Functional Roles for CD26/DPP4 in Mediating Inflammatory Responses of Pulmonary Vascular Endothelial Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Lung Endothelial Cell Culture
2.2. Reagents
2.3. Transfections with Silencing RNA
2.4. RNA Sequencing
2.5. Differentially Expressed Genes (DEGs), Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment Analysis
2.6. Flow Cytometry Analysis
2.7. Real-Time Quantitative PCR
2.8. Enzyme-Linked Immunosorbent Assay (ELISA) of Conditioned Medium
2.9. Cell Proliferation Assay
2.10. Wound Healing Assay
2.11. Tube Formation Assay
2.12. In Vitro Vascular Permeability Assay
2.13. Statistical Analysis
3. Results
3.1. CD26/DPP4 Expression Levels in HLMVECs Treated with siRNA Were Decreased
3.2. Transcriptome Analysis and Verification Experiments: Identification of Effects of DPP4 Knockdown on HLMVECs
3.2.1. Transcriptome Analysis of the Effects of DPP4 Knockdown on HLMVECs without LPS Stimulation
3.2.2. Verification Experiments of the Effects of DPP4 Knockdown on HLMVECs without LPS Stimulation
3.2.3. Assessment of the Pro-Inflammatory Parameter Intercellular Adhesion Molecule 1 (ICAM-1)
3.2.4. Assessment of the Regenerative Process
3.3. Transcriptome Analysis and Confirmation Experiments: Effects of DPP4 Knockdown on HLMVECs after LPS Stimulation
3.3.1. Transcriptome Analysis of the Effects of LPS Stimulation on HLMVECs
3.3.2. Transcriptome Analysis of the Effects of DPP4 Knockdown on HLMVECs after LPS Stimulation
3.3.3. Confirmation of the Effects of DPP4 Knockdown on HLMVECs after LPS Stimulation
3.3.4. Assessment of Pro-Inflammatory Parameters
3.3.5. Endothelial Permeability
3.3.6. Assessment of the Regenerative Process
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ware, L.B.; Matthay, M.A. The acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1334–1349. [Google Scholar] [CrossRef] [PubMed]
- Millar, F.R.; Summers, C.; Griffiths, M.J.; Toshner, M.R.; Proudfoot, A.G. The pulmonary endothelium in acute respiratory distress syndrome: Insights and therapeutic opportunities. Thorax 2016, 71, 462–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, B.T.; Chambers, R.C.; Liu, K.D. Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2017, 377, 562–572. [Google Scholar] [CrossRef]
- Minamino, T.; Komuro, I. Regeneration of the endothelium as a novel therapeutic strategy for acute lung injury. J. Clin. Investig. 2006, 116, 2316–2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itou, M.; Kawaguchi, T.; Taniguchi, E.; Sata, M. Dipeptidyl peptidase-4: A key player in chronic liver disease. World J. Gastroenterol. 2013, 19, 2298–2306. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, C.; Schlossman, S.F. The structure and function of CD26 in the T-cell immune response. Immunol. Rev. 1998, 161, 55–70. [Google Scholar] [CrossRef]
- Chrysant, S.G.; Chrysant, G.S. Clinical implications of cardiovascular preventing pleiotropic effects of dipeptidyl peptidase-4 inhibitors. Am. J. Cardiol. 2012, 109, 1681–1685. [Google Scholar] [CrossRef] [PubMed]
- Meyerholz, D.K.; Lambertz, A.M.; McCray, P.B., Jr. Dipeptidyl Peptidase 4 Distribution in the Human Respiratory Tract: Implications for the Middle East Respiratory Syndrome. Am. J. Pathol. 2016, 186, 78–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vliegen, G.; Raju, T.K.; Adriaensen, D.; Lambeir, A.M.; De Meester, I. The expression of proline-specific enzymes in the human lung. Ann. Transl. Med. 2017, 5, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juillerat-Jeanneret, L.; Aubert, J.D.; Leuenberger, P. Peptidases in human bronchoalveolar lining fluid, macrophages, and epithelial cells: Dipeptidyl (amino)peptidase IV, aminopeptidase N, and dipeptidyl (carboxy)peptidase (angiotensin-converting enzyme). J. Lab Clin. Med. 1997, 130, 603–614. [Google Scholar] [CrossRef]
- Zou, H.; Zhu, N.; Li, S. The emerging role of dipeptidyl-peptidase-4 as a therapeutic target in lung disease. Expert Opin. Ther. Targets 2020, 24, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Zhai, W.; Cardell, M.; De Meester, I.; Augustyns, K.; Hillinger, S.; Inci, I.; Arni, S.; Jungraithmayr, W.; Scharpe, S.; Weder, W.; et al. Ischemia/reperfusion injury: The role of CD26/dipeptidyl-peptidase-IV-inhibition in lung transplantation. Transplant Proc. 2006, 38, 3369–3371. [Google Scholar] [CrossRef] [PubMed]
- Beckers, P.A.J.; Gielis, J.F.; Van Schil, P.E.; Adriaensen, D. Lung ischemia reperfusion injury: The therapeutic role of dipeptidyl peptidase 4 inhibition. Ann. Transl. Med. 2017, 5, 129. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Nishikawa, S.; Tanaka, S.; Hamaji, M.; Nakajima, D.; Ohsumi, A.; Chen-Yoshikawa, T.F.; Date, H. CD26/DPP4 Inhibitor: A Novel Prophylactic Drug for Chronic Allograft Dysfunction after Clinical Lung Transplantation. J. Heart Lung Transplant. 2020, 39, S66. [Google Scholar] [CrossRef]
- Kotnala, S.; Kim, Y.; Rajput, C.; Reddyvari, H.; Bolla, S.; Marchetti, N.T.; Kosmider, B.; Bahmed, K.; Sajjan, U.S. Contribution of Dipeptidyl peptidase 4 to Nontypeable H. influenzae-induced lung inflammation in COPD. Clin. Sci. 2021, 135, 2067–2083. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, L.; Dong, L.; Yang, Z.W.; Zhang, J.; Zhang, S.L.; Niu, M.J.; Xia, J.W.; Gong, Y.; Zhu, N.; et al. Crosstalk between the Akt/mTORC1 and NF-kappaB signaling pathways promotes hypoxia-induced pulmonary hypertension by increasing DPP4 expression in PASMCs. Acta Pharmacol. Sin. 2019, 40, 1322–1333. [Google Scholar] [CrossRef]
- Kawasaki, T.; Chen, W.; Htwe, Y.M.; Tatsumi, K.; Dudek, S.M. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 315, L834–L845. [Google Scholar] [CrossRef] [PubMed]
- Toya, S.P.; Malik, A.B. Role of endothelial injury in disease mechanisms and contribution of progenitor cells in mediating endothelial repair. Immunobiology 2012, 217, 569–580. [Google Scholar] [CrossRef]
- DeCicco-Skinner, K.L.; Henry, G.H.; Cataisson, C.; Tabib, T.; Gwilliam, J.C.; Watson, N.J.; Bullwinkle, E.M.; Falkenburg, L.; O’Neill, R.C.; Morin, A.; et al. Endothelial cell tube formation assay for the In Vitro study of angiogenesis. J. Vis. Exp. 2014, 93, e51312. [Google Scholar] [CrossRef]
- Beck-Schimmer, B.; Schimmer, R.C.; Warner, R.L.; Schmal, H.; Nordblom, G.; Flory, C.M.; Lesch, M.E.; Friedl, H.P.; Schrier, D.J.; Ward, P.A. Expression of lung vascular and airway ICAM-1 after exposure to bacterial lipopolysaccharide. Am. J. Respir. Cell Mol. Biol. 1997, 17, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, T.; Nishiwaki, T.; Sekine, A.; Nishimura, R.; Suda, R.; Urushibara, T.; Suzuki, T.; Takayanagi, S.; Terada, J.; Sakao, S.; et al. Vascular Repair by Tissue-Resident Endothelial Progenitor Cells in Endotoxin-Induced Lung Injury. Am. J. Respir. Cell Mol. Biol. 2015, 53, 500–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.Y.; Gao, X.P.; Zhao, Y.D.; Mirza, M.K.; Frey, R.S.; Kalinichenko, V.V.; Wang, I.C.; Costa, R.H.; Malik, A.B. Endothelial cell-restricted disruption of FoxM1 impairs endothelial repair following LPS-induced vascular injury. J. Clin. Investig. 2006, 116, 2333–2343. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Zhang, L.; Marsboom, G.; Jambusaria, A.; Xiong, S.; Toth, P.T.; Benevolenskaya, E.V.; Rehman, J.; Malik, A.B. Sox17 is required for endothelial regeneration following inflammation-induced vascular injury. Nat. Commun. 2019, 10, 2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, C.E.; Iruela-Arispe, M.L.; Zhao, Y.Y. Mechanisms of Endothelial Regeneration and Vascular Repair and Their Application to Regenerative Medicine. Am. J. Pathol. 2021, 191, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Lamalice, L.; Le Boeuf, F.; Huot, J. Endothelial cell migration during angiogenesis. Circ. Res. 2007, 100, 782–794. [Google Scholar] [CrossRef]
- Hoshino, K.; Takeuchi, O.; Kawai, T.; Sanjo, H.; Ogawa, T.; Takeda, Y.; Takeda, K.; Akira, S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the Lps gene product. J. Immunol. 1999, 162, 3749–3752. [Google Scholar] [PubMed]
- Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145–151. [Google Scholar] [CrossRef]
- Bozza, F.A.; Salluh, J.I.; Japiassu, A.M.; Soares, M.; Assis, E.F.; Gomes, R.N.; Bozza, M.T.; Castro-Faria-Neto, H.C.; Bozza, P.T. Cytokine profiles as markers of disease severity in sepsis: A multiplex analysis. Crit. Care 2007, 11, R49. [Google Scholar] [CrossRef] [Green Version]
- Harada, A.; Sekido, N.; Akahoshi, T.; Wada, T.; Mukaida, N.; Matsushima, K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol. 1994, 56, 559–564. [Google Scholar] [CrossRef]
- Radeva, M.Y.; Waschke, J. Mind the gap: Mechanisms regulating the endothelial barrier. Acta Physiol. 2018, 222, e12860. [Google Scholar] [CrossRef]
- Sukriti, S.; Tauseef, M.; Yazbeck, P.; Mehta, D. Mechanisms regulating endothelial permeability. Pulm. Circ. 2014, 4, 535–551. [Google Scholar] [CrossRef] [Green Version]
- Arcani, R.; Martinez, S.; Gayet, S. Sitagliptin and Angioedema. Ann. Intern. Med. 2017, 167, 142–143. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, H.; Yanai, H. The development of angioedema in a patient with type 2 diabetes due to a novel dipeptidyl peptidase-IV inhibitor, anagliptin. Int. J. Cardiol. 2013, 168, e106. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, N.; Ikuma, K.; Konno, Y.; Hirose, M.; Tadokoro, H.; Hasegawa, H.; Kobayashi, Y.; Takano, H. DPP-4 inhibition protects human umbilical vein endothelial cells from hypoxia-induced vascular barrier impairment. J. Pharmacol. Sci. 2017, 135, 29–36. [Google Scholar] [CrossRef] [PubMed]
Gene | p-Value | FC | NC/PBS1 | NC/PBS2 | NC/PBS3 | NC/PBS4 | si/PBS1 | si/PBS2 | si/PBS3 | si/PBS4 |
---|---|---|---|---|---|---|---|---|---|---|
DPP4 | 0.052777 | 0.108789 | 3.6906 | 5.425 | 1.6427 | −0.53626 | −0.3191 | −0.90569 | −1.4262 | 0.071325 |
ICAM1 | 0.098061 | 0.391802 | 5.1235 | 4.9168 | 6.332 | 7.7584 | 4.3928 | 4.2642 | 5.2329 | 4.8335 |
TNF | 0.424103 | 0.779134 | −0.52021 | −1.0127 | 0.49851 | −0.20617 | −1.3694 | −0.31391 | −0.15315 | −0.84435 |
IL6 | 0.631241 | 1.251534 | −0.81298 | −0.57505 | 0.90575 | 0.064808 | −1.078 | 0.67928 | −0.0339 | 1.3099 |
CXCL8 | 0.181945 | 0.597338 | 5.0691 | 4.3318 | 5.2515 | 6.0029 | 5.0058 | 3.4162 | 4.458 | 4.8018 |
(A) | |
Term (Gene Ontology: Biological Process) | p-Value |
positive regulation of endothelial cell proliferation (GO:0001938) | 0.004012 |
regulation of endothelial cell proliferation (GO:0001936) | 0.004224 |
endothelial cell proliferation (GO:0001935) | 0.005302 |
vascular endothelial growth factor receptor signaling pathway (GO:0048010) | 0.005728 |
positive regulation of vasculature development (GO:1904018) | 0.008695 |
angiogenesis involved in wound healing (GO:0060055) | 0.008703 |
vascular endothelial growth factor receptor-2 signaling pathway (GO:0036324) | 0.015278 |
vascular endothelial growth factor signaling pathway (GO:0038084) | 0.017529 |
positive regulation of angiogenesis (GO:0045766) | 0.020147 |
(B) | |
Term (KEGG Pathway) | p-Value |
MAPK signaling pathway | 0.005904 |
Cell cycle | 0.021388 |
TGF-beta signaling pathway | 0.022962 |
TNF signaling pathway | 0.02639 |
NF-kappa B signaling pathway | 0.040451 |
VEGF signaling pathway | 0.045165 |
Term (KEGG Pathway) with Upregulated Genes | p-Value |
TNF signaling | <0.001 |
NF-kappa B signaling | <0.001 |
Chemokine signaling | <0.001 |
Toll-like receptor signaling | <0.001 |
JAK-STAT signaling | <0.001 |
PI3K-Akt signaling | 0.0075459 |
MAPK signaling | 0.0155037 |
Term (KEGG Pathway) with Downregulated Genes | p-Value |
Tight junction | 0.021481 |
Gene | p-Value | FC | NC/PBS1 | NC/PBS2 | NC/PBS3 | NC/PBS4 | NC/LPS1 | NC/LPS2 | NC/LPS3 | NC/LPS4 |
---|---|---|---|---|---|---|---|---|---|---|
DPP4 | 0.711263 | 1.528313 | 3.6906 | 5.425 | 1.6427 | −0.53626 | 3.5973 | 5.5607 | 1.7018 | 1.81 |
ICAM1 | 0.024742 | 4.432767 | 5.1235 | 4.9168 | 6.332 | 7.7584 | 7.953 | 7.791 | 7.8916 | 9.088 |
TNF | 0.564979 | 0.790129 | −0.52021 | −1.0127 | 0.49851 | −0.20617 | 0.34936 | −1.5216 | −1.3344 | −0.093255 |
IL6 | 0.006241 | 4.722449 | −0.81298 | −0.57505 | 0.90575 | 0.064808 | 2.8088 | 2.0826 | 2.5762 | 1.073 |
CXCL8 | 0.000116 | 13.76836 | 5.0691 | 4.3318 | 5.2515 | 6.0029 | 9.6278 | 8.9046 | 8.3929 | 8.8631 |
(A) | |
Term (Gene Ontology: Biological Process) | p-Value |
---|---|
actin filament bundle assembly (GO:0051017) | 0.001939 |
actin filament bundle organization (GO:0061572) | 0.001939 |
positive regulation of endothelial cell proliferation (GO:0001938) | 0.004012 |
regulation of endothelial cell proliferation (GO:0001936) | 0.004224 |
endothelial cell proliferation (GO:0001935) | 0.005302 |
vascular endothelial growth factor receptor signaling pathway (GO:0048010) | 0.005728 |
positive regulation of vasculature development (GO:1904018) | 0.008695 |
angiogenesis involved in wound healing (GO:0060055) | 0.008703 |
regulation of actin filament depolymerization (GO:0030834) | 0.011257 |
vascular endothelial growth factor receptor-2 signaling pathway (GO:0036324) | 0.015278 |
vascular endothelial growth factor signaling pathway (GO:0038084) | 0.017529 |
positive regulation of angiogenesis (GO:0045766) | 0.020147 |
positive regulation of endothelial cell chemotaxis (GO:2001028) | 0.02126 |
blood vessel endothelial cell proliferation involved in sprouting angiogenesis (GO:0002043) | 0.022302 |
wound healing (GO:0042060) | 0.023613 |
positive regulation of endothelial cell migration (GO:0010595) | 0.023878 |
negative regulation of cell-substrate junction organization (GO:0150118) | 0.02539 |
regulation of actin filament-based process (GO:0032970) | 0.028945 |
(B) | |
Term (KEGG Pathway) | p-Value |
TNF signaling pathway | 0.006004 |
VEGF signaling pathway | 0.032475 |
Focal adhesion | 0.036127 |
Gene | p-Value | FC | NC/LPS1 | NC/LPS2 | NC/LPS3 | NC/LPS4 | si/LPS1 | si/LPS2 | si/LPS3 | si/LPS4 |
---|---|---|---|---|---|---|---|---|---|---|
DPP4 | 0.009349 | 0.089367 | 3.5973 | 5.5607 | 1.7018 | 1.81 | 0.002409 | −0.053284 | −0.4756 | −0.74028 |
ICAM1 | 0.173762 | 0.690418 | 7.953 | 7.791 | 7.8916 | 9.088 | 7.3559 | 7.4082 | 7.7555 | 8.0661 |
TNF | 0.662287 | 1.189233 | 0.34936 | −1.5216 | −1.3344 | −0.093255 | −0.92489 | 0.095058 | 0.11528 | −0.88522 |
CXCL8 | 0.434415 | 0.817062 | 9.6278 | 8.9046 | 8.3929 | 8.8631 | 9.3594 | 8.3247 | 8.4618 | 8.4767 |
IL6 | 0.580922 | 0.846619 | 2.8088 | 2.0826 | 2.5762 | 1.073 | 1.6601 | 2.2974 | 1.7002 | 1.9221 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, Y.; Kawasaki, T.; Sato, H.; Hasegawa, Y.; Dudek, S.M.; Ohara, O.; Tatsumi, K.; Suzuki, T. Functional Roles for CD26/DPP4 in Mediating Inflammatory Responses of Pulmonary Vascular Endothelial Cells. Cells 2021, 10, 3508. https://doi.org/10.3390/cells10123508
Takahashi Y, Kawasaki T, Sato H, Hasegawa Y, Dudek SM, Ohara O, Tatsumi K, Suzuki T. Functional Roles for CD26/DPP4 in Mediating Inflammatory Responses of Pulmonary Vascular Endothelial Cells. Cells. 2021; 10(12):3508. https://doi.org/10.3390/cells10123508
Chicago/Turabian StyleTakahashi, Yukiko, Takeshi Kawasaki, Hironori Sato, Yoshinori Hasegawa, Steven M. Dudek, Osamu Ohara, Koichiro Tatsumi, and Takuji Suzuki. 2021. "Functional Roles for CD26/DPP4 in Mediating Inflammatory Responses of Pulmonary Vascular Endothelial Cells" Cells 10, no. 12: 3508. https://doi.org/10.3390/cells10123508
APA StyleTakahashi, Y., Kawasaki, T., Sato, H., Hasegawa, Y., Dudek, S. M., Ohara, O., Tatsumi, K., & Suzuki, T. (2021). Functional Roles for CD26/DPP4 in Mediating Inflammatory Responses of Pulmonary Vascular Endothelial Cells. Cells, 10(12), 3508. https://doi.org/10.3390/cells10123508