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Abstract: Despite the progressive advances, current standards of treatments for peripheral nerve
injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should
be considered. Complementary and alternative medicines (CAMs) are widely explored for their
therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated.
The present systematic review, designed according to guidelines of Preferred Reporting Items for
Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature
on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions,
and their respective natural products. The available literature on CAMs associated with peripheral
nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science.
According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus
membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied.
Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through
activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated
the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are
partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and
anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in
the management of peripheral nerve injury.

Keywords: complementary and alternative medicines; natural products; peripheral nerve injury;
nerve repair; nerve regeneration; functional recovery

1. Introduction

Peripheral nerve injury (PNI) can result in partial or total loss of motor, sensory and
autonomic functions at denervated regions, leading to temporary or life-long disability [1].
In addition to reduced quality of life, functional deficits from PNI have a substantial
economic impact on the affected individuals [2]. A recent study found that, over nine years
(from 2009 to 2018), more than 550,000 individuals were afflicted by PNI in the United
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States. Moreover, the incidence rate has more than doubled throughout that period of
time [3]. Such injuries are primarily due to vehicular and traumatic accidents, lacerations,
and iatrogenic causes [4–6].

Despite progressive advances in our understanding of the processes and mecha-
nisms of nerve injury, effective nerve repair and regeneration approaches that ensure
complete functional recovery remain scarce [7]. Nerve autograft is considered the gold
standard for repairing peripheral nerve defects [8]. However, this method is restricted by
limited donor nerves and donor site morbidity, while successful recovery rates remain
unsatisfactory [9]. Consequently, alternative strategies for enhancing nerve repairs have
been proposed, including the application of nerve conduits and the addition of growth
factors [10,11]. Likewise, the exploration of novel therapeutics, even combinatorial
therapies, capable of enhancing axonal regeneration and promoting functional recovery,
are of great interest.

PNI often results in neuropathic pain, and when conventional treatments are inade-
quate in providing relief, patients may turn to complementary and alternative medicines
(CAMs), such as herbal medicines and nutritional supplements [12]. Indeed, medicinal
plants, including the Acorus calamus [13], Curcuma longa [14], and Ginkgo biloba [15], have
displayed ameliorating effects in animal models of neuropathic pain. Research on the
potential of medicinal plants in the treatment of PNI is prompted by the notion that plants
are great sources of natural products (NPs), which are small molecules produced by living
organisms. Many NPs are the focus of drug development, as it is generally believed that
they are largely devoid of adverse effects compared to synthetic drugs [16,17]. NPs also
have the advantage of being evolutionary-driven, thus they are more likely to possess
tremendous chemical and structural diversity that facilitates efficient engagement with
biologically relevant targets and receptors, making them more biologically active [18]. In
fact, many small-molecule drugs that have been approved by regulatory agencies were
derived from natural sources [19], including Taxol from Taxus brevifolia [20] and Vinblastine
from Catharanthus roseus [21].

However, compared to the extensive research on naturally derived products for other
non-communicable and infectious diseases, NPs remain largely unexplored in the field of
nerve repair and regeneration. A review published nearly half a decade ago has shed light
on the neuroprotective effects of NPs in PNI models [22]. This review presents current
research findings and evaluates the role of CAMs, focusing on plants or herbs, mushrooms,
and decoctions, as well as their NPs, in peripheral nerve regeneration, to highlight their
therapeutic potential for the management of PNI.

2. Materials and Methods

This systematic review was designed according to guidelines of Preferred Reporting
Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) [23].

2.1. Search Strategy and Data Extraction

A literature search was performed to find all relevant publications up to 25 October
2020 across three electronic databases, PubMed, Scopus, and Web of Science. The fol-
lowing keywords were used to search each respective database: ((“peripheral* nerve*
regenera*” OR “peripheral* nerve* repair*” OR “neuroregenera*”) AND (“alga*” OR
“seaweed*” OR “plant” OR “natural product*” OR “mushroom” OR “Basidiomycete*”
OR “herb*” OR “Traditional Chinese Medicine*” OR “alternative medicine” OR “com-
plementary medicine*”)).
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2.2. Eligibility Criteria

Research articles describing the use of plants or herbs, mushrooms, algae, decoction,
and their natural products in peripheral nerve repair and regeneration, written in English,
and having full-text availability were considered. Articles not representing original research
studies and NPs derived from sources other than plants, herbs, algae, and mushrooms
were excluded (e.g., Lumbricus rubellus—earthworm). Retrieved articles were screened
based on their title, abstract, and full-text to determine their eligibility for inclusion in
this review.

3. Results

A preliminary search across the three databases yielded 560 records, of which 215 were
duplicates (Figure 1). Together with 18 other records identified by other means, the re-
maining articles were screened based on the eligibility criteria, resulting in 289 additional
records being excluded, leaving 56 records remaining and their findings being included
in the qualitative synthesis (Figure 1). The studies investigated the neuroregenerative
potential of 25 species of plants, three different mushrooms, and four traditional Chinese
medicine decoctions, of which 18 known NPs were characterized. None of the studies
investigated the potential of algae in peripheral nerve regeneration.
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Figure 1. Flow diagram of the literature search procedure for the selection of studies up to 25
October 2020 on the use of plants, mushrooms, algae, decoctions, and their natural products (NPs)
in peripheral nerve repair and regeneration. Only articles written in English, and having full-text
availability were included. Articles not representing original research studies and NPs derived from
sources other than plants, herbs, algae, and mushrooms were excluded.
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Among the 58 records, the majority of the reported findings were from in vivo studies
(38 records) that used mainly histological and electrophysiological evaluation to examine
peripheral nerve regeneration in rat models of sciatic nerve injury (SNI). In contrast,
11 records were in vitro studies, which included reports of the promoting effects of plants,
mushrooms, decoctions, and their natural products on the proliferation and migration of
Schwann cells (SCs), and on neurite outgrowth in dorsal root ganglion (DRG) explants and
neurons. Additionally, nine records included both in vitro and in vivo studies. In terms of
the mechanisms of the biological effects, regulation of the mitogen-activated protein kinase
(MAPK) pathway was reported to be highly involved across these studies.

4. Discussion
4.1. Current Therapeutic Approaches against Peripheral Nerve Injuries

Peripheral nerves are prone to injury because of their delicate structures and superfi-
cial location throughout the human body. The prevalence of PNI together with its societal
impact poses a health concern that needs to be addressed properly. Current treatment
strategies for PNI are divided into surgical and non-surgical approaches that can be effec-
tive when applied appropriately [24]. Surgical techniques, including suturing of severed
nerves and nerve grafting, do yield successful outcomes but are sometimes not feasible
due to limitations such as the timing of surgery, size of nerve gaps, and donor site mor-
bidity [25,26]. Consequently, other promising alternatives have emerged in recent years
and have been receiving increasing attention, such as the utilization of different nerve
conduits capable of housing and delivering biological cues whilst enhancing and guiding
nerve regeneration 11, growth factor treatments [27], and cell-based therapies [28]. In
contrast, non-surgical options for the management of PNI are far more limited, including
approved medications on the market, electrical nerve stimulation [29], and the application
of phytochemicals and secondary metabolites. The latter is widespread in other areas of
research including cancer [30] and neurological disorders [31], but are far less prevalent in
the field of peripheral nerve regeneration.

4.2. Mechanisms of Peripheral Nerve Injury and Regeneration

Nerve bundles are primarily composed of axons covered with myelin sheaths pro-
duced by Schwann cells with fibroblasts scattered in between the nerve fibers. During
peripheral nerve injury, instantaneous tissue damage occurs at the site of the lesion together
with the accumulation of galectin-3 macrophages, whereas nerve stumps that are distally
located undergo cellular variation despite not being directly affected [32]. After an axonal
injury, Wallerian degeneration occurs, followed by axonal regeneration, and eventually
end-organ reinnervation (see Figure 2) [33]. Wallerian degeneration takes place 24 to 48 h
following nerve injury. Axons begin to disintegrate and growth factors such as nerve
growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are released by SCs
in the segment distal to the injured site. Galectin-3 macrophages are then recruited to
the distal end, which contributes to myelin degradation and removal of remaining de-
bris [34]. Growth factors are also retrogradely transported proximally toward the cell body.
Subsequent removal of deteriorated myelin and axonal matter leads to the proliferation
and alignment of SCs, forming the bands of Büngner that further guide the regenerating
axons from the proximal to the distal site [35]. Axonal regeneration in humans is known to
occur at a rate of approximately 1 mm per day [36], which would require months or even
years for severe nerve injuries to fully recover. Moreover, poor functional recovery can
occur due to a number of reasons, including progressive failure of axonal regeneration,
disruption of SC function in providing a growth-supportive environment, and misdirection
of regenerating axons [36].
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Figure 2. Overview of mechanism of peripheral nerve injury and regeneration. Following nerve
injury, Wallerian degeneration occurs, in which axons begin to disintegrate at the distal end, and
growth factors (such as NGF and BDNF) are released by Schwann cells. Galectin-3 macrophages are
recruited to remove axonal debris and degrade myelin sheaths. Subsequently, SCs align to form the
Band of Büngner, which guides the regenerating axons from the proximal to distal sites. Eventually,
the regenerated axons innervate the end tissue to complete the recovery process. NGF—nerve growth
factor; BDNF—brain-derived neurotrophic factor.
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4.3. Role of Schwann Cells in Nerve Regeneration

Schwann cells are supportive glial cells that are known to play a pivotal role in
the proper functioning and maintenance of peripheral nerves. They are responsible for
producing the basal lamina that determines the polarity of SCs and myelinating axons [37].
The myelin sheaths on axons allow the conduction of action potentials at high velocity
via the formation of specialized nodes of Ranvier [38]. The high plasticity of SCs allows
them to further develop into repair phenotypes in response to nerve injury (Figure 3).
Following nerve injury, SCs can re-differentiate into repair SCs that align themselves to
form bands of Büngner. This in turn allows axons to emerge from growth cones proximal to
the injured site, which then elongate along the bands until the target organ is reinnervated.
The repair SCs also participate in the removal of axon and myelin debris, and they can
recruit macrophages to assist in the process [39]. In addition, repair SCs can also secrete
neurotrophic factors that help promote cellular survival, proliferation, and differentiation,
which are all essential for peripheral nerve repair [40]. Due to the importance of SCs
in promoting peripheral nerve regeneration, it is expected that any disruption in SC
proliferation, such as that caused by impairment in cyclin D1, will affect nerve regeneration
following injury [41]. However, findings from past studies suggest that axonal regeneration
is independent of SC proliferation [42,43]. Nevertheless, considering the association of SCs
with axonal elongation and myelination, it is reasonable to hypothesize that enhanced SC
proliferation may lead to greater regenerative potential. Hence, numerous studies have
attempted to investigate the effects of NPs in promoting the proliferation and migration
ability of SCs (Table 1).
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Table 1. Summary of plants, mushrooms, and decoctions their natural products relating to peripheral nerve regeneration.

Source Molecule(s)/
Ingredients Experimental Model Effective Concentration Application Method Biological Effect Mechanism Reference

PLANT

Achyranthes
bidentata

Polypeptides
In vitro

(SCs isolated from the sciatic
nerves of 1-day old SD rats)

0.1 µg/mL Incubation Promoted migration of SCs
Upregulation of

NOX4/DUOX2-derived
ROS production

[44]

Polypeptides

In vitro
(DRG explants harvested from
spinal and peripheral roots of

postnatal day 1 SD rats)

0.01, 0.1, 1 µg/mL
(dose-dependent manner) Incubation Promoted neurite outgrowth from cultured

DRG explants/neurons Activation of ERK1/2

[45]

In vivo
(Adult New Zealand rabbits) 6.0 mg/kg Intravenous injection

Enhanced nerve regeneration and functional
restoration after crush injury to rabbit

common peroneal nerve (increased CMAP,
density, diameter and thickness of myelinated

fibers, and number of motor neurons in
anterior horn)

N/A

Polypeptides
(Fraction K)

In vitro
(DRG explants harvested from
spinal and peripheral roots of

postnatal day 1 SD rats)

50, 250 ng/mL
(dose-dependent manner) Incubation Promoted neurite outgrowth in DRG explant

and neurons Activation of ERK1/2

[46]

In vivo
(ICR mice) 10 mg/kg Intravenous injection

Promoted peripheral nerve regeneration in
mice after SNI (increased diameter and
thickness of myelinated fibers, CSA of

gastrocnemius muscle fibers, SFI, and CMAP)

N/A

Polypeptides In vivo
(SD rats) 2 mg in 0.2 mL saline Intraperitoneal injection

Promoted functional and histological
recovery after rat sciatic nerve crush

(increased SFI, CMAP, MNCV, myelin
thickness, lamellae number, CSA of

gastrocnemius muscle fibers)

Modulation of mRNA
expression of GAP-43,

neurotrophic factors (NGF,
BDNF, CNTF), and
neurotrophic factor

receptors (TrkA, TrkB)

[47]

Polypeptides In vivo
(ICR mice)

1, 4, 16 mg/kg
(dose-independent

manner)
Tail vein injection

Promoted functional and histological
recovery after rat sciatic nerve crush

(increased SFI, CMAP, MNCV, number, and
diameter of myelinated fibers, axon diameter,
myelin thickness, lamellae number, CSA of

gastrocnemius muscle fibers)

N/A [48]

Aqueous extract In vivo
(Adult New Zealand rabbits)

10, 20 mg/kg
(dose-dependent manner) Intravenous injection

Promoted peripheral nerve regeneration in
the crushed common peroneal nerve in

rabbits (increased CMAP, CSA of tibialis
posterior muscle, number of regenerated

myelinated nerve fibers, and motoneurons in
anterior horn of the spinal cord)

N/A [49]
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Table 1. Cont.

Source Molecule(s)/
Ingredients Experimental Model Effective Concentration Application Method Biological Effect Mechanism Reference

Alpinate
Oxyphyllae

Fructus (Alpinia
oxyphylla Miq)

Protocatechuic acid In vitro
(RSC96 SCs) 1 mM Incubation Promoted proliferation and survival of

RSC96 SCs

Upregulation of IGF-1 and
activation of

PI3K/Akt signaling
[50]

Aqueous extract

In vitro
(RSC96 SCs)

Proliferation: 20, 60,
200 µg/mL

(dose-independent manner
Migration:

20–200 µg/mL
(dose-dependent manner

Incubation Promoted proliferation and migration of
RSC96 SCs

Upregulation of PAs (uPA,
tPA) and MMP2/9

mediated through the
activation of MAPK
pathway (ERK1/2,

JNK, p38)

[51]

In vivo
(SD rats)

30, 60, 100, 150, 200
µg/mL (dose-independent

manner)

Injection into a silicone
rubber tube bridging a

15mm sciatic nerve defect

Promoted peripheral nerve regeneration in
rats with SNI

Astragalus
membranaceus

Astragaloside IV In vivo
(BALB/c mice)

2.5, 5, 10 mg/kg
(dose-dependent manner) Intraperitoneal injection

Promoted sciatic nerve regeneration and
functional recovery in mice (increased

number and diameter of myelinated nerve
fibers, MNCV, CMAP)

Upregulation of
GAP-43 expression [52]

Astragaloside IV In vivo
(SD rats) 50 µM

Injection into a silicone
rubber tube bridging a

15mm sciatic nerve defect

Promoted peripheral nerve regeneration in
rats with SNI (increased number of

myelinated axons and CMAP)
N/A [53]

Extract In vivo
(SD rats) 3 g/kg in 0.01 M of PBS Intragastric gavage

Promoted peripheral nerve regeneration in
rats with SNI (increased MNCV and latency,
fluorogold labeling in the DRG, mean axonal
density, percentage of CGRP area ratio, and

macrophage density)

Modulation of local
growth factors (FGF, NGF,

PDGF, TGF-β) and
immunoregulatory factors

(IL-1, IFN-γ)

[54]

Aqueous extract In vitro
(RSC96 SCs)

Proliferation: 12.5, 125, 250,
500 µg/mL (optimal at

12.5 µg/mL)
Migration: 1.25, 12.5, 125,
250, 500 µg/mL (optimal

at 1.25 µg/mL)

Incubation Promoted proliferation and migration of
RSC96 SCs

Proliferation: Increased
cyclin protein A, D1, and E
via ERK and p38 signaling

pathways
Migration: Activation of

FGF-2 signaling, leading to
upregulation of uPA and
downregulation of PAI-1

[55]

Centella asiatica Hydro-ethanolic
extract

In vivo
(SD rats) 400 µg/mL

Nerve conduit developed
using decellularized artery

seeded with C.
asiatca-neurodifferentiated

mesenchymal stem cells
bridging a 15mm sciatic

nerve defect

Promoted nerve regeneration and functional
restoration in rats with SNI (increased CMAP,
latency, MNCV, confirmation of angiogenesis,

increased MBP expression, and number of
myelinated axons)

N/A [56]
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Table 1. Cont.

Source Molecule(s)/
Ingredients Experimental Model Effective Concentration Application Method Biological Effect Mechanism Reference

Citrus medica var.
sarcodactylis Aqueous extract In vitro

(RSC96 SCs)

0.85, 1.7, 2.55, 3.4,
4.25 µg/mL

(dose-dependent manner)
Incubation Promoted proliferation and migration of

RSC96 SCs

Proliferation: Upregulation
of cyclin A and B1

Migration: Activation of
FGF-2 signaling, leading to

the upregulation of uPA
and MMP-9

[57]

Codonopsis
pilosula Aqueous extract In vitro

(RSC96 SCs)

20, 40, 60, 80, 100 µg/mL
(dose-

independent manner)
Incubation Promoted proliferation and migration of

RSC96 SCs

Proliferation: Enhanced
IGF-I signaling pathway,

cell cycle controlling
protein expressions (cyclin

A, D1, E) and MAPK
pathway (ERK, p38)

Migration: Stimulated
FGF-2-uPA-MMP9
migration pathway

[58]

Crocus sativus Crocin In vivo
(Wistar rats) 20, 80 mg/kg Intraperitoneal injection

Promoted functional recovery in rats with
SNI (Increased SFI, reduced plasma MDA

levels, alleviated histological changes due to a
crushing injury)

N/A [59]

Curcuma longa

Alcoholic extract In vivo
(Wistar rats)

100 mg/kg (3, 6, or 9 times
across 28 days) Intraperitoneal injection

Protected against peripheral nerve
degeneration in rats with SNI (Increased

number of intact neurons in the right ventral
horn of spinal cord region)

N/A [60]

Curcumin In vivo
(SD rats)

100 mg/kg (dissolved in
olive oil) Oral gavage

Promoted peripheral nerve regeneration in
rats with SNI (increased mean cell volume,
total volume and surface of DRG cells, total
number, diameter, and area of myelinated

nerve fibers)

N/A [61]

Curcumin In vivo
(SD rats)

100 mg/kg (dissolved in
olive oil) Oral gavage

Promoted functional recovery (improved SFI)
and protective effect on DRG (increased
volume and number of A- and B- cells,

number of satellite cells) in rats with SNI

N/A [62]

Curcumin In vivo
(SD rats) 50, 100, 300 mg/kg Intraperitoneal injection

Promoted peripheral nerve regeneration in
rats with SNI (increased number of

motoneurons, number and diameter of
myelinated axons, SFI, MNCV, amplitude of

CMAP, muscle fiber area and reduced latency
of CMAP, mechanical withdrawal threshold,

thermal withdrawal latency)

N/A [63]

Curcumin
In vitro

(SCs isolated from
S100β-DsRed transgenic mice)

0.04-1 µM (0.1 µM having
the highest

proliferative effect)
Incubation Promoted proliferation and migration of SCs

Proliferation: Modulated
by ERK and p38
kinase pathways

[64]
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Table 1. Cont.

Source Molecule(s)/
Ingredients Experimental Model Effective Concentration Application Method Biological Effect Mechanism Reference

Curcuma longa
(curcumin); from

honeybees
(propolis)

Curcumin, propolis In vivo
(Wistar rats)

Curcumin (100 mg/kg)
Propolis (200 mg/kg)

Administration through a
nasogastric tube

Promoted functional recovery in rats with
SNI (Increased SFI and amplitude of CMAP,

reduced latency time)
N/A [65]

Dioscoreae rhizoma Aqueous extract In vivo
(SD rats) 10 mg/mL Applied directly into the

crush site

Promoted peripheral nerve regeneration in
rats with SNI (increased number of DRG

sensory neurons and motor neurons in the
spinal cord)

Increasing protein levels of
GAP-43 and Cdc2 [66]

Epimedium

Icariin In vivo
(SD rats) 20 mg in 5 mL

Injection into a
poly(lactic-co-glycolic acid)

biological conduit sleeve
bridging a 5mm sciatic

nerve defect

Promoted peripheral nerve regeneration in
rats with SNI (increased sciatic nerve
conduction velocity and number of

myelinated fibers)

N/A [67]

Epimedium extract,
icariin

In vivo
(SD rats) 4.873 mg/mL Intragastric administration

Promoted peripheral nerve regeneration in
rats with SNI (Increased SFI, nerve

regeneration based on nerve pinch test,
MNCV, muscle wet weight)

N/A [68]

Gardenia
jasminoides Ellis Genipin In vivo

(SD rats)

3% aqueous gelatin
solution fixed with 3%

genipin

Injection into a silicone
rubber tube bridging a

10mm sciatic nerve defect

Promoted peripheral nerve regeneration in
rats with SNI N/A [69]

Gastrodia elata
Blume Gastrodin In vitro

(RSC96 SCs)
50, 100, 200 µM

(dose-dependent manner) Incubation Promoted proliferation of RSC96 SCs in a
dose- and time-dependent manner

Inhibition of ERK1/2
phosphorylation and

activation of Akt
phosphorylation

[70]

Ginkgo biloba

Ginkgo biloba extract
(EGb 761)

In vivo
(SD rats) 50 mg/kg

Intraperitoneal injection
paired with an 18mm

acellular nerve allograft
bridging a 15mm sciatic

nerve defect

Promoted peripheral nerve regeneration in
rats with SNI (increased density of

regenerated axons, muscle mass, axon
number and diameter, expression of CD34

and NF200)

Increasing expression of
angiogenesis-related genes
(Vegf, Sox18, Prom1, IL-6)

[71]

Ginkgo biloba extract
(EGb 761)

In vitro
(SCs isolated from spinal nerves

of 1-day old SD rats)

1, 10, 20, 50, 100 µg/mL
(dose-dependent manner) Incubation Promoted cell attachment and survival of SCs

N/A [72]

In vivo
(SD rats) 10, 50 µg/mL

Injection into
poly(DL-lactic

acid-co-glycolic acid)
conduit seeded with

Schwann cells bridging a
12mm sciatic nerve defect

Promoted histological and functional
recovery in rats with SNI (increased number

and area of myelinated axons,
increased CMAP)
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Table 1. Cont.

Source Molecule(s)/
Ingredients Experimental Model Effective Concentration Application Method Biological Effect Mechanism Reference

Ginseng

Ginsenoside Rg1 In vitro
(RSC96 SCs)

Ginseng: 100, 200, 300, 400,
500 µg/mL

Ginsenoside: 5, 10, 15, 20,
25 µg/mL)

(Dose-dependent manner
for both)

Incubation Promoted proliferation and migration of
RSC96 SCs

Proliferation: Enhancing
protein expression of IGF-I

pathway regulators
(IGF-IR, PI3K, p-Akt,

p-Bad, Bcl-2), cell cycle
controlling proteins (cyclin

D1, E, A), and MAPK
signaling pathway (ERK,

JNK, p38)
Migration: Stimulating the

FGF-2-uPA-MMP9
migrating pathway

[73]

Ginsenoside Rg1 In vivo(SD rats) 1.5 mg/kg Intraperitoneal injection

Promoted peripheral nerve regeneration in
rats with SNI (increased number of

motoneurons, number, and diameter of
myelinated axons, SFI, MNCV, improved

CMAP latency and amplitude, the increased
average percentage of muscle fiber)

N/A [74]

Ginsenoside Re

In vitro
(SCs isolated from sciatic

nerves of 3-day old SD rats)
0.5 mg/mL Incubation Promoted proliferation and migration of SCs

Phosphorylation of
ERK1/2 and JNK 1/2 [75]

In vivo
(SD rats) 2.0 mg/kg Intraperitoneal injection

Promoted peripheral nerve regeneration in
rats with SNI (increased SFI, TSI, PCNA
expression level, improved pathological

changes due to crushing injury, GAP43, and
S-100 expression)

Green tea

(-)-Epigallocatechin-3-
gallate

(EGCG)

In vivo
(Wistar rats) 50 mg/kg Intraperitoneal injection

Promoted functional recovery (improved
outcomes of foot position, toe spreading,

extensor postural thrust, hopping reflex, von
Frey hair, Randall–Sellito, hotplate, and
tail-flick tests), improved morphological

recovery in skeletal muscle tissues muscles,
and protection towards muscle fibers in rats

with SNI

Protection of muscle fibers
from cellular death

through activation of an
anti-apoptotic signaling
pathway (modulation of

Bax, Bcl-2, and
p53 expression)

[76]

(-)-Epigallocatechin-3-
gallate

(EGCG)

In vivo
(Wistar rats) 50 mg/kg Intraperitoneal injection

Promoted peripheral nerve regeneration in
rats with SNI (improved nerve morphology

and functional recovery assessed by foot
position, extensor postural thrust test, and

withdrawal reflex threshold)

Reversal of Bax, Bcl-2, and
survivin mRNA expression

induced by sciatic
nerve injury

[77]

Can be found in a
wide variety of

plants
Syringic acid In vitro

(RSC96 SCs) 600 µM Incubation Promoted proliferation and migration of
RSC96 SCs

Downregulation of
miR-451-5p [78]
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Table 1. Cont.

Source Molecule(s)/
Ingredients Experimental Model Effective Concentration Application Method Biological Effect Mechanism Reference

Can be found in a
wide variety

of plants
Ursolic acid In vivo

(BALB/c mice)
2.5, 5, 10 mg/kg

(dose-dependent manner) Intraperitoneal injection

Promoted peripheral nerve regeneration in
rats with SNI (increased number and

diameter of myelinated nerve fibers and
soleus muscle mass)

Increasing S100 protein
expression levels [79]

Lycium barbarum Polysaccharide

In vitro
(1) PC12 cells

(2) Rat SCs
(3) DRG neurons isolated from

the embryo of 14-day
pregnant rat

10, 30, 50 mg/mL (optimal
at 30 mg/mL)

Incorporated into
core-shell structured

nanofibrous scaffolds by
coaxial electrospinning

(1) Promoted proliferation and neuronal
differentiation of PC12 cells

(2) Promoted proliferation and myelination
of SCs

(3) Promoted neurite outgrowth of
DRG neurons

N/A [80]

Can be found in a
wide variety

of plants
Quercetin

In vitro
(RSC96 SCs) 0.1, 1, 10 µg/mL Incubation Promoted proliferation of RSC96 SCs

N/A [81]
In vivo

(SD rats) 0.1, 1, 10 µg/mL
Injection into a silicone
rubber tube bridging a

15mm sciatic nerve defect

Promoted peripheral nerve regeneration in
rats with SNI (increased count and density of
myelinated axons, and resulted in larger area

and amplitude of CMAP)

Morus sp. Cortex Mori Radicis
(aqueous extract)

In vivo
(SD rats) 100 mg/kg Gastrointestinal

administration

Reduced blood glucose levels, improved
nerve functions (thermal latency and

mechanical threshold), reversed the loss of
Nissl bodies and induced neurite outgrowth

in DRG neurons, and restored the response of
growth cones to NGF in diabetic rats

Neurite outgrowth:
Increased expression of
TRPC1, reduced Ca2+

influx, and activation of
PI3K/Akt signaling

[82]

Pueraria lobata

Puerarin

In vitro
(RSC96 SCs)

1, 10, 100 µM (dose-
independent manner) Incubation Promoted growth of SCs

N/A [83]
In vivo

(SD rats)

1, 10, 100 µM
(dose-independent

manner)

Injection into a silicone
rubber tube bridging a

15mm sciatic nerve defect

Promoted peripheral nerve regeneration in
rats with SNI (increased density of

myelinated axons, CMAP, and MNCV)

Serum metabolites
(obtained from rats

fed with Pueraria
lobata extract)

In vitro
(PC12 cells) 0.01, 0.1, 1 unit Incubation Enhanced NGF-mediated neurite outgrowth

and expression of synapsin I in PC12 cells

N/A [84]
In vivo

(SD rats) 0.01, 0.1, 1 unit

Injection into silicone
rubber chamber

bridging a 10mm sciatic
nerve defect

Promoted peripheral nerve regeneration in
rats with SNI (increased mean values of

myelinated axon number, endoneurial area,
and total nerve area)

Radix Hedysari

Aqueous extract In vivo
(SD rats) 1 g/mL

Oral gavage paired with
biodegradable chitin

conduit bridging a 2mm
sciatic nerve defect

Promoted peripheral nerve regeneration in
rats with SNI (increased MNCV, fiber and

axon diameter, g-ratio)
N/A [85]

Polysaccharides In vivo
(SD rats) 0.25 g/mL Oral gavage

Promoted peripheral nerve regeneration in
rats with sciatic nerve defect (increased SFI,

TFI, PFI values, MNCV, and number of
regenerated myelinated nerve fibers)

N/A [86]
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Table 1. Cont.

Source Molecule(s)/
Ingredients Experimental Model Effective Concentration Application Method Biological Effect Mechanism Reference

Rhodiola rosea L. Salidroside In vivo
(SD rats) 5, 10 mg/kg Intraperitoneal injection

Promoted peripheral nerve regeneration in
rats with SNI (increased number and

diameter of myelinated axons, number of
motoneurons, SFI, amplitude of

CMAP, MNCV)

N/A [87]

Scutellaria
baicalensis Georgi Baicalin In vitro

(RSC96 SCs)
5, 10, 20 µM

(dose-dependent manner) Incubation Promoted proliferation of RSC96 SCs

Modulation of
neurotrophic factors

(GDNF, BDNF, CNTF) and
S100β

[88]

Trigonella
foenum-graecum

(fenugreek)

IND01 (Fenugreek
seed extract)

In vivo
(Wistar rats) 50, 100, 200 mg/kg Oral administration

Promoted peripheral nerve regeneration in
rats with:

(1) partial sciatic nerve ligation (ameliorated
thermal hyperalgesia, improved motor

function test scores)
(2) SNI (ameliorated thermal hyperalgesia,

improved motor function test scores,
increased MNCV)

N/A [89]

Tripterygium
wilfordii Hook. F. Triptolide In vivo

(SD rats) 100 µg/kg Intraperitoneal injection

Promoted peripheral nerve regeneration in
rats with SNI (increased number of

motoneurons, number of myelinated axons,
diameter of nerve fibers, SFI, CMAP

amplitude, MNCV, muscle fiber area)

Reduction of TNF-α, IL-β,
and IL-6 expression [90]

MUSHROOM

Amanita muscaria Muscimol In vivo
(SD rats) 400 µg/mL Applied directly to the

right L5 DRG

Promoted peripheral nerve regeneration in
rats with SNI (prevented the development of
thermal and mechanical hypersensitivity and

mechanical allodynia, improved basal
membrane integrity, and increased

nerve fibers)

Normalization of PMP22
protein expression level by
GABAergic modulation in

the ipsilateral DRG

[91]

Hericium erinaceus

Aqueous extract In vivo
(SD rats) 10 mL/kg Oral administration Promoted peripheral nerve regeneration in

rats following peroneal nerve crush

Activation of signaling
pathways (Akt, MAPK,

c-Jun, c-Fos) and protein
synthesis

[92]

Polysaccharide In vivo
(SD rats) 30 mg/mL/kg Oral administration

Promoted sensory functional recovery
following peroneal nerve crush in rats
(reduced withdrawal reflex latency)

Activation of Akt and p38
MAPK signaling and

increased expression of
RECA-1

[93]

Aqueous extract In vivo
(SD rats) 10, 20 mL/kg Oral administration

Promoted peripheral nerve regeneration in
rats following peroneal nerve crush

(increased PFI, improved axon morphology,
and development of neuromuscular junction)

N/A [94]
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Table 1. Cont.

Source Molecule(s)/
Ingredients Experimental Model Effective Concentration Application Method Biological Effect Mechanism Reference

Lignosus
rhinocerotis Aqueous extract In vivo

(SD rats) 500, 1000 mg/kg Oral administration
Promoted motor and sensory functional

recovery in rats with SNI (improved WRL
and toe-spreading reflex)

N/A [95]

DECOCTION

Bogijetong

(1) Bogijietong
decoction

(18 ingredients)
(2) A reconstituted

formulation of BGJTD
(BeD) with

4 ingredients
(3) Angelica gigas (an

ingredient in BeD)

In vitro
(Primary neurons isolated from
DRG at lumbar levels 4 and 5 in

adult rats)

400 mg/kg Incubation Promoted neurite outgrowth of DRG neurons
(1) BGJTD and BeD:

Downregulation of TNF-α
and p38, upregulation of
p-ERK1/2; (2) Angelica

gigas: Regulation of
ERK1/2 activity and
TNF-α production

[96]

In vivo
(SD rats and BALB/c mice) 400 mg/kg Oral administration Reduced latency time in rats

Buyang Huanwu

Buyang Huanwu
decoction (16

ingredients: Modified
formulation)

In vivo
(SD rats) 1800 mg/kg

Oral administration paired
with silicone rubber tube
bridging a 10mm sciatic

nerve defect

Promoted peripheral nerve regeneration in
rats with sciatic nerve defect (increased nerve

formation, myelinated axons, and
endoneurial area)

N/A [97]

Jiaweibugan Jiaweibugan decoction
(9 ingredients)

In vivo
(Wistar rats) 28.6 g/kg Intragastric administration

Protective effect on peripheral nerve injury by
playing an anti-oxidative role in a diabetic rat
model (increased MNCV and serum levels of
glutathione, decreased serum levels of MDA)

Downregulation of NF-kB
p65 and p38 MAPK mRNA

expression
[98]

Qian-Zheng-San

Qian-Zheng-San (3
ingredients: Typhonii

rhizoma, Bombyx
batryticatus, Scorpio)

In vivo
(SD rats) 1.75 g/mL Oral gavage

Promoted peripheral nerve regeneration in
rats with sciatic nerve defect (Increased SFI,

MNCV, muscle wet weight, number of
regenerated axons, axon diameter, nerve fiber
diameter, myelin thickness, number of motor

neurons in the lumbar spinal cord
anterior horn)

N/A [99]

Akt—protein kinase B; Bad—Bcl-2 associated agonist of cell death; Bax—Bcl-2-associated X protein; Bcl-2—B-cell lymphoma 2; BDNF—brain-derived neurotrophic factor; BGJTD—Bogijetong decoction;
Cdc2—cell division cycle protein 2 homolog; CGRP—calcitonin gene-related peptide; CMAP—compound muscle action potential; CNTF—ciliary neurotrophic factor; CSA—cross-sectional area; DRG—dorsal root
ganglion; DUOX2—dual oxidase 2; ERK—extracellular signal-regulated kinase; FGF—fibroblast growth factor; GABA—γ-aminobutyric acid; GAP-43—growth associated protein 43; GDNF—glial cell-derived
neurotrophic factor; ICR mice—Institute of Cancer Research mice; IFN—interferon; IGF-1—insulin-like growth factor 1; IGF-IR—insulin-like growth factor 1 receptor; IL—interleukin; JNK—c-Jun N-terminal
kinase; MAPK—mitogen-activated protein kinase; MBP—myelin basic protein; MDA—malondialdehyde; MMP—matrix metallopeptidase; MNCV—motor nerve conduction velocity; NF-κB—nuclear factor
kappa B; NGF—nerve growth factor; NOX4—nicotinamide adenine dinucleotide phosphate oxidase 4; PAI-1—plasminogen activator inhibitor-1; PBS—phosphate buffered saline; PC12—pheochromocytoma cells;
PCNA—proliferating cell nuclear antigen; PDGF—platelet-derived growth factor; PFI—peroneal nerve function index; PI3K—phosphoinositide 3-kinase; PMP22—peripheral myelin protein 22; Prom1—prominin
1; RECA-1—mouse monoclonal endothelial cell antibody; ROS—reactive oxygen species; RSC96 SC—RSC96 Schwann cell; SCs—Schwann cells; SD rats—Sprague-Dawley rats; SFI—sciatic function index;
SNI—sciatic nerve injury; Sox18—sex-determining region Y-box transcription factor 18; TGF-β—transforming growth factor beta; TNF-α—tumor necrosis factor alpha; tPA—tissue plasminogen activator;
Trk—tropomyosin receptor kinase; TRPC1—classical transient receptor potential 1; TSI—toe spread index; uPA—urokinase plasminogen activator; Vegf—vascular endothelial growth factor; WRL—withdrawal
reflex latency.
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Figure 3. Overview of Schwann cell plasticity and their roles following peripheral nerve injury. Immature SCs develop 
into either myelinated or non-myelinated forms depending on the type of axon association. Upon nerve injury, SCs are 
capable of converting into a repair phenotype alongside the demyelination process that is mediated by different genes 
and transcriptional mechanisms. These events promote neuronal survival and enhance axonal regeneration following in-
jury. Subsequently, repair SCs can be reprogrammed back to remyelinate regenerated axons. Further details on SC plas-
ticity are presented in the reviews by Jessen & Mirsky [39] and Nocera & Jacob [100]. BDNF—brain-derived neurotrophic 
factor; Erg2/Krox20—early growth response 2; ERK—extracellular signal-regulated protein kinase; GDNF—glial cell-de-
rived neurotrophic factor; GFAP—glial fibrillary acidic protein; gpr126—adhesion G protein-coupled receptor G6; 
H3K27—methylation of histone H3 on lysine 27; HDAC2—histone deacetylase 2; IL—interleukin; L1—L1 cell adhesion 
molecule; LIF—leukemia inhibitory factor; Mag—myelin associated glycoprotein; Mbp—myelin basic protein; MCP-1—
monocyte chemotactic protein 1; Mpz/P0—myelin protein zero; NCAM—neural cell adhesion molecule; NF2—neurofi-
bromatosis 2; NGF—nerve growth factor; NT3—neurotrophin-3; Olig1—oligodendrocyte transcription factor 1; 
p75NTR—p75 neurotrophin receptor; Pmp22—peripheral myelin protein 22; SCs—Schwann cells; Shh—Sonic Hedgehog; 
Sox2—(sex determining region Y)-box 2; STAT3—signal transducer and activator of transcription 3; TGF-β—transforming 
growth factor-β; TLRs—Toll-like receptors; TNF-α—tumor necrosis factor-α; VEGF—vascular endothelial growth factor; 
Zeb2—zinc finger E-box-binding homeobox 2. 
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regenerative potential of Achyranthes bidentata [44–49], Astragalus membranaceus [52–55], 
Curcuma longa [60–65], Panax ginseng [73–75], and Hericium erinaceus [92–94] have been 
most studied. A total of 18 natural products have been identified across the studies, and 
their chemical structures are shown in Table 2. Among those, ursolic acid, syringic acid, 
and quercetin are the NPs that can be found across a variety of plant species [78,79,81,101–
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Figure 3. Overview of Schwann cell plasticity and their roles following peripheral nerve injury. Immature SCs develop
into either myelinated or non-myelinated forms depending on the type of axon association. Upon nerve injury, SCs are
capable of converting into a repair phenotype alongside the demyelination process that is mediated by different genes
and transcriptional mechanisms. These events promote neuronal survival and enhance axonal regeneration following
injury. Subsequently, repair SCs can be reprogrammed back to remyelinate regenerated axons. Further details on SC
plasticity are presented in the reviews by Jessen & Mirsky [39] and Nocera & Jacob [100]. BDNF—brain-derived neu-
rotrophic factor; Erg2/Krox20—early growth response 2; ERK—extracellular signal-regulated protein kinase; GDNF—glial
cell-derived neurotrophic factor; GFAP—glial fibrillary acidic protein; gpr126—adhesion G protein-coupled receptor
G6; H3K27—methylation of histone H3 on lysine 27; HDAC2—histone deacetylase 2; IL—interleukin; L1—L1 cell ad-
hesion molecule; LIF—leukemia inhibitory factor; Mag—myelin associated glycoprotein; Mbp—myelin basic protein;
MCP-1—monocyte chemotactic protein 1; Mpz/P0—myelin protein zero; NCAM—neural cell adhesion molecule; NF2—
neurofibromatosis 2; NGF—nerve growth factor; NT3—neurotrophin-3; Olig1—oligodendrocyte transcription factor 1;
p75NTR—p75 neurotrophin receptor; Pmp22—peripheral myelin protein 22; SCs—Schwann cells; Shh—Sonic Hedgehog;
Sox2—(sex determining region Y)-box 2; STAT3—signal transducer and activator of transcription 3; TGF-β—transforming
growth factor-β; TLRs—Toll-like receptors; TNF-α—tumor necrosis factor-α; VEGF—vascular endothelial growth factor;
Zeb2—zinc finger E-box-binding homeobox 2.

4.4. Experimental Strategies and Neuroprotective Effects of Complementary and Alternative
Medicines (CAMs) against Peripheral Nerve Injury
4.4.1. CAMs with Neuroregenerative Potential

Due to the limitations of conventional therapies for PNIs, much attention has been
dedicated to finding alternative approaches in treating PNIs. To date, studies have ex-
plored the potential of 20 species of plants, three species of mushrooms, and four types of
decoctions in promoting peripheral nerve regeneration (Table 1). Notably, the neuroregen-
erative potential of Achyranthes bidentata [44–49], Astragalus membranaceus [52–55], Curcuma
longa [60–65], Panax ginseng [73–75], and Hericium erinaceus [92–94] have been most studied.
A total of 18 natural products have been identified across the studies, and their chemical
structures are shown in Table 2. Among those, ursolic acid, syringic acid, and quercetin are
the NPs that can be found across a variety of plant species [78,79,81,101–103]. Decoctions
are usually made according to traditional formulae. However, among the decoctions dis-
cussed in this study, the Bogijetong decoction is a relatively modern formulation that was
specifically developed to treat neuropathic pain [96].
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Table 2. Chemical structures of natural products and their respective sources.

Sources Natural Product Chemical Structure

Alpinate Oxyphyllae Fructus
(Alpinia oxyphylla Miq) Protocatechuic acid
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Table 2. Cont.

Sources Natural Product Chemical Structure

Curcuma longa Curcumin
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Table 2. Cont.

Sources Natural Product Chemical Structure

Gastrodia elata Blume Gastrodin

Cells 2021, 10, x FOR PEER REVIEW 20 of 38 
 

 

Gastrodia elata Blume Gastrodin 

 

Ginseng 

Ginsenoside Rg1 

 

Ginsenoside Re 

 

Ginseng

Ginsenoside Rg1

Cells 2021, 10, x FOR PEER REVIEW 20 of 38 
 

 

Gastrodia elata Blume Gastrodin 

 

Ginseng 

Ginsenoside Rg1 

 

Ginsenoside Re 

 

Ginsenoside Re

Cells 2021, 10, x FOR PEER REVIEW 20 of 38 
 

 

Gastrodia elata Blume Gastrodin 

 

Ginseng 

Ginsenoside Rg1 

 

Ginsenoside Re 

 



Cells 2021, 10, 2194 19 of 35

Table 2. Cont.

Sources Natural Product Chemical Structure

Green tea (-)-Epigallocatechin-3-gallate
(EGCG)
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Sources Natural Product Chemical Structure

Isolated from a variety of
plants (e.g., apple, Malus
domestica; caper, Capparis

spinosa; onion, Allium cepa;
tomato, Solanum lycopersicum;
and grapes, Vitis vinifera [103])

Quercetin
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Scutellaria baicalensis Georgi Baicalin
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4.4.2. In Vitro Studies on Neuroregenerative Potential of CAMs

Figure 4 summarizes the in vitro studies on neuroregenerative properties of comple-
mentary and alternative medicines. Most of the studies were in Schwann cells, with a
few using DRG explants, neurons, and PC12 cells (rat pheochromocytoma). Some CAMs
were reported to induce proliferation, differentiation, and neurite outgrowth in PC12 cells.
Similarly, neurite outgrowth was also promoted in DRG neurons through modulation of
the extracellular signal-regulated kinase (ERK), p38, and tumor necrosis factor-α (TNF-α).
Polypeptides isolated from Achyranthes bidentata have demonstrated the ability to promote
neurite outgrowth in DRG neurons through the activation of ERK1/2 [45,46]. These find-
ings resemble an earlier study that also reported neurite growth in DRG neurons induced
by CD95 through ERK activation [104]. The Bogijetong decoction and its reconstituted
formulation BeD elicited similar neuroprotective effects through downregulation of p38
and TNF-α [96] It was previously shown that TNF-α could inhibit neurite outgrowth in
cultured DRG neurons [105,106], whereas the application of a TNF-α antagonist supported
axonal regeneration following nerve injury [107].
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binding protein β; TNF-α—tumor necrosis factor-α; uPA—urokinase plasminogen activator.

Effects of CAMs on Schwann Cell Activity In Vitro

The studies examining the effects of complementary and alternative medicines and
their related natural products on Schwann cells are primarily focused on promoting their
proliferation and survival. The molecular mechanisms that were investigated in these
studies include signaling pathways such as IGF-I and MAPK, as well as cell cycle control-
ling proteins and various neurotrophic factors (Figure 4). Past studies have demonstrated
that ERK is required for proper myelination of SCs during development [108,109], and
ERK signaling was rapidly activated following nerve injury, contributing to SC differentia-
tion [110]. Moreover, evidence suggests that nerve regeneration following injury is closely
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associated with ERK [111,112], and ERK inhibition leads to impaired regenerative capa-
bility [111,113]. On the other hand, inhibition of p38 MAPK prevented SC demyelination
and dedifferentiation, indicating its role in promoting the breakdown of myelin following
nerve injury [114]. It is not unexpected that cyclins are associated with SC proliferation, as
these proteins control cell cycle progression through the interaction of cyclin-dependent
kinases. For instance, cyclin D is associated with Cdk4 or Cdk6 in the G1 phase, cyclin A
participates with Cdk1 or Cdk2 in the S phase, cyclin E is involved with Cdk2 in G1 and S
phases, cyclin B and Cdk1 regulates M phase [115,116].

Protocatechuic acid isolated from Alpinia oxyphylla Miq [50] and the aqueous extract
of Codonopsis pilosula [58] were found to promote SCs proliferation by further enhancing
IGF-I (insulin-like growth factor 1) signaling. The IGF-I growth factor is known to play a
crucial role in neuromuscular recovery following injury. It is reported to be involved in pro-
moting G1/S cell cycle progression [117] and survival of SCs [118] in vitro, and to facilitate
peripheral nerve regeneration in vivo [119–122]. One study reported baicalin, a flavonoid
that possesses various neuroprotective effects [123], induced proliferation of SCs through
the modulation of neurotrophic factors including glial cell-derived neurotrophic factor
(GDNF), BDNF, and ciliary neurotrophic factor (CTNF) [88]. These neurotrophic factors
are integral to many aspects of nerve regeneration, as evident in past studies that showed
their roles in myelin formation [124,125] and axonal regeneration [126,127].

In addition to promoting the proliferation of SCs, some NPs may promote the migra-
tory ability of SCs, which is essential for regeneration and remyelination following nerve
injury. Aqueous extracts of Alpinia oxyphylla Miq [51], Astragalus membranaceus [55], Citrus
medica var. sarcodactylis [57], Codonopsis pilosula [58], and ginsenoside Rg1 isolated from
ginseng [73] enhanced SC migration through the activation of FGF-2 signaling. The role
of FGF-2 in the repair and regeneration of tissues [128] and its involvement in cell migra-
tion [129,130] is widely documented. A recently published study reported that another
subfamily member, FGF5, is also involved in regulating SC migration and adhesion [131].
Besides FGF-2 signaling, another study investigating polypeptides of A. bidentata revealed
that the upregulation of NOX4/DUOX2-derived reactive oxygen species (ROS) production
was responsible for promoting SC migration [44]. Excessive accumulation of ROS produc-
tion has been linked to neurodegenerative disorders [132] and peripheral neuropathy [133],
but moderate levels of ROS may prove beneficial by acting as signal messengers in regulat-
ing biological processes, including cell adhesion and migration [134,135]. Syringic acid was
shown to promote the proliferation and migration of SCs in vitro. Although the expression
of several microRNAs was affected by syringic acid, further analysis suggested that the
plant polyphenol promoted SC proliferation and migration mainly by suppressing the
microRNA miR-451-5p [78].

4.4.3. In Vivo Studies on Neuroregenerative Potential of CAMs

Current in vivo studies on the potential of complementary and alternative medicines
in peripheral nerve regeneration are limited to rodent models (Figure 5 and Table 1). Most
of the studies involved different strains of rats and mice, with only two studies using
rabbits as their animal models. Models of peripheral nerve injury used in the studies
include diabetic peripheral neuropathy, peroneal nerve injury, and sciatic nerve injury. The
effects of CAMs on peripheral nerve regeneration were evaluated by functional recovery
indexes (e.g., PFI; sciatic function index, SFI; tibial function index, TFI; CMAP; MNCV; and
WRL) and histological examinations (e.g., number, diameter, the thickness of myelinated
fibers and regenerated axons; the number of motoneurons; and muscle mass).
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Diabetic Peripheral Neuropathy Model

In the diabetic neuropathy (DPN) model, aqueous extract of Cortex Mori Radicis
had anti-diabetic and neuroregenerative effects, as evidenced by reduced blood glucose
levels, induced neurite outgrowth, restoration of the loss of Nissl bodies, and a response in
the growth cones of DRG neurons [82]. The authors identified that the observed effects
were mediated by the activation of the PI3K/Akt pathway and increased expression of
TRPC1, which in turn reduced Ca2+ influx. The PI3K/Akt pathway is a crucial intracellu-
lar signaling pathway that governs cell proliferation, survival, and metabolism [136], its
protective role against DPN has been previously hinted at [137,138]. The transient receptor
potential (TRPC) is a family of Ca2+-permeable channels that participates in axonal regen-
eration [139]. In particular, TRPC1 and TRPC4 were shown to induce neurite outgrowth in
PC12 cells and DRG neurons [140,141]. In another study, administration of Jiaweibugan de-
coction in a DPN model ameliorated changes in motor nerve conduction velocity (MNCV),
and malondialdehyde (MDA), and glutathione levels through an anti-oxidative pathway
via downregulating NF-κB p65 and p38 MAPK [98]. The activation of p38 MAPK, which
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belongs to a family of kinases that are responsive to stress stimuli, further activates NF-κB
leading to inflammation, a driving factor of DPN [142,143].

Peroneal Nerve Injury Model

In the peroneal nerve injury model, aqueous extract and polypeptides of A. bidentata
were shown to enhance nerve regeneration [45,49], as indicated by increased density and
diameter of myelinated fibers, and numbers of motor neurons. Although behavioral
analyses were not performed in the studies, improvements in compound muscle action
potential (CAMP) demonstrated the ability of A. bidentata aqueous extract and polypeptides
to promote functional recovery. Aqueous extract and polysaccharides from Hericium
erinaceus also exhibited nerve regeneration and functional recovery following peroneal
nerve crush [92–94], as evidenced by the improvements in the peroneal function index
(PFI), withdrawal reflex latency (WRL) and axon morphology, and the development of
neuromuscular junction. These findings were supported by the activation of Akt, p38,
c-Jun, and c-Fos, which is in line with other studies that showed the importance of these
signaling events for axonal regeneration [144–146].

Sciatic Nerve Injury Model

The sciatic nerve injury (SNI) model is the most commonly used model in the study
of the effects of complementary and alternative medicines on peripheral nerve regen-
eration, and many studies have investigated the underlying mechanisms or molecular
pathways through which CAMs elicit their neuroregenerative properties. For instance,
polypeptides of A. bidentata [47], astragaloside IV isolated from A. membranaceus [52], and
aqueous extract of Dioscoreae rhizoma [66] promoted nerve regeneration via upregulation of
GAP-43 expression. The GAP-43 protein is highly associated with the development and
plasticity of the nervous system [147]. Its expression is known to be elevated following
nerve injury [148] and is involved in the neurite outgrowth of hippocampal neurons [149].
Similarly, modulation of other neurotrophic factors such as NGF, BDNF, CNTF [47,54],
and pro-inflammatory cytokines including IL-1, IL-6, IL-β, and TNF-α [54,90] were also
involved in promoting nerve regeneration as well. Although an inflammatory response
following injury is necessary for the regenerative process [150], prolonged inflammation
can impede recovery and may even lead to the development of neuropathic pain [151],
which reflects the double-edged property of inflammation and the importance of proper
regulation. Additionally, a study on Ginkgo biloba extract showed that it promoted axonal
angiogenesis through the modulation of related genes, including Vegf, Sox18, Prom1, and
IL-6 [71]. Studies have also demonstrated the participation of Vegf [152,153], Prom1 [154],
and another subfamily gene, Sox11 in sciatic nerve regeneration [155], and the restorative
role of IL-6 has also been implied in DPN and central nervous system models [156,157].
Muscimol prevented hyperalgesia through the modulation of PMP22 [91], a key compo-
nent of the basal lamina. The expression of PMP22 is correlated with myelin formation
and nerve regeneration [158,159]. Studies investigating EGCG in an SNI model showed
that it had neuroprotective and regenerative effects, partly due to the modulation of the
apoptotic machinery, including Bax, Bcl-2, p53, and survivin [76,77]. The subsequent loss
of neurons after PNI is known to be closely related to apoptosis [160] which is partly
influenced by p53 and Bax [161], while the association of survivin in nerve injury has also
been documented [162].

4.4.4. Involvement of CAMs in Combinatorial Approaches for the Treatment of PNI

There is increasing evidence that the successful repair and regeneration of nerves
will require not just a single treatment strategy, but a multifaceted strategy involving
different disciplines. Studies adopting combinatorial approaches have yielded interest-
ing findings. For example, Lycium barbarum polysaccharide incorporated into core-shell
structured nanofibrous scaffolds by coaxial electrospinning showed proliferative effects
in PC12, SCs, and DRG neurons [80]. In two separate studies, puerarin, the active com-
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ponent extracted from Pueraria lobata roots, as well as rat serum metabolites of P. lobata
enhanced the neuroregenerative effects of silicone rubber nerve chambers. Increases in
myelinated axons and structurally mature regenerated axons were observed, while muscle
reinnervation led to functional recovery, as indicated by an increase in action potential
and nerve conduction [83,84]. Similar results were obtained with Buyang Huanwu de-
coction being administered as a co-treatment alongside silicone rubber nerve chambers,
which led to more prominent axonal regeneration [97]. In an SNI model, a magnetic
nanocomposite scaffold produced from using magnetic nanoparticles and biodegradable
chitosan-glycerophosphate polymer enhanced SC viability, nerve regeneration, and func-
tional recovery when paired with an applied magnetic field [163]. The use of nerve guiding
conduits gained popularity over the years. They have been used to isolate regenerating
axons from fibrotic tissues, to protect them from mechanical forces, and to guide new-
forming tissue as well as condensing growth factors secreted by SCs [164]. The concept
was initiated with a simple hollow design but has since advanced to innovative ways of
redesigning nerve conduits to further extend their original capabilities 11. The attractive
characteristics of modern nerve conduits offer tremendous potentials. These nerve conduits
are occasionally paired with other strategies for improving nerve outcomes. For instance,
Chang et al. [165] developed a natural biodegradable multi-channeled scaffold with aligned
electrospun nanofibers and a neurotrophic gradient, which resulted in superior nerve re-
covery and less muscle atrophy compared with nerve autografts. Hussin et al. [56] used
Centella asiatica (L.) to neurodifferentiate mesenchymal stem cells. This was subsequently
developed with decellularized artery as a nerve conduit, which demonstrated functional
restoration in an SNI model similar to that of reversed autograft.

4.5. Limitations and Future Prospects

As mentioned earlier, PNI represents a significant health issue while the effectiveness
of current treatment approaches is highly subjective. Hence, substantial effort is required
to discover and establish proper methods for the management of PNI. Present studies have
shown promising findings in utilizing various applications including nerve conduits [166],
stem cell therapy [167], phytochemicals [22], and electrical stimulation [168] for treating
PNI, and their potential may subsequently be improved when paired together. Evidence
from in vitro and in vivo studies have delineated the neuroregenerative properties of
various CAMs, and the underlying mechanisms have been investigated (as summarized
in Figure 6), although they still remain incompletely understood and require further
elucidation. Subsequently, pre-clinical and clinical studies on existing potential candidates
and approaches should be supported to drive the development of future therapeutics.

Existing studies on the effect of complementary medicines in treating PNI are prelimi-
nary findings with limited information (Table 1). The majority of studies investigated crude
extracts or specific fractions of extracts, with only 24 out of the 56 studies managing to
identify the exact NPs responsible for the observed effects. Additionally, 25 studies did not
report the underlying mechanisms for the resultant effects of NPs, especially at the in vivo
stage. This situation highlights the need for greater efforts among the scientific community
to fully investigate the purported effects of NPs. Another issue is the route and method of
administration in vivo. It is known that oral administration is generally economical and
relatively safe, but the resultant efficacy may not be reliable due to uncontrollable animal
habits and behaviors [169]. In contrast, gavage or injection routes typically require some
form of restraint, which may result in animal stress that may influence study outcomes.
The administration routine also varied across studies, with the treatments lasting from a
few days to months. Moreover, treatment frequency also influences experimental outcomes.
Although it is difficult to standardize animal handling procedures, these factors should be
taken into account with carefully designed studies.
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In this review, the majority of studies on NPs as a treatment for PNI were based on
plants and herbs, with a few studies on mushrooms such as Amanita muscaria, Hericium
erinaceus, and Lignosus rhinocerotis, as well as some decoctions. This is unsurprising,
considering that phytochemicals are highly studied for drug development, which should
shed more light on this area of research [170–172]. However, the use of NPs for peripheral
nerve repair and regeneration is still largely overlooked and could be an untapped potential
source for promising drug candidates. For instance, a previous study demonstrated that
various mushrooms including Agaricus blazei Murrill, Antrodia cinnamomea, Ganoderma
lucidum, and Hirsutella sinensis could activate intracellular signaling kinases ERK, JNK, and
p38, which are associated with peripheral nerve regeneration [173]. Another study showed
that G. lucidum, Ganoderma neo-japonicum, and Grifola frondosa promoted neuritogenesis via
the involvement of the MAPK signaling pathway [174]. Aside from exploring untapped
sources of NPs, future research may also simultaneously examine the efficiency of CAMs
or NPs with known neuroregenerative properties to compare their ability to promote
regeneration of peripheral nerves.

The use of algae in peripheral nerve regeneration merits attention. Algae are well-
known for their diverse applications in food nutrition [175], biofuels [176], cosmetics [177],
and pharmaceuticals [178,179]. Recent studies have also demonstrated that algae could
have potential in the treatment of neurological disorders, including Parkinson’s and
Alzheimer’s disease [180,181]. However, the potential uses of algae in peripheral nerve
regeneration have yet to be explored, despite evidence showing the ability of macroalgae
to promote neurite outgrowth in hippocampal neurons [182–184]. More recently, a study
showed that Gracilaria manilaensis induced the proliferation of neurite-bearing cells in the
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rat pheochromocytoma cell line, which is believed to mimic the neuroactivity of NGF [185].
Thus, investigation on the nerve regenerative potential of other NPs holds much promise.

5. Conclusions

Peripheral nerve injury remains a challenge, while future prospects are leaning to-
wards multi-combinatorial approaches. Natural products are highly appreciated for their
therapeutic value, and there is a growing body of evidence in their potential for peripheral
nerve regeneration. The present findings showed that various NPs promote the prolifera-
tion and migration of SCs, most commonly through the activation of MAPK and FGF-2
signaling pathways, respectively. Promotion of peripheral nerve regeneration was also
observed in rodent models, partly through the modulation of neurotrophic factors, pro-
inflammatory cytokines, and anti-apoptotic signaling. Hence, NPs could play key roles
in nerve repair and regeneration in the near future, especially when paired with other
innovative approaches such as modern nerve conduits.
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