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Abstract: The recent emergence of novel neoadjuvant and/or adjuvant therapies for early stage (I-
IIIA) non-small cell lung carcinoma (NSCLC), mainly tyrosine kinase inhibitors (TKIs) targeting 
EGFR mutations and immunotherapy or chemo-immunotherapy, has suddenly required the evalu-
ation of biomarkers predictive of the efficacy of different treatments in these patients. Currently, the 
choice of one or another of these treatments mainly depends on the results of immunohistochemis-
try for PD-L1 and of the status of EGFR and ALK. This new development has led to the setup of 
different analyses for clinical and molecular pathology laboratories, which have had to rapidly in-
tegrate a number of new challenges into daily practice and to establish new organization for decision 
making. This review outlines the impact of the management of biological samples in laboratories 
and discusses perspectives for pathologists within the framework of EGFR TKIs in early stage 
NSCLC. 

Keywords: non-small cell lung carcinoma; early stage; targeted therapies; EGFR; molecular tests 
 

1. Introduction 
Developments in the treatment of patients with advanced stage non-small cell lung 

carcinoma (NSCLC) have improved not only the overall quality of life but also the life 
expectancy of these patients [1,2]. For a long time, treatment of early stage NSCLC in-
cluded only surgical resection, sometimes associated with radio-chemotherapy or neoad-
juvant or adjuvant chemotherapy [3–5]. In fact, these associated treatments provided a 
moderate benefit in terms of progression-free survival and overall survival [3,4]. The re-
cent results of adjuvant therapy targeting activating mutations in EGFR (exon 19 deletion 
and L858R mutation) and of preoperative immunotherapies of early stage (I-IIIA) NSCLC 
open up great perspectives for the prevention of relapse and/or post-operative tumor pro-
gression [6–14]. In this context, laboratories of pathology have been required to meet new 
challenges in developing a number of analyses to assure optimal care of patients in a rou-
tine clinical practice. Therefore, it is mandatory to look for different biomarkers, including 
PD-L1 assessment by immunohistochemistry (IHC), and EGFR status evaluation by mo-
lecular testing [15,16]. Currently, PD-L1 IHC in tissue samples is the only biomarker used 
routinely as a companion diagnostic test for the assessment of predictive immunotherapy 
and immunochemotherapy efficacy in thoracic oncology [15–17]. Thus, PD-L1 IHC was 
used as a predictive biomarker in clinical trial development for early stage NSCLC treated 
with immune checkpoint inhibitors (ICIs) [11–13]. After briefly presenting the main cur-
rent clinical trials concerning the anti-EGFR targeted therapies in early stage NSCLC, this 
review will deal with the different steps for the setup and management of predictive tests 
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that must be performed in laboratories for the care of these patients. Then, it will address 
the associated issues and constraints concerning this new opportunity. 

2. Short Overview of Studies Concerning the Use of EGFR TKIs in Early Stage 
NSCLC in Neoadjuvant and Adjuvant Setting 

Different clinical trials have been performed with the aim to evaluate the efficacy of 
TKIs targeting activating mutations in EGFR in the neoadjuvant and also in the adjuvant 
setting [18–20]. Briefly, these trials have used or use inhibitors of the first, second, and 
third TKI generation [19,21]. Some of these trials have given relatively disappointing re-
sults, in particular for the first and second generation of TKIs, which have not provided a 
significant benefit to patients in terms of quality of life and absence of recurrence and 
overall survival [22]. However, recent studies, in particular the ADAURA study which 
used osimertinib, a third generation TKI, as an adjuvant for non-epidermoid NSCLC 
(stage IB-IIIA completely surgically resected) with an exon 19 deletion or an L858R muta-
tion in EGFR, were positive compared to a placebo for progression-free survival [14]. 
Studies using other third generation TKIs (such as afatinib (NCT01746251 trial) or almon-
ertib (NCT0468741 trial)) as an adjuvant after complete surgical resection are also ongoing. 
Clinical trials with other third generation TKIs targeting EGFR mutations in a neoadjuvant 
setting (such as the NEOADAURA study (comparison of treatment with osimertinib ver-
sus osimertinib and chemotherapy versus placebo and chemotherapy) or the afatinib trial 
(NCT04470076 trial)) have also been developed for early operable stages of NSCLC [23]. 

In this context, the positive results of the ADAURA study have recently led the Food 
and Drug Administration (FDA) and, subsequently, the European Medicines Agency 
(EMA) to approve the use of osimertinib for early stage NSCLC with the activating muta-
tions defined above [24,25]. Thus, the systematic search for EGFR mutations in early stage 
non-squamous NSCLC has become obligatory in any pathology laboratory. Therefore, it 
is crucial to highlight that the current approval of osimertinib is restricted to the adjuvant 
therapy after complete tumor resection in adult patients with stage IB-IIIA non-squamous 
cell lung carcinoma harboring EGFR exon 19 deletions or exon 21 (L858R) substitution 
mutations [24,25]. Until now, these stages of I-IIIA lung cancer patients having other sub-
types of genomic alterations, such as EGFR exon 18, non L858R exon 21 or T790M, and 
non T790M exon 20 mutations, could not be treated with osimertinib [24,25]. Moreover, it 
is noteworthy that the possibility of proposing, at an early time, targeted therapies ori-
ented not only to these latter EGFR mutations but also to other genomic alterations in 
these early stages is presently being investigated, and it may also be soon that some of 
them are administrated in daily practice in the near future [26]. 

3. Which Biological Sample for Evaluation of the EGFR Status of Early Stage NSCLC? 
The EGFR status of tumors of patients with advanced stage NSCLC can be evaluated 

with several biological sources: (i) tissue biopsies (of bronchial or transthoracic origin); (ii) 
cytological samples (from transbronchial or transthoracic fine needle aspiration; fluid ef-
fusions, in particular pleural or cerebrospinal; and bronchoalveolar lavage); (iii) blood 
samples, mostly from circulating free DNA and sometimes from circulating tumor cells 
(CTCs); and, more rarely, (iv) surgical specimens [27] (Figure 1). All of these samples can 
also be analyzed in early stage NSCLC for genomic alteration assessment, though, at the 
moment, the majority probably consist of surgical specimens and, less frequently, biop-
sies. Thus, a number of questions can be asked. Notably, for adjuvant TKI, is it preferable 
to evaluate the preoperative status of EGFR on tissue biopsies, or is it better to look for the 
EGFR mutations on surgical specimens? In fact, preoperative assessment is certainly the 
ideal situation, knowing that it is necessary to obtain the EGFR and ALK status before 
envisaging neoadjuvant immunotherapy or neoadjuvant immunotherapy and chemo-
therapy [28]. Thus, the preoperative choice of therapy (with neoadjuvant and/or adjuvant 
administration of targeted molecules) must be made before surgery [28]. However, a num-
ber of limits may exist [29–31]. The size of the biopsy samples is more and more often 
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small, in part due to the optimization of endoscopic techniques with the use of supple 
small caliber endoscopes that give access to distal tumors [32]. In this setting, molecular 
biological tests can give false negative results. This may be due to the extraction of an 
insufficient number of nucleic acids for sequencing analyses (notably due to a low per-
centage of tumor cells, below 20% among most recommendations, or to an extensive area 
of necrosis) and/or to a poor quality of these extracted nucleic acids (due to hyper- or 
hypo-fixation of the tissue or, very exceptionally, to a long period of cold ischemia time 
with a delay in fixation). Although controversial, false negative results for EGFR muta-
tions can also result from tumor heterogeneity [33–36]. When this is the case and in the 
absence of an identifiable mutation, it is certainly necessary to systematically evaluate the 
EGFR status of the resected specimen. Though rare, mutations in EGFR can also be inves-
tigated with preoperative cytological samples, but negative results require secondary 
analysis of the mutational status of the surgical specimen [37,38]. The practice of liquid 
biopsies (LB) has strongly modified the care of advanced stage NSCLC patients, not only 
during progression but also, recently, at diagnosis [39–43]. Thus, LB can correspond to 
different fluids including blood samples but also pleural, pericardial, and ascites effusions 
or cerebrospinal fluid [44–46]. In particular, these different LBs can be used in advanced 
stage NSCLC patients to detect genomic alterations that are accessible to targeted thera-
pies [39–46]. However, the sensitivity of blood samples for EGFR evaluation is globally 
low for solid tumors at an early stage of NSCLC, given the low number of free nucleic 
acids circulating in the blood and/or of the low number of CTC detections associated with 
an EGFR mutation [47,48]. Thus, preoperative evaluation of the EGFR status with blood 
samples is associated with a high percentage of negative results. Testing EGFR status from 
other LBs (notably from pleural effusions) is not useful since, by definition, pleural in-
volvement is absent in early stages of NSCLC. When a very low amount of circulating 
tumor DNA is present in the plasma sample, certain technical approaches, but also better 
control of pre-analytical blood handling processes, could optimize detection of genomic 
alterations [49–51]. LB performed at different post-operative times can quantify the circu-
lating tumor DNA and/or identify the presence of mutations in EGFR, which can point to 
recurrence or tumor progression [52]. Additionally, apart from CTCs and circulating tu-
mor DNA, blood samples from lung cancer patients can contain other circulating compo-
nents of strong interest, such as extracellular vesicles (EVs) [53–56]. Therefore, all cells, 
including tumor cells, can release EVs in the blood stream, which are broadly divided into 
ectosomes and exosomes. More and more studies have focused on exosomes’ assessment 
in LB because of their potential not only in lung cancer diagnosis and prognosis but also 
as predictive biomarkers for different treatment in NSCLC patients [53–56]. The evalua-
tion of the EGFR status with surgical specimens must meet a number of requirements. The 
specimen of tissue for nucleic acid extraction must be selected with caution and needs to 
correspond to a fragment rich in tumor cells while avoiding areas of strong inflammation 
and/or extensive sites of necrotic foci. It is often necessary to enrich the number of tumor 
cells by macro-dissection before the extraction of nucleic acids, notably to limit the amount 
of germinal DNA associated with the tumor DNA. In addition, the pre-analytical phase 
must be well-managed to avoid a long period of cold ischemia, which leads the nucleic 
acids to degrade. It is recommended that the time between surgical resection and fixation 
with formalin be no more than one hour [29,57]. The fixation time of the surgical specimen 
must be also controlled and must usually be between eight and eighteen hours depending 
on the size of the resected specimen [29]. It is evident that the organization of the labora-
tories, the surgical programs, the length of the operations, and the agendas corresponding 
to the surgery, in particular before a weekend or public holiday, can have a strong impact 
on variations to the different pre-analytical parameters. More rarely, false positive results 
with artifactual mutations in EGFR resulting from deamination due to formalin over fix-
ation can also occur [30]. This emphasizes the importance of mastering the different pre-
analytical parameters [58]. When there is a tumor heterogeneity, it is probably not neces-
sary to look for mutations with several tissue blocks of the same resected tumor since the 
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tumor surface for analysis is in general sufficiently large on a selected block. Nonetheless, 
to our knowledge, no study has verified the presence of mutations in EGFR on a sufficient 
number of tissue samples obtained from a surgical specimen to ensure the presence or 
absence of such a molecular heterogeneity. 

The detection of mutations in EGFR must ideally be done in a reflex way on biopsies 
(or even on cytological samples) and/or on surgical specimens of all non-squamous 
NSCLC histological types. The majority of neoadjuvant and/or adjuvant targeted thera-
pies are reserved for EGFR-mutated non-squamous carcinomas, but it is probable that 
these treatments will be administered in the near future for some exceptional epidermoid 
NSCLCs mutated on this gene [59]. Thus, this will require evaluation of mutations in 
EGFR regardless of the histological type of NSCLC [59]. Systematic analysis of the EGFR 
status on biopsies holds a number of advantages: it (i) diminishes the delay of obtaining 
molecular results (this is of more specific importance if neoadjuvant treatment with a tar-
geted therapy is envisaged), (ii) avoids treatment with immunotherapy that is poorly ef-
fective and even toxic in the case of activating mutations in EGFR, and (iii) associates in-
formation with the molecular status of other genes of strong interest (in particular, ALK, 
ROS1, NTRK, BRAF, MET, RET, NRG1, HER2), which helps envisage the initiation of a 
potential targeted therapy, in particular in the case of recurrence or tumor progression 
after surgery [60–65]. 

 
Figure 1. Different sources of biological specimen available for EGFR status assessment in early stage NSCLC. BAL, bron-
choalveolar lavage; EBUS, endobronchial ultrasound biopsy. According to the samples, the assessment of genomic alter-
ation can be globally more or less easy since the quantity of extracted nucleic acids is generally variable in these samples 
(+++: very high quantity; ++: high quantity; +: moderate quantity; +/-: low quantity; ?: uncertain quantity). 
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4. Which Approach(es) for Sequencing Technology? 
The evaluation of mutations in EGFR can be performed by targeted sequencing or by 

“next generation sequencing” (NGS) (Figure 2A,B). The use of an NGS type of approach 
by most of the clinical trials (for example the ADAURA trial) that target only the L858R 
mutation and the exon 19 deletion in EGFR thus seems unnecessary since this evaluation 
can be done by presently commercialized RT-PCR tests, notably those developed within 
laboratories [66,67]. Rapid tests such as those proposed by Biocartis (Mechelen, Belgium) 
with the Idylla approach or by Roche Diagnostics (Basel, Switzerland) using the COBAS 
approach can be adapted, too [66–68]. These latter tests can detect a large number of mu-
tations in EGFR, beyond the L858R mutation and the exon 19 deletion [62,67]. In this re-
gard, certain rare mutations in EGFR can be sensitive to TKIs, in particular osimertinib, 
and may be targeted in the future with adjuvant or neoadjuvant treatment [69]. In addi-
tion, certain rare mutations in EGFR may be sensitive to immuno-oncology treatment and 
therefore should be identified routinely [64]. Moreover, EGFR mutant tumors have differ-
ing responses to ICIs and underlying molecular profiles [70]. Nonetheless, interest in per-
forming an NGS test can be strongly debated. In fact, several co-mutations associated with 
mutations in EGFR have been shown to bring about a lower efficacy to EGFR TKIs, to give 
tumor resistance to these molecules, and to result in a poorer prognosis [34,71–75]. This 
notably concerns mutations in TP53, RB, CTNNB1, RBM10, FAT1, ABCB1, PI3KA, and 
ARID1A [72,76–80]. Thus, in the future, the therapeutic strategy may differ according to 
these mutational associations, which make the prospective collection of this information 
highly indispensable. Importantly, NGS opens up future avenues to other adjuvant tar-
geted therapeutics in the case of the detection of genomic alterations in other genes (such 
as ALK, ROS1, BRAFV600, NTRK, RET, MET) that are sensitive to different molecules. 
Thus, for example, clinical trials are ongoing for patients with operated early stage NSCLC 
with an ALK rearrangement [81]. When the status of genomic alterations is known at di-
agnosis, it is possible to consider this information at recurrence or tumor progression, 
which reduces the delay to administration of a therapeutic, in particular if it is not possible 
to perform an additional re-biopsy on a patient at that time. These analyses by NGS can 
be done on preoperative biopsies and/or surgical specimens. As for EGFR, the status of 
ALK must be evaluated before treatment with neoadjuvant immunotherapy and can also 
be evaluated by NGS, ideally by RNA sequencing [82]. It is of importance to highlight that 
NGS with tissue biopsies requires a sufficiently good quantity and quality of nucleic acids 
to obtain specific and sensitive results. In practice, it can only be used for biopsies with at 
least more than 20% of tumor cells (and according to the size of the tissue biopsy), which 
in general occurs in two out of three cases in daily practice in most situations. 
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Figure 2. Different approaches to developing in a pathology laboratory for the assessment of predictive biomarkers in the 
era of neoadjuvant and/or adjuvant therapies for early stage non-small cell lung carcinoma. (A) Examples of different 
methods setup in a biopathology platform (Laboratory of Clinical and Experimental Pathology, Université Côte d’Azur, 
Nice, France). (B) Challenges associated with these different methods. 

5. Issues concerning the Cost and Reimbursement 
Reliance on the sequencing strategy as a reflex test has a strong impact on the associ-

ated cost of molecular biological tests and can be discussed according to the mode of re-
imbursement of these tests by institutions, local organizations, and/or countries [83–85]. 
Thus, a strategy of reflex testing by NGS can be influenced by the capacity to finance these 
tests [67,68,86]. As an example, in France, the invoice associated with these tests is sent to 
the physicians (oncologists in the majority of cases) who ask for the molecular biology 
prescription [83]. As a matter of fact, the NGS tests are partially reimbursed in France, 
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which incites many oncologists, notably those working in private health care systems, to 
prescribe RT-PCR tests for the detection of genomic alterations only associated with ther-
apeutic molecules that have received EMA authorization and which are reimbursed [83]. 
Thus, some medical oncologists will most certainly prescribe only evaluation of genomic 
alterations in EGFR with respect to the administration of neoadjuvant and adjuvant ther-
apeutics targeting activating mutations present on this gene. In fact, some studies show 
that the cost of NGS does not necessarily exceed the overall cost of several sequencing 
analyses, if analyses are not limited to the evaluation of the status of the three genes 
(EGFR, ALK, and ROS1) [87,88]. Thus, in the future, an increase in the number of thera-
peutic targets and genes to be examined, for care of early stage NSCLC patients, will rap-
idly result in a higher cost for sequential analyses compared to that of NGS, in particular 
with small panels of at least tens of genes [87,88]. It is obvious that the systematic setup of 
the reflex tests will have an impact on the workload of clinical and molecular pathology 
laboratories. This additional work must be considered within the network of the manage-
ment of laboratories and hospitals [61]. Finally, it is well-known that the frequency of the 
different EGFR mutations in NSCLC varies according to countries and continents [89]. In 
this context, it is also important to consider the cost of the different testing with regard to 
the cost effectiveness of adjuvant targeted therapy, which has been described in some se-
ries comparatively to that of adjuvant chemotherapy [90]. 

6. Neoadjuvant Immunotherapy or Neoadjuvant Immuno/Chemotherapy versus  
Adjuvant Targeted Therapy against EGFR: How to Make the Right Choice? 

Immuno-oncology clinical trials with neoadjuvant therapy (for example, the AE-
GEAN study, which evaluates the effect of the association of durvalumab and chemother-
apy versus chemotherapy alone for resectable stage (IIA-IIIB) NSCLC, or the NEOCAST 
study, which evaluates the effect of durvalumab alone) or adjuvant therapy (for example, 
the BR.31, which evaluates the effect of durvalumab, or MERMAID-1, which evaluates the 
association of durvalumab and chemotherapy versus chemotherapy alone) are currently 
ongoing for early stage NSCLC in the absence of genomic alterations in EGFR and ALK 
[13,65,91]. These clinical trials need an examination of PD-L1 tumor cell expression by 
immunohistochemistry. These predictive biomarkers are evaluated with preoperative tis-
sue biopsies. As an example, the AEGEAN study classifies patients according to stage II 
or III and to the expression of PD-L1 on tumor cells at a level below or above 1%. The 
biomarkers can exceptionally be evaluated on cytological material in the absence of asso-
ciated tissue biopsies. The number of tumor cells in cytological samples generally allows 
evaluation of the expression of PD-L1; however, this assessment has to be done in more 
than one hundred tumor cells, which is not possible in all cases [92–94]. 

The results of biomarkers must be obtained within a delay that permits neoadjuvant 
treatments to be initiated, irrespective of the biological material. Thus, it is mandatory to 
avoid long delays in transmission of the results of PD-L1 immunohistochemistry and of 
the molecular biology, in particular for NGS analyses [95] (Figure 2A, B). Aside from ge-
netic alteration in EGFR and ALK, NGS can identify other genomic alterations (in BRAF, 
RET, MET, ROS1, NTRK, HER2,), some of which can be harmful when neoadjuvant im-
munotherapy is used [96]. Given the possible intra-tumoral heterogeneity concerning the 
expression of PD-L1 and mutations in EGFR as well as some false negative results ob-
tained with preoperative biological material, it is certainly interesting to repeat examina-
tions for these biomarkers with surgical specimens in the case of a negative result in pre-
operative biopsies [97,98]. 

Finally, it is pivotal for these new therapeutic strategies to use robust tests for predic-
tive biomarker (PD-L1 and EGFR) assessment. Thus, it has been previously demonstrated 
that patients with EGFR-mutant NSCLC showed a poor or non-response response to im-
munotherapy [99,100]. The mechanisms mediating this resistance of EGFR-mutated 
NSCLC patients to immunotherapy are not totally elucidated today. However, previous 
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works revealed that EGFR-mutated NSCLCs have lower PD-L1 expression and a low tu-
mor mutational burden, leading to weak immunogenicity and, thus, a weak response to 
ICIs [99,101]. In this context, it is crucial to set up molecular biology testing for EGFR eval-
uation, having both high specificity and sensitivity. 

7. Perspectives and Issues 
The FDA and EMA recently approved adjuvant treatment with osimertinib for early 

stage non-squamous NSCLC [24,25]. Thus, it is necessary to look for activating mutations 
in EGFR (L858R and deletion in exon 19) for treatment of IB-IIIA stage non-squamous lung 
cancer [102]. However, these investigations can certainly be applied to all operable stages 
including the IA stage and to all histological types of NSCLC including squamous carci-
noma with the L858R mutation or the exon 19 deletion. Thus, it maybe rapidly mandatory 
in the near future to look for these genomic alterations in all stages and histological types 
of NSCLC. Rare mutations in EGFR can be treated with targeted therapy in adjuvant 
[103,104]. In contrast to certain NSCLCs, rare mutations in EGFR may be not sensitive to 
TKIs targeting these mutations, and patients may benefit better from immunotherapy as-
sociated with or without chemotherapy [70]. Moreover, the development of several third 
generation TKIs targeting the EGFR mutations opens doors to many clinical trials and new 
possibilities in the near future for neoadjuvant and/or adjuvant targeted therapies in early 
stage NSCLC [105]. Follow-up of post-operative patients with an LB can be envisaged to 
monitor a combination of the quantification of the circulating tumor free DNA and exam-
ination for mutations in EGFR as well as other associated genomic alterations [106,107]. If 
NGS is performed to detect mutations in EGFR, it is important to provide information 
concerning the genomic alterations present on the different genes associated with muta-
tions in EGFR [34,75]. The mid- and long-term efficacy of osimertinib as a function of the 
different genetic signatures may in fact be different. Additionally, the ethnic origin of the 
patients must be taken into consideration, since it is well known that Asians present with 
a large percentage of early stage mutated NSCLC [108]. A recent study on Chinese pa-
tients reported a higher number of EGFR mutations in early stages compared to advanced 
stages [109]. The latter result was not observed in another study performed in patients 
living in the USA [75]. 

The sudden onset of the recent COVID-19 pandemic and the different successive 
waves associated with the worldwide severe acute respiratory syndrome-associated coro-
navirus 2 (SARS-CoV-2) infection led to a strong impact on the surgery of patients having 
early stage NSCLC, with a global decrease of thoracic surgical activity, an increase of de-
lay for lung cancer resection, and certainly an increase of lung cancer mortality [110–112]. 
In the same period, a strong decrease of molecular biological activity in NSCLC patients 
for genomic alteration detection, including the assessment of EGFR mutation, was ob-
served in most of the countries and institutions [111,113]. In this context, the number of 
clinical trials, notably those associated with neoadjuvant and/or adjuvant targeted ther-
apy in early stage NSCLC, dropped, and this situation may slow down the development 
of these patients receiving care with different EGFR TKIs in the near future. 

8. Conclusions 
Pre-operative and/or post-operative treatments of NSCLC by targeted therapies or 

by immunotherapy (in association or not with chemotherapy) have recently revolution-
ized the care of early stage lung cancers and thus may prevent recurrence and progression 
of these tumors after surgery. Apart from the targeted therapy which has been described 
above, early stage NSCLC wild type for EGFR and ALK can benefit from neoadjuvant 
and/or adjuvant immunotherapy or immunochemotherapy in the context of ongoing 
large phase 3 clinical trials [3,6,12,13,17]. Therefore, these treatments provide great hope 
for a cure for all these cancers. However, many challenges are associated with this thera-
peutic revolution, not only for oncologists but also for pathologists. Thus, with the aim of 
providing optimal care for patients, laboratories now reflect on many pivotal questions 
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(Table 1). Good practices and analyses of biological specimens (tissue biopsies, cytological 
samples, blood samples obtained before and/or after surgery, surgical specimens) 
strongly determine the choice of an appropriate therapy based on the evaluation of several 
predictive biomarkers. 

Table 1. Open current and future questions concerning the evaluation of EGFR status of early stage NSCLC patients in 
the context of neoadjuvant and/or adjuvant therapies using EGFR TKIs. 

Should we only look for the EGFR status on pre-operative biopsies (bronchial and transthoracic biopsies)? 
Should we only look for the EGFR status on surgically resected specimens? 

Should we look for the EGFR status systematically on both biopsies and surgically resected specimens? 
Is it acceptable to look for the EGFR status on cytological samples only? 

What is the added value of integrating a liquid biopsy before and/or after surgery for early stage NSCLC patients? 
Does the assessment of EGFR have to be done only by targeted (RT-PCR) or next generation sequencing technologies? 
What about the systematic evaluation of the other predictive biomarkers on biopsies (PD-L1, ALK, and other genes)? 
How can we master the turnaround time in obtaining results, notably in the context of neoadjuvant immunotherapy 

versus adjuvant EGFR TKIs administration? 
How should we consider the landscape of concomitant mutation (notably in TP53, RB, RBM10, CTNNB1, FAT1, 

ABCB1, ARID1A) in EGFR 19 del19/L858R mutated tumors and their association with response to EGFR-TKIs in early 
stage NSCLC patients? 

How should we consider EGFR mutations out of EGFR 19 del19/L858R? 
How should we take care of patients with early stage squamous cell lung carcinoma with an EGFR mutation? 

How should we reimburse the molecular biology reflex tests and receive coverage for the full cost? 
How should we integrate the induced workload and new infrastructural challenges in the pathology laboratories? 
How should we anticipate the issues associated with the development of the In Vitro Diagnostic Regulation in Eu-

rope? 

It is crucial that the laboratory tests be robust (in terms of specificity and sensitivity) 
and the management of the biological samples be optimal, knowing that the preoperative 
tissue samples are becoming smaller and smaller in size, which requires great collabora-
tion between oncologists, pathologists, and molecular biologists [29]. Moreover, for a long 
time, oncologists have shown interest in LB, given the number of advantages in terms of 
practice and facility of execution. However, while the use of these tests is more and more 
frequent in patients with advanced stage NSCLC, their use in patients with early stage 
NSCLC is still strongly debatable and open to several challenges (Table 2) [40,42]. 

Table 2. Main challenges facing liquid biopsies for early stage NSCLC patients. 

Should we assess the ct-DNA level before and/or after surgery? 
What is the best timing for blood sampling after complete surgery? 

How should we define a cutoff for the ct-DNA level after complete surgery? 
How should we set up a liquid biopsy in new daily practice? 

How should we determine false and true negative results for EGFR mutation in a liquid biopsy? 
How should we determine false positive results for EGFR mutation in a liquid biopsy? 

What are the best practices for mastering the different pre-analytical phases? 
How should we distinguish cf-DNA and ct-DNA in routine clinical practice? 

How should we set up blood methods for standardization and validation of molecular biology testing? 
How should we obtain a mandatory accreditation (such as the ISO 15,189 accreditation in Europe)? 

How should we reimburse the liquid biopsy in the health care system? 

The important nature of these novel strategies in thoracic oncology requires labora-
tories to ensure that the different tests are of the highest quality. Therefore, different ex-
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ternal quality controls and accreditations according to international norms must be pur-
sued [114]. In addition, the management of the biological tests must respect the current 
2022 new legislative regulations for use (which will be applicable from May 2022), while 
taking into consideration the guidelines concerning the EU In Vitro Diagnostic Regulation 
(IVDR) [115–117]. By consequence, all manufacturers of in vitro diagnostic tests will be 
required to obtain certification to distribute the products to their clients. This will certainly 
offer greater standardization of molecular biology testing. However, this puts strong con-
straints on the working of many pathology laboratories, given the associated budgetary 
consequences for the setup and/or maintenance of IVDR for doing targeted sequencing 
and/or NGS [115–117]. 

Other different approaches that predict the response or resistance to targeted thera-
pies and immunotherapies will certainly emerge rapidly in the future and must subse-
quently be integrated into the care of patients with early stage NSCLC [118–122]. Thus, it 
is certain that aside from EGFR and ALK, many other genomic alterations on other genes 
of interest will systematically be evaluated before immunotherapy or immunotherapy 
and chemotherapy to justify the therapeutic decision, while considering the benefit/risk 
of treatment [52]. The complexity of the biological tests will become associated with pa-
tient phenotype, genetic and epigenetic analyses, and an extension of therapeutic strate-
gies. It is without any doubt that approaches based on algorithms that integrate develop-
ments in artificial intelligence will rapidly be envisaged in the domain of care of early 
stage NSCLC patients [123]. 
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