp Seed, Evening Primrose Oils and Hot-natured Diet in Multiple Sclerosis Patients. Bioimpacts 2013, 3, 43–47. [Google Scholar] [PubMed]
- Schwab, U.S.; Callaway, J.C.; Erkkilä, A.T.; Gynther, J.; Uusitupa, M.I.; Järvinen, T. Effects of hempseed and flaxseed oils on the profile of serum lipids, serum total and lipoprotein lipid concentrations and haemostatic factors. Eur. J. Nutr. 2006, 45, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Scientific and Clinical Monograph for Pycnogenol®. Available online: https://www.pycnogenol.com/fileadmin/pdf/ABC_Pycnogenol_Monograph_2019.pdf (accessed on 23 January 2022).
- Cho, K.J.; Yun, C.H.; Packer, L.; Chung, A.S. Inhibition mechanisms of bioflavonoids extracted from the bark of Pinus maritima on the expression of proinflammatory cytokines. Ann. N. Y. Acad. Sci. 2001, 928, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Santos, P.; Genisheva, Z.; Botelho, C.; Santos, J.; Ramos, C.; Teixeira, J.A.; Rocha, C.M.R. Unravelling the Biological Potential of Pinus pinaster Bark Extracts. Antioxidants 2020, 9, 334. [Google Scholar] [CrossRef]
- Robertson, N.U.; Schoonees, A.; Brand, A.; Visser, J. Pine bark (Pinus spp.) extract for treating chronic disorders. Cochrane Database Syst. Rev. 2020, 9, Cd008294. [Google Scholar]
- Petrosino, S.; Di Marzo, V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br. J. Pharmacol. 2017, 174, 1349–1365. [Google Scholar] [CrossRef]
- Peritore, A.F.; Siracusa, R.; Fusco, R.; Gugliandolo, E.; D’Amico, R.; Cordaro, M.; Crupi, R.; Genovese, T.; Impellizzeri, D.; Cuzzocrea, S.; et al. Ultramicronized Palmitoylethanolamide and Paracetamol, a New Association to Relieve Hyperalgesia and Pain in a Sciatic Nerve Injury Model in Rat. Int. J. Mol. Sci. 2020, 21, 3509. [Google Scholar] [CrossRef]
- Hesselink, J.M.; Hekker, T.A. Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: A case series. J. Pain Res. 2012, 5, 437–442. [Google Scholar] [CrossRef]
- Hayes, B.W.; Abraham, S.N. Innate Immune Responses to Bladder Infection. Microbiol. Spectr. 2016, 4, 4–6. [Google Scholar] [CrossRef]
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef]
- Chanput, W.; Mes, J.J.; Wichers, H.J. THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol. 2014, 23, 37–45. [Google Scholar] [CrossRef]
- Arantes-Rodrigues, R.; Colaço, A.; Pinto-Leite, R.; Oliveira, P.A. In vitro and in vivo experimental models as tools to investigate the efficacy of antineoplastic drugs on urinary bladder cancer. Anticancer Res. 2013, 33, 1273–1279. [Google Scholar]
Micronized PEA (μg/mL) | Vitality (%) |
---|---|
0 (control) | 100 ± 20.2 |
50 | 73.2 ± 9.5 |
100 | 106.5 ± 5.6 |
200 | 79.6 ± 11.6 |
300 | 86.5 ± 5.9 |
500 | 71.9 ± 1.3 |
600 | 73.9 ± 19.5 |
Hempseed Oil (μg/mL) | Vitality (%) |
0 (control) | 100 ± 6.1 |
6.25 | 102.8 ± 11.1 |
12.5 | 117.7 ± 13.3 |
25 | 107.8 ± 17.1 |
37.5 | 114.1 ± 12.1 |
62.5 | 121.8 ± 9.4 |
75 | 122.9 ± 23.2 |
Maritime Pine Bark Dry Extract (μg/mL) | Vitality (%) |
0 (control) | 100 ± 20.2 |
1.25 | 98.3 ± 12.1 |
2.5 | 91.7 ± 10.6 |
5 | 82.2 ± 14.0 |
7.5 | 72.4 ± 7.9 |
12.5 | 108.2 ± 33.5 |
15 | 101.8 ± 25.7 |
Mixture (μg/mL) | Vitality (%) |
0 (control) | 100 ± 6.1 |
57.5 | 94.5 ± 10.0 |
115 | 102.5 ± 14.0 |
230 | 77.5 ± 7.9 |
460 | 55.2 ± 14.1 * |
690 | 54.5 ± 9.9 * |
Treatment (μg/mL) | NF-kB (Fold Change vs. Control) | |
---|---|---|
Condition 1 | Micronized PEA 600 | 2.89 ± 2.37 |
Hempseed oil 75 | 0.78 ± 0.06 | |
Maritime pine bark dry extract 15 | 0.83 ± 0.11 | |
Mixture 690 | 0.68 ± 0.14 | |
Condition 2 | Micronized PEA 400 | 6.16 * ± 0.92 |
Hempseed oil 50 | 0.02 ± 0.04 | |
Maritime pine bark dry extract 10 | 0.65 * ± 0.00 | |
Mixture 460 | 0.35 ± 0.06 | |
Condition 3 | Micronized PEA 200 | 0.12 ± 0.02 |
Hempseed oil 25 | 0.04 ± 0.01 | |
Maritime pine bark dry extract 5 | 0.71 * ± 0.13 | |
Mixture 230 | 0.37 ± 0.07 | |
Condition 4 | Micronized PEA 100 | 0.75 * ± 0.15 |
Hempseed oil 12.5 | 0.05 * ± 0.01 | |
Maritime pine bark dry extract 2.5 | 0.56 * ± 0.11 | |
Mixture 115 | 0.03 * ± 0.00 | |
Condition 5 | Micronized PEA 50 | 0.57 ± 0.11 |
Hempseed oil 6.25 | 0.00 ± 0.00 | |
Maritime pine bark dry extract 1.25 | 0.09 ± 0.01 | |
Mixture 57.5 | 0.57 ± 0.07 | |
Condition 6 | Micronized PEA 25 | 0.43* ± 0.06 |
Hempseed oil 3.125 | 0.01 ± 0.00 | |
Maritime pine bark dry extract 0.625 | 0.11* ± 0.01 | |
Mixture 28.75 | 0.08 ± 0.01 |
Treatment (μg/mL) | IL-1β (Fold Change vs. Control) | IL-6 (Fold Change vs. Control) | IL-8 (Fold Change vs. Control) | |
---|---|---|---|---|
Condition 1 | Micronized PEA 600 | 0.14 * ± 0.01 | 0.48 * ± 0.01 | 0.55 * ± 0.01 |
Hempseed oil 75 | 0.12 * ± 0.01 | 0.36 ± 0.01 | 0.65 * ± 0.02 | |
Maritime pine bark dry extract 15 | 0.12 * ± 0.01 | 0.33 ± 0.01 | 0.53 * ± 0.01 | |
Mixture 690 | 0.09 ± 0.01 | 0.44 ± 0.01 | 0.46 ± 0.01 | |
Condition 2 | Micronized PEA 400 | 0.25 * ± 0.00 | 0.34 * ± 0.01 | 0.49 * ± 0.04 |
Hempseed oil 50 | 0.23 * ± 0.00 | 0.28 * ± 0.01 | 0.50 * ± 0.00 | |
Maritime pine bark dry extract 10 | 0.11 ± 0.00 | 0.02 ± 0.00 | 0.59 * ± 0.01 | |
Mixture 460 | 0.10 ± 0.00 | 0.04 ± 0.00 | 0.24 ± 0.00 | |
Condition 3 | Micronized PEA 200 | 0.15 * ± 0.00 | 0.34 * ± 0.02 | 0.51 * ± 0.01 |
Hempseed oil 25 | 0.16 * ± 0.00 | 0.23 * ± 0.01 | 0.42 * ± 0.02 | |
Maritime pine bark dry extract 5 | 0.14 * ± 0.00 | 0.27 * ± 0.01 | 0.57 * ± 0.06 | |
Mixture 230 | 0.08 ± 0.00 | 0.01 ± 0.00 | 0.32 ± 0.01 | |
Condition 4 | Micronized PEA 100 | 0.25 * ± 0.00 | 0.33 * ± 0.01 | 0.54 ± 0.03 |
Hempseed oil 12.5 | 0.15 * ± 0.01 | 0.04 ± 0.00 | 0.46 ± 0.01 | |
Maritime pine bark dry extract 2.5 | 0.30 * ± 0.00 | 0.27 * ± 0.01 | 0.36 ± 0.00 | |
Mixture 115 | 0.12 ± 0.00 | 0.03 ± 0.00 | 0.54 ± 0.04 | |
Condition 5 | Micronized PEA 50 | 0.30 * ± 0.00 | 0.38 * ± 0.02 | 0.68 ± 0.02 |
Hempseed oil 6.25 | 0.13 ± 0.00 | 0.03 ± 0.00 | 0.54 ± 0.02 | |
Maritime pine bark dry extract 1.25 | 0.16 ± 0.01 | 0.26 * ± 0.01 | 0.50 ± 0.03 | |
Mixture 57.5 | 0.15 ± 0.00 | 0.09 ± 0.00 | 0.81 ± 0.04 | |
Condition 6 | Micronized PEA 25 | 0.30 * ± 0.00 | 0.45 * ± 0.02 | 0.69 * ± 0.01 |
Hempseed oil 3.125 | 0.13 * ± 0.00 | 0.00 ± 0.00 | 0.56 * ± 0.02 | |
Maritime pine bark dry extract 0.625 | 0.23 * ± 0.00 | 0.30 * ± 0.01 | 0.62 * ± 0.02 | |
Mixture 28.75 | 0.10 ± 0.00 | 0.03 ± 0.00 | 0.43 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tafuri, A.; Panunzio, A.; De Mitri, R.; Benetti, F.; Gaio, E.; Pagliarulo, V. Micronized Palmitoylethanolamide, Hempseed Oil, and Maritime Pine Bark Dry Extract (Pelvipea®) for Pelvic Pain: An In Vitro Study for Urothelial Inflammation Treatment. Cells 2023, 12, 616. https://doi.org/10.3390/cells12040616
Tafuri A, Panunzio A, De Mitri R, Benetti F, Gaio E, Pagliarulo V. Micronized Palmitoylethanolamide, Hempseed Oil, and Maritime Pine Bark Dry Extract (Pelvipea®) for Pelvic Pain: An In Vitro Study for Urothelial Inflammation Treatment. Cells. 2023; 12(4):616. https://doi.org/10.3390/cells12040616
Chicago/Turabian StyleTafuri, Alessandro, Andrea Panunzio, Rita De Mitri, Federico Benetti, Elisa Gaio, and Vincenzo Pagliarulo. 2023. "Micronized Palmitoylethanolamide, Hempseed Oil, and Maritime Pine Bark Dry Extract (Pelvipea®) for Pelvic Pain: An In Vitro Study for Urothelial Inflammation Treatment" Cells 12, no. 4: 616. https://doi.org/10.3390/cells12040616
APA StyleTafuri, A., Panunzio, A., De Mitri, R., Benetti, F., Gaio, E., & Pagliarulo, V. (2023). Micronized Palmitoylethanolamide, Hempseed Oil, and Maritime Pine Bark Dry Extract (Pelvipea®) for Pelvic Pain: An In Vitro Study for Urothelial Inflammation Treatment. Cells, 12(4), 616. https://doi.org/10.3390/cells12040616