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Abstract: Transmembrane proteins (TMEMs) are integral proteins that span biological membranes.
TMEMs function as cellular membrane gates by modifying their conformation to control the influx
and efflux of signals and molecules. TMEMs also reside in and interact with the membranes of
various intracellular organelles. Despite much knowledge about the biological importance of TMEMs,
their role in metabolic regulation is poorly understood. This review highlights the role of a single
TMEM, transmembrane protein 135 (TMEM135). TMEM135 is thought to regulate the balance between
mitochondrial fusion and fission and plays a role in regulating lipid droplet formation/tethering, fatty
acid metabolism, and peroxisomal function. This review highlights our current understanding of the
various roles of TMEM135 in cellular processes, organelle function, calcium dynamics, and metabolism.
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1. The Structure and Function of Transmembrane Proteins

Transmembrane proteins (TMEMs) are essential for cellular structure and function [1,2].
Characterized by their protrusion through a membrane, TMEMs are generally composed of
three domains with hydrophilic (extracellular and intracellular domains) and hydrophobic
(bilayer domain) properties. The residues of the hydrophobic domain form a coil or helix
that spans the lipid bilayer. Although biological membranes are fluid, TMEMs do not change
their orientation within the membrane to perform their functions. Acting as membrane
linkers, TMEMs instead undergo conformational changes to convey signals to secondary
messenger systems. For example, some TMEMs have structures on their extracellular domain
that are capable of binding with specific hormones in the extracellular environment [3,4].
Once a hormone molecule is bound, a conformational change at the binding site results in
structural changes in the intracellular domain of the TMEM. These changes initiate a cascade
of intracellular events that constitute a response to the external environment.

In addition to allowing cells gather information about the external environment, some
TMEMs help control the transfer of solutes across membranes. These transmembrane
transporters appear in clusters that create pores or channels within the membrane that
can open and close under different conditions or in response to regulatory signals. For
example, voltage-gated channels open and close in response to changes in the electrical
potential across the membrane, whereas ligand-gated channels open and close in response
to binding by specific signaling molecules or substrates [5–10]. A number of transmembrane
transporters couple the inward movement of one solute to the outward movement of
another [11]. Misfolding of transmembrane transporters is associated with a variety of
clinical conditions [1,2,12,13].
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There are several TMEMs in the mitochondria, including two well-studied TMEMs;
TMEM70 and TMEM242. TMEM 70 is localized in the inner membrane of the mitochondria
and functions as a facilitator of mammalian F1Fo ATP synthase [14–16]. Given the known
role of TMEM70, mutations in TMEM70 lead to oxidative phosphorylation (OXPHOS)
deficiencies linked to many mitochondrial diseases that present as neonatal mitochondrial
encephalo-cardiomyopathy in humans [14,15,17–19]. Likewise, TMEM242 affects the
arrangement of ATP synthase [20], whereas deletion of both TMEM70 and TMEM242
prevents the assembly of ATP synthase, thereby affecting complex I [20].

2. The Discovery of Transmembrane Protein 135 (TMEM135)

Very long-chain acyl-CoA dehydrogenase (VLCAD) is an enzyme that catalyzes the
first step in the mitochondrial beta-oxidation of certain fatty acids. VLCAD deficiency
is a well-documented condition in which pathogenic mutations in the ACADVL gene
lead to severe physiological consequences, including cardiomyopathy, skeletal myopathy,
encephalopathy, and sudden death in children and young adults [21–26]. TMEM135 was
found to be elevated in the VLCAD-deficient mice. The VLCAD-deficient mouse model
recapitulates the clinical phenotypes seen in VLCAD-deficient children. VLCAD-deficient
mice display upregulation of critical regulators of mitochondrial biogenesis, such as perox-
isome proliferation-activated receptor gamma coactivator-1 alpha (PGC-1α) and acyl-CoA
synthase, an enzyme important for fatty acid biosynthesis and sarcolemmal fatty acid
uptake [26]; TMEM135 was also elevated in VLCAD-deficient mice. Subsequent studies
to further characterize TMEM135 revealed a function in adipogenesis and osteoblastoge-
nesis [27]. The involvement in VLCAD deficiency suggests that TMEM135 may play a
role in the regulatory feedback that controls mitochondrial fat metabolism. Further work
in VLCAD-deficient mice and Caenorhabditis elegans (C. elegans) demonstrated that the
metabolic role of TMEM135 in the enhancement of fat storage and mitochondrial function
may link TMEM135 to other genetic networks, including insulin signaling [28–35].

3. Structural Organization of the TMEM135 Gene and Protein

The gene encoding TMEM135, also named peroxisomal protein 52 (PMP52) (https:
//www.ncbi.nlm.nih.gov/gene/65084 accessed on 15 June 2021), is located on chromosome
11 in humans (11q14.2) and chromosome 7 in mice. TMEM135 contains six alpha-helical
transmembrane domains spanning amino acid positions 67–89, 96–115, 147–169, 300–322,
and 332–354, respectively [11,12]. There are two predicted TMEM135 isoform products of
alternative splicing. Isoform 1, the canonical sequence, is 458 amino acids in length and
has a molecular weight of 52,291 kDa. The shorter isoform 2, which is missing amino acids
133–154 from the canonical sequence, is 436 amino acids in length and has a molecular
weight of 49,914 kDa. There are also two additional predicted isoforms containing a total
of 330 and 319 amino acids, respectively. The four TMEM135 isoforms of homo sapiens are
highly conserved across species, with a high degree of homology in Mus musculus, Rattus
norvegicus, Bos taurus, Xenopus laevis, Macleaya cordata, Zeugodacus cucurbitae, Danio rerio,
Gallus gallus, Oryctolagus cunuculus, and C. elegans (Figure 1).

Although TMEM135 is a transmembrane protein, it is unclear whether TMEM135 func-
tions as a transmembrane channel. TMEM135 has yet to be crystallized, but the full-length
wild-type protein is predicted to have its N-terminus on the outside of the membrane lipid
bilayer and its C-terminus on the inside. However, one study in an N-ethyl-N-nitrosourea
(ENU)-induced mutant mouse line (FUN025) demonstrated that a point mutation (T > C) in
the splice donor site adjacent to exon 12 altered the carboxy terminus, leading to a reverse
orientation of the protein across the lipid bilayer [12]. Using the Clustal Omega multiple se-
quence alignment software (v1.2.4) [36], we aligned the homo sapien isoform 1 of the TMEM135
protein sequence with other mitochondrial TMEMs (Figure 2).
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Figure 1. Comparison of the sequence homology of TMEM135 across 11 different species using Clustal Omega 
Multiple Sequence alignment software (v.1.2.4). Clustal Omega designates the following colors for amino acid groups: 
AVFPMILW-Red: Small (small + hydrophobic [includes aromatic –Y])DE-Blue: Acidic, RHK-Magenta: Basic -
H,STYHCNGQ -Green: Hydroxly + sulfhydryl + amine + G Others-Gray: Unusual amino/imino acids etc. (Accession 
numbers for TMEM135 species: OUZ99344.1, JAD00441.1, NP_508800.2, NP_001082887.1, NP_001085541.1, 
XP_040514949.1, NP_001013918.1, NP_082619.3, AAI03394.1, NP_075069.3, and XP_002708692.1 ) [36]. Figure created 
with BioRender.com (accessed on 15 June 2021). 

Figure 1. Comparison of the sequence homology of TMEM135 (A,B) across 11 different species
using Clustal Omega Multiple Sequence alignment software (v.1.2.4). Clustal Omega designates the
following colors for amino acid groups: AVFPMILW-Red: Small (small + hydrophobic [includes
aromatic –Y])DE-Blue: Acidic, RHK-Magenta: Basic -H,STYHCNGQ -Green: Hydroxly + sulfhydryl
+ amine + G Others-Gray: Unusual amino/imino acids etc. (Accession numbers for TMEM135
species: OUZ99344.1, JAD00441.1, NP_508800.2, NP_001082887.1, NP_001085541.1, XP_040514949.1,
NP_001013918.1, NP_082619.3, AAI03394.1, NP_075069.3, and XP_002708692.1 ) [36]. Figure created
with BioRender.com (accessed on 15 June 2021).
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Figure 2. Comparison of the conserved sequence homology of TMEM135 (homo sapien) [NP_075069.3] with TMEM70 
(homo sapien) [AAH02748.2] and TMEM242 (homo sapien) [NP_060922.2] using Clustal Omega Multiple Sequence 
alignment (v.1.2.4.) [36]. Clustal Omega designates the following colors for amino acid groups: AVFPMILW-Red: 
Small (small + hydrophobic [includes aromatic –Y])DE-Blue: Acidic, RHK-Magenta: Basic -H,STYHCNGQ -Green: 
Hydroxly + sulfhydryl + amine + G Others-Gray: Unusual amino/imino acids, etc. Figure created with BioRender.com 
(accessed on 15 June 2021).  

  

Figure 2. Comparison of the conserved sequence homology of TMEM135 (homo sapien) [NP_075069.3] with TMEM70 (homo
sapien) [AAH02748.2] and TMEM242 (homo sapien) [NP_060922.2] using Clustal Omega Multiple Sequence alignment (v.1.2.4.) [36].
Clustal Omega designates the following colors for amino acid groups: AVFPMILW-Red: Small (small + hydrophobic [includes
aromatic –Y])DE-Blue: Acidic, RHK-Magenta: Basic -H,STYHCNGQ -Green: Hydroxly + sulfhydryl + amine + G Others-Gray:
Unusual amino/imino acids, etc. Figure created with BioRender.com (accessed on 15 June 2021).

4. TMEM135 is a Regulator of Mitochondrial Dynamics

The mitochondrion is the only organelle in animals that contains its own self-replicating
genome. Mitochondrial DNA encodes 13 essential components of the oxidative phospho-
rylation (OXPHOS) system, although many mitochondrial proteins are encoded by the
nuclear genome. Once thought to be rigid structures, mitochondria migrate through the
cell to fuse, divide, and to undergo regulated turnover [37]. Mitochondrial dynamics
include the movement of mitochondria along the cytoskeleton and changes in mitochon-
drial morphology, distribution, and connectivity, which are mediated by tethering, fusion,

BioRender.com


Cells 2021, 10, 1750 6 of 17

and fission events [36–42]. At steady state, fission and fusion events are balanced to
maintain mitochondrial morphology and function [39]. When mitochondria undergo
fusion, GTPases, mitofusin 1 (MFN-1), and mitofusin 2 (MFN-2) regulate fusion of the
outer mitochondria, whereas optic atrophy 1 (OPA-1) regulates fusion of the inner mem-
branes [39–48]. Mitochondrial fission is mediated by the cytosolic dynamin family member
dynamin-related protein 1 (DRP1) [43–45], which is recruited from the cytosol to form
spirals around mitochondria that constrict and sever the inner and outer membranes.

TMEM135 has an indirect, yet integral role, in mitochondrial metabolism and membrane
potential, where it is thought to regulate mitochondrial fission and fusion [6,37,38,45–51].
Disruption of TMEM135 function in mice can tip the fusion–fission balance towards fusion,
leading to an increase in the size and a decrease in the number of mitochondria in cells [12,52].
Lee et al. demonstrated that TMEM135 colocalizes with oligomerized DRP1 and proposed
that TMEM135 acts as a regulator of mitochondrial fission by activating DRP1 [12]. In
C. elegans, overexpression of TMEM135 increases mitochondrial fragmentation and membrane
potential, whereas loss of TMEM135 decreases the mitochondrial membrane potential and
the rate of oxygen consumption [11]. However, the definitive role of TMEM 135 in oxidative
phosphorylation and mitochondrial dynamics continues to be poorly understood.

5. TMEM135 and Peroxisomal Transport

Faust et al. first described TMEM135 as a peroxisomal protein in Drosophila melanogaster
(fly base isoform CG11737) [53]. TMEM135 is a target of the liver X transcription factor in
human liver cells and has homology with the Tim17 family of proteins, which mediate protein
translocation across mitochondrial membranes [53]. Loss of TMEM135 in hepatocytes reduces
concentrations of peroxisomal matrix enzymes that help break down long-chain fatty acids
(LCFAs). Despite these findings, little is understood about how TMEM135 is involved in fatty
acid beta-oxidation and enzyme transport in peroxisomes. Generally, mitochondria favor
the oxidation of short-chain and medium-chain fatty acids (<C12) [54], although palmitate
(C16) is the preferred substrate for fatty acid oxidation in the myocardium. Mitochondria
and peroxisomes both oxidize LCFAs (C14–C18), whereas only peroxisomes oxidize very-
long-chain fatty acids (VLCFAs, >C20) [54]. Renquist et al. used electrophoretic mobility
shift assay (EMSA) and chromatic immunoprecipitation (ChIP) analysis to demonstrate that
the human TMEM135 promoter contains a liver X receptor (LXR) response element that
binds LXRs and mediates LXR-induced transcription [12,55]. This response element was
notably not found in murine cells [56]. Furthermore, in human HepG2 cells, decreased
expression of TMEM135 caused triglyceride accumulation regardless of diminished lipogenic
gene expression, suggesting a potential role for TMEM135 in beta-oxidation.

To determine its physiological importance, TMEM135 was knocked down via siRNA in
the livers of fed and fasted C57BL/6 mice. Consistent with increased fatty acid uptake and
beta-oxidation, fasting augmented hepatic fatty acid and NADH concentrations in control
mice. Compared with the control mice, fasted TMEM135-knockdown mice displayed a
further increase in hepatic fatty acid concentrations and a significant decrease in NADH
concentration, suggesting impairment of peroxisomal beta-oxidation [55]. The peroxisomal
contribution to overall LCFA beta-oxidation becomes greater during physiological states of
increased fatty acid load, such as fasting, which might partly explain why TMEM135 protein
levels were increased in heart and skeletal muscle during fasting and cold stress in mice [1].
The observed increases in linoleic acid and total fatty acid levels in fasted TMEM135-
knockdown mice are consistent with an impairment of beta-oxidation. Despite some
evidence suggesting that TMEM135 localization in the peroxisome may signal peroxisome
impairment, there is no known role for TMEM135 in mitochondrial biogenesis, impairment,
and/or beta-oxidation [9]. Further analysis of the hepatic NADH and ketone concentrations
is needed to confirm peroxisomal beta-oxidation. Renquist et al. demonstrated that
TMEM135 mRNA expression is induced by peroxisome proliferation-activated receptor
(PPAR) agonists and that the TMEM135 promoter is bound by PPAR [55], indicating that
TMEM135 is also a PPAR target gene. These findings suggest that TMEM135 may be
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a potential therapeutic target in the treatment of age-related diseases associated with
peroxisome dysfunction.

6. Potential Physiological Roles of TMEM135

In C. elegans and mice, TMEM135 is ubiquitously expressed in a variety of tissues,
with the highest expression found under conditions of cold and fasting stress [57,58]. In
C. elegans, TMEM135 is involved in fat storage and longevity regulation [11]. TMEM135 is
expressed in the nucleus, sarcoplasmic reticulum, and plasma membrane, localizing with
lipid droplets, peroxisomes, and mitochondria [11,12,32,49,55]. TMEM135 can also be found
within mitochondrial endoplasmic reticulum contact sites (MERCs) [11,52,53,55]. MERC
sites are specialized contact sites that are thought to be enriched with proteins involved in
mitochondrial calcium (Ca2+) flux, lipid transfer, and morphology [59–61]. Therefore, not
only can TMEM135 participate in fission, similar to DRP1 [62], but TMEM135 may also be
involved in lipid transport across the mitochondrial membrane within MERC sites [27,63,64].
Any fluctuation in MERC sites that TMEM135 directly or indirectly regulates may serve as a
mechanistic link between TMEM135 defects and disruption of cell metabolism.

As shown in our schematic (Figure 3), we hypothesize a role of TMEM135 in fission.
Breckenridge et al. showed that Ca2+ influx into the mitochondria stimulates DRP1-
dependent mitochondrial fission and a subsequent release of cytochrome c release [65].
It cannot be ruled out that TMEM135 plays a role in regulating the balance between
mitochondrial fusion and fission since it has been proposed that TMEM135 activates
DRP1 [12]. Additional investigation is necessary to define the role of TMEM135 in fission
(Figure 4). We have summarized the potential physiological roles of TMEM135 in Table 1.

Table 1. TMEM135 has many implications in disease and many potential physiological roles. Using The Human Protein
Atlas Databank [67] and literature, we show the predicted locations of TMEM135, expression in human tissue, known
interactions with organelles and vesicles, the physiological role of TMEM135 [68], and the implication of TMEM135 in
human disease.

Predicted Location Major Expression in Tsue Known Interactions with
Organelles/Vesicles Physiological Role Implication in

Human Disease

• Vesicles [66]
• Membrane [66]

• Medium expression
in: Cerebral cortex,
Cerebellum
Hippocampus,
Caudate
Nasopharynx,
Bronchus, Lung,
Duodenum, Small
intestine, Cervix,
uterine, and
Adipose tissue [66]

• Low expression in:
Thyroid gland,
Parathyroid gland,
Adrenal gland, Oral
mucosa, Salivary
gland, Stomach,
Colon, Rectum,
Liver, Gallbladder,
Kidney, Urinary
bladder, Testis,
Epididymis, Seminal
vesicle, Vagina,
Ovary, Fallopian
Tube, Endometrium,
Placenta, Breast,
Smooth muscle,
Skin, Appendix, and
Soft tissue [66]

• Lipid Droplets [11]
• Mitochondria [11]
• SR/ER [11]
• Peroxisome [52]
• Lysosome [65]
• Proposed that

TMEM135 may
interact with MERCs

• Cholesterol
transport; [67,69]

• Intracellular
cholesterol
distribution; [67,69]

• Fat storage and
longevity
regulation [67,69]

• Regulation of
ciliogenesis
(cholesterol
dependent) [67,69]

• Profiling in Breast cancer
prognosis [27,55,62,70]

• Profiling of TMEM135 in
patients to assess
inflammation and/or
cholesterol flux
capacity [37]

• Profiling of patients with
insulin-resistant and
insulin-sensitivities
when matched for body
mass index [56]

• Profiling of TMEM135 in
patients to assess
associations with
moderate to extreme
obesity [57]

• Profiling of TMEM135 in
bone density
maintenance and
osteoporosis [63]

• Profiling of TMEM135 in
patients to assess
non-alcoholic fatty liver
disease) [71],
hypertrophic
cardiomyopathy [72],
and premature cardiac
aging [20].
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Figure 3. This plausible model of TMEM135 demonstrates the many interactions for TMEM135 in several organelles,
including the mitochondria [11] and the mitochondrial endoplasmic reticulum contact sites (MERCs). Additionally,
TMEM135 is also a peroxisomal protein [66]. TMEM135 has been shown to co-localize with DRP1 as referenced in Wei Lee
et al., 2016 [12]. Here, we show the plausible interaction between TMEM135 and DRP1 in the mitochondria and TMEM135 in
the peroxisome [53], lysosome [66], lipid droplets [11], and the endoplasmic reticulum/ sarcoplasmic reticulum (ER/SR) [11].
Figure created with BioRender.com (accessed on 15 June 2021).
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Figure 4. We hypothesize a role of TMEM135 in fission due to Ca2+ influx into the mitochondria and stimulation of DRP1-
dependent mitochondrial fission. Mitochondrial dynamics are split into two processes: Fusion and Fission. Mitochondrial 
fusion is coordinated by Mitofusin 1 (MFN-1) and Mitofusin 2 (MFN-2) [light blue color], Optic Atrophy 1 (OPA-1) [light 
pink], Mitochondrial contact site and cristae organizing system (MICOS) [light yellow], and Cardiolipin [light green]. 
Mitochondrial fission proteins are coordinated by Mitochondrial Fission 1 protein (FIS1) [green], Mitochondrial dynamic 
protein of 51 kDa homolog (MiD51) [magenta] and Mitochondrial Fission Factor of 49kDA homology (MiD49) [purple], 
Mitochondria fission factor (Mff) [dark yellow], Transmembrane Protein 135 (TMEM135) [red] on the outer membrane of 
the mitochondria; whereas, Dynamin-1-like protein 1 (DRP1) [blue] is located in the inner membrane of the mitochondria. 
The endoplasmic reticulum (ER) [black] is represented in the fission process. It cannot be ruled out that TMEM135 plays 
a role in regulating the balance between mitochondrial fusion and fission since it has been proposed that TMEM135 acti-
vates DRP1 [12]. Figure created with BioRender.com (accessed on 15 June 2021).  

Figure 4. We hypothesize a role of TMEM135 in fission due to Ca2+ influx into the mitochondria and stimulation of DRP1-
dependent mitochondrial fission. Mitochondrial dynamics are split into two processes: Fusion and Fission. Mitochondrial
fusion is coordinated by Mitofusin 1 (MFN-1) and Mitofusin 2 (MFN-2) [light blue color], Optic Atrophy 1 (OPA-1) [light
pink], Mitochondrial contact site and cristae organizing system (MICOS) [light yellow], and Cardiolipin [light green].
Mitochondrial fission proteins are coordinated by Mitochondrial Fission 1 protein (FIS1) [green], Mitochondrial dynamic
protein of 51 kDa homolog (MiD51) [magenta] and Mitochondrial Fission Factor of 49kDA homology (MiD49) [purple],
Mitochondria fission factor (Mff) [dark yellow], Transmembrane Protein 135 (TMEM135) [red] on the outer membrane of
the mitochondria; whereas, Dynamin-1-like protein 1 (DRP1) [blue] is located in the inner membrane of the mitochondria.
The endoplasmic reticulum (ER) [black] is represented in the fission process. It cannot be ruled out that TMEM135 plays a
role in regulating the balance between mitochondrial fusion and fission since it has been proposed that TMEM135 activates
DRP1 [12]. Figure created with BioRender.com (accessed on 15 June 2021).

7. Potential Role of TMEM135 as a Regulator of Calcium Dynamics

The mitochondria and endoplasmic reticulum (ER) play essential roles in maintaining
Ca2+ homeostasis and lipids. In addition to storing Ca2+, mitochondria can accumulate
large amounts of Ca2+ to maintain mitochondrial energy metabolism [73,74]; therefore, it is
essential to investigate the function of TMEM135 within these homeostatic mechanisms.
As mentioned earlier, the mitochondria are linked to the ER by MERCs, which enable
mitochondria and ER to exchange Ca2+ [74,75]. Any dysregulation or modulation of
Ca2+ signaling and flux can affect critical cellular networks and structures, including
MERC sites [76–78]. Notably, Ca2+ functions directly and as a second messenger in almost
every physiological process—especially in the mitochondria. It should also be noted
that Ca2+ regulates several cellular processes, including apoptosis, signal transduction,
and transcriptional regulation [79–81]. Given TMEM135 is involved in mitochondrial
dynamics [12,82,83], we speculate that TMEM135 may also regulate Ca2+ flux, Ca2+ uptake,
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and Ca2+-dependent transcription factors and kinases. TMEM135 may regulate several
transcription factors that have integral roles in maintaining Ca2+ dynamics in the cell.

C. elegans studies revealed that TMEM135 could also regulate Forkhead box O (FOXO),
FoxO, expression [11,84]. Elevated nuclear expression of FoxO and its target genes can con-
tribute to muscle wasting and cell death [84]. FoxO transcription factors can also contribute
to cardiac growth, cardiac remodeling, and cardiac phenotypes in laminopathies, diabetic
cardiomyopathy, and ischemia-reperfusion injury [16–18]. Several cellular responses re-
lated to stress and aging are downstream of FoxO [85,86]. The expression of TMEM135 is
connected to several stress-induced signaling pathways, including the p38 pathway [87].
Upstream of FoxO, the p38 signal transduction pathway mediates FoxO translocation to
the nucleus [87]. The c-Jun N-terminal kinase is also a positive regulator of FoxO that
mediates FoxO translocation to the nucleus [85,86]. Interestingly, c-Jun is a Ca2+-dependent
kinase along with ATF4, an isoform of CREB. Fusakio et al. showed that ATF4 enhances the
transcription of genes involved in oxidative stress, ER stress, and mitochondrial stress [88].
Because TMEM135 appears critical for FoxO regulation [11], it might have clinical relevance
for aging and heart-failure biology, beyond fatty-acid beta-oxidation defects.

Despite the lack of a current structure for TMEM135, several proteins have experi-
mental and predicted interactions with TMEM135 that have roles in calcium signaling,
including Sphingomyelin phosphodiesterase (SMPD3) [89,90]. Detected experimentally
by affinity chromatography assay [89,90], TMEM135 and SMPD3 share an association
(https://string-db.org/network/9606.ENSP00000306344, accessed 1 July 2021). It is well
understood that sphingolipids are integral parts of lipid membranes [91]. More impor-
tantly, sphingolipids can activate or inhibit channels and modulate calcium signaling [92].
Interestingly, the function of SMPD3 is to hydrolyze sphingomyelin to form ceramide
and phosphocholine [93–95]. SMPD3 has a crystallized structure (5UVG) that has two
calcium ion ligands [96,97]. Given the localization TMEM135 has with lipid droplets and
the experimental evidence of interaction and shared homology with SMPD3, we postulate
that TMEM135 has a role in altering Ca2+ dynamics.

8. General Characteristics and Profiling of TMEM135 in Human Diseases

Many TMEM proteins contribute to oncogenesis, including TMEM135 [70,97]. In
humans, TMEM135 was identified as an apoptosis-regulating protein in BRCA1-mutant
estrogen receptor-positive breast cancer [27,55,62,70]. Natrajan et al. performed a sequenc-
ing analysis of independent hereditary BRCA1 and non-BRCA1 breast cancers cases and
identified TMEM135 as a potential driver of breast cancer [98]. TMEM135 mutations were
also identified in melanoma patients and in recurrent gene fusions associated with several
other cancers [99,100].

TMEM135 is highly expressed in brain tissue. A study by Franic et al. suggested an
association between TMEM135, learning, and intelligence [101]. In mice, the pathogenic
FUN25 mutation in TMEM135 was associated with age-dependent pathologies, including
accelerated retinal aging reminiscent of human macular degeneration; however, mutations
in human TMEM135 have not been reported in macular degeneration patients [12].

Human interactome studies looking at networks of protein–protein interactions sug-
gest that TMEM135 interacts with proteins involved in lipid synthesis, cholesterol-binding,
cholesterol transport, membrane rafting, and Ca2+ modulation, including sphingomyelin
phosphodiesterase 3 (SMPD3), which has a critical role in ceramide synthesis [102–104].
TMEM135 was also found to be differentially expressed (with a high degree of ethnic
difference) in subcutaneous adipose tissue between insulin-resistant and insulin-sensitive
individuals when matched for body mass index [57].

Genome-wide association studies revealed that TMEM135 is involved in bone density
maintenance and osteoporosis [64]. Furthermore, large and rare copy-number variations
in TMEM135 were associated with moderate to extreme obesity [58]. TMEM135 is also
differentially expressed in peripheral blood mononuclear cells of patients after treatment
with a high-dose statin, a cholesterol-lowering medication, in the YELLOW II Study, in-

https://string-db.org/network/9606.ENSP00000306344
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dicating a potential role in inflammation and/or cholesterol flux capacity [37]. Chu et al.,
demonstrated that when TMEM135 was knocked down, the plasma membrane cholesterol
levels were significantly reduced, suggesting that TMEM135 has a unique and integral role
in lysosome-peroxisome membrane contacts [66]. Further studies reported that perturbed
intracellular cholesterol distribution imposed by lysosomal cholesterol accumulation dur-
ing TMEM135 depletion, is closely associated with impaired ciliogenesis [69]. TMEM135
depletion prevents ciliary vesicle elongation, a characteristic of impaired Rab8 function [69].
In addition, TMEM is also involved in chemically induced hepatic steatosis (non-alcoholic
fatty liver disease) [105] and hypertrophic cardiomyopathy [106]. Forced overexpression
TMEM135 in mouse hearts led to a form of cardiomyopathy characterized by hypertrophy,
increased collagen deposits, and premature cardiac aging [20].

9. Perspective

The role of TMEM135 in mitochondrial dynamics has implications for adipogenesis,
mitochondrial function, and fat storage. Previous reports suggest a critical link between
TMEM135 and aging; however, there is still no definitive insight into the role of TMEM135
in aging outside of phenotypic observations linked to polymorphisms in the TMEM135
gene [12]. A TMEM135 crystal structure could delineate the exact position of TMEM135 in
mitochondrial metabolism and dynamics, as well as the cellular physiology and biophysical
characteristics of the protein. Using I-TASSER (Iterative Threading ASSEmbly Refinement)
software (version 5.1) [71,72,107], we have determined potential ligands, including oleic
acid, chlorophyll, and derivatives of glucose, to interact with TMEM135 (Figure 5).

Due to the lack of characterization of the electrical and biophysical properties of
TMEM135, it will be helpful to use biophysical techniques such as patch clamping to
determine which agonist(s) activates TMEM135. Additionally, a better understanding
of the activation of TMEM135, e.g., activation by mechanical force, would prove helpful.
Interestingly, it has been well established that ion channels can change the cell mem-
brane potential [5,108,109]. Therefore, further investigation is needed to understand how
TMEM135 can change the membrane potential. One way to experimentally test this is by
overexpressing TMEM135 in a well-characterized cell line such as HEK293 or CHO cells
and assessing biophysical changes.

Further research into the precise subcellular localization of TMEM135 would be bene-
ficial for understanding the functions of TMEM135. Additionally, the activity-regulating
ligands and kinases of TMEM135 have yet to be identified. TMEM135 may serve as a target
for future anti-aging therapeutics, but further study is required. Creating a conditional loss-
of-function mouse system would be beneficial to understanding the effects of TMEM135
ablation and overexpression in the tissue of interest. Overall, TMEM135 has been impli-
cated to be a novel regulator of mitochondrial dynamics and cell physiology [6,37,38,45–50];
thereby, making TMEM135 a critical piece in understanding health and disease.
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