Soil Properties for Predicting Soil Mineral Nitrogen Dynamics Throughout a Wheat Growing Cycle in Calcareous Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Plant Sampling
2.3. Soil Samples
2.4. Aerobic Incubation
2.5. Chemical Extractions
2.5.1. The 0.01 M CaCl2 Extraction
2.5.2. The KCl and HotKCl Extraction
2.5.3. The 0.01 M NaHCO3 Extraction
2.6. Statistical Analysis
3. Results
3.1. Range of Soil Physical and Chemical Characteristics
3.2. Availability of Mineral N in Soil
3.3. Wheat N Uptake, Yield, and GPC
3.4. Relationships between Initial Soil Characteristics with Nmin throughout the Growing Cycle
3.5. Relationships between Soil Characteristics and Plant N Uptake, Yield, and GPC
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron. J. 2009, 101, 800–816. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Drury, C.F.; Tremblay, N.; Cambouris, A.N. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review. Can. J. Soil Sci. 2009, 89, 113–132. [Google Scholar] [CrossRef]
- Parton, W.J.; Schimel, D.S.; Cole, C.V.; Ojima, D.S. Analysis of factors controlling soil organic matter levels in Great Plains grassland. Soil Sci. Soc. Am. J. 1987, 51, 1173–1179. [Google Scholar] [CrossRef]
- Martínez, J.M.; Galantini, J.A.; Duval, M.E. Contribution of nitrogen mineralization indices, labile organic matter and soil properties in predicting nitrogen mineralization. J. Soil Sci. Plant Nutr. 2018, 18, 73–89. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Huygens, D.; Boeckx, P.; Kuyper, T.W.; Lubbers, I.M.; Rütting, T.; Groffman, P.M. The soil n cycle: New insights and key challenges. Soil 2015, 1, 235–256. [Google Scholar] [CrossRef]
- Ros, G.H.; Hanegraaf, M.C.; Hoffland, E.; van Riemsdijk, W.H. Predicting soil N mineralization: Relevance of organic matter fractions and soil properties. Soil Biol. Biochem. 2011, 43, 1714–1722. [Google Scholar] [CrossRef]
- Standford, G.; Smith, S.J. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. J. 1972, 36, 465–472. [Google Scholar] [CrossRef]
- Serna, M.D.; Pomares, F. Nitrogen mineralization of sludge-amended soil. Bioresour. Technol. 1992, 39, 285–290. [Google Scholar] [CrossRef]
- Dessureault-Rompré, J.; Zebarth, B.J.; Burton, D.L.; Sharifi, M.; Cooper, J.; Grant, C.A.; Drury, C.F. Relationships among Mineralizable Soil Nitrogen, Soil Properties, and Climatic Indices. Soil Sci. Soc. Am. J. 2010, 74, 1218–1227. [Google Scholar] [CrossRef]
- Velthof, G.; Oenema, O. Estimation of plant-available nitrogen in soils using rapid chemical and biological methods. Commun. Soil Sci. Plant Anal. 2010, 41, 52–71. [Google Scholar] [CrossRef]
- Dessureault-Rompré, J.; Zebarth, B.J.; Burton, D.L.; Georgallas, A. Predicting soil nitrogen supply from soil properties. Can. J. Soil Sci. 2015, 95, 63–75. [Google Scholar] [CrossRef]
- Luce, M.; Whalen, J.K.; Ziadi, N.; Zebarth, B.J. Nitrogen dynamics and indices to predict soil nitrogen supply in humid temperate soils. Adv. Agron. 2011, 112, 55–102. [Google Scholar]
- Villar, N.; Aizpurua, A.; Castellón, A.; Ortuzar, M.A.; González-Moro, M.B.; Besga, G. Laboratory Methods for the Estimation of Soil Apparent N Mineralization and Wheat N Uptake in Calcareous Soils. Soil Sci. 2014, 179, 84–94. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for growth stages of cereals. Weed Res. 1974, 4, 415–421. [Google Scholar] [CrossRef]
- Aranguren, M.; Castellón, A.; Aizpurua, A. Topdressing nitrogen recommendation in wheat after applying organic manures: The use of field diagnostic tools. Nutr. Cycl. Agroecosyst. 2018, 110, 89–103. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle size analysis. In Methods of Soil Analysis: Part I. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1886; pp. 383–411. [Google Scholar]
- Walkey, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- MAPA. Métodos Oficiales de Análisis. Tomo III; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 1994. [Google Scholar]
- Teller, G.L. Non-protein nitrogen compounds in cereals and their relation to the nitrogen factor for protein in cereals and bread. Cereal Chem. 1932, 9, 261–267. [Google Scholar]
- Cawse, P.A. The determination of nitrate in soil solutions by ultraviolet spectrophotometry. Analyst 1967, 92, 311–315. [Google Scholar] [CrossRef]
- Nelson, D.W. Determination of ammonium in KCl extracts of soils by the salicylate method. Commun. Soil Sci. Plant Anal. 1983, 14, 1051–1062. [Google Scholar] [CrossRef]
- Campbell, C.A.; Ellert, B.H.; Jame, Y.W. Nitrogen mineralization potential in soils. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Canadian Society of Soil Science/Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 341–349. [Google Scholar]
- Houba, V.J.G.; Novozamsky, I.; Huybregts, A.W.M.; van der Lee, J.J. Comparison of soil extractions by 0.01 M CaCl2 by EUF and by some conventional extraction procedures. Plant Soil 1986, 96, 433–437. [Google Scholar] [CrossRef]
- Gianello, C.; Bremmer, J.M. Comparisons of chemical methods of assessing potentially available organic nitrogen in soil. Commum. Soil Sci. Plant Anal. 1986, 31, 1299–1396. [Google Scholar] [CrossRef]
- MacLean, A.A. Measurement of nitrogen supplying power of soils by extraction with sodium bicarbonate. Nature 1964, 203, 1307–1308. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- De Mendiburu, F. Una Herramienta de Análisis Estadístico para la Investigación Agrícola. Ph.D. Thesis, Facultad de Economía y Planificación Departamento Académico de Estadística e Informática, Universidad Nacional de Ingeniería (UNI-PERU), Universidad Nacional Agraria La Molina, Lima, Peru, 2009. [Google Scholar]
- Mohanty, M.; Sinha, N.K.; Reddy, K.S.; Chaudhary, R.S.; Rao, A.S.; Dalal, R.C.; Menzies, N.W. How important is the quality of organic amendments in relation to mineral N availability in soils? Agric. Res. 2013, 2, 99–110. [Google Scholar] [CrossRef]
- Griffin, T.S. Nitrogen availability. In Nitrogen in Agricultural Systems. Agronomy Monograph 49; Schepers, J.S., Raun, W.R., Eds.; ASA, CSSA, and SSSA: Madison, WI, USA, 2008; pp. 613–646. [Google Scholar]
- Mikha, M.M.; Rice, C.; Milliken, G. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biol. Biochem. 2005, 37, 339–347. [Google Scholar] [CrossRef]
- Urra, J.; Mijangos, I.; Lanzén, A.; Lloveras, J.; Garbisu, C. Effects of corn stover management on soil quality. Eur. J. Soil Biol. 2018, 88, 57–64. [Google Scholar] [CrossRef]
- Wander, M. Soil organic matter fractions and their relevance to soil function. In Soil Organic Matter in Sustainable Agriculture; Magdoff, F., Weil, R.R., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 67–102. [Google Scholar]
- Haynes, R.J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 2005, 85, 221–268. [Google Scholar]
- Debosz, K.; Kristensen, K. Spatial covariability of N mineralisation and textural fractions in two agricultural fields. Semin. Site Specif. Farming 1995, 26, 174–180. [Google Scholar]
- Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers, 4th ed.; Macmillon Publishing Company: New York, NY, USA, 1985. [Google Scholar]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K.; Scherer, W. Fixation and defixation of ammonium in soils: A review. Biol. Fertil. Soils 2011, 47, 1–14. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Angers, D.A.; Morvan, T.; Pomar, C. Dynamics of pig slurry nitrogen in soil and plant as determined with 15 N. Soil Sci. Soc. Am. J. 2004, 68, 637–643. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K. Carbon and nitrogen transformations in soils. In Carbon and Nitrogen in the Terrestrial Environment; Nieder, R., Benbi, D.K., Eds.; Springer: Heidelberg, Germany, 2008; pp. 137–159. [Google Scholar]
- Dou, H.; Steffens, D. Recovery of 15N labelled urea as affected by fixation of ammonium by clay minerals. Pflanzenernahr. Bodenkd. 1995, 158, 351–354. [Google Scholar] [CrossRef]
- Kowalenko, C.G. Nitrogen transformations and transport over 17 months in field fallow microplots using 15 N. Can. J. Soil Sci. 1978, 58, 69–76. [Google Scholar] [CrossRef]
- Rodrigo, A.; Recous, S.; Neel, C.; Mary, B. Modelling temperature and moisture effects on C-N transformations in soils: Comparison of nine models. Ecol. Model. 1997, 102, 325–339. [Google Scholar] [CrossRef]
- Paul, E.A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 2016, 98, 109–126. [Google Scholar] [CrossRef]
- Schimel, J.P.; Bennett, J. Nitrogen Mineralization: Challenges of a Changing Paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Inselsbacher, E.; Umana, N.H.N.; Stange, F.C.; Gorfer, M.; Schüller, E.; Ripka, K.; Zechmeister-Boltenstern, S.; Hood-Novotny, R.; Strauss, J.; Wanek, W. Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biol. Biochem. 2010, 42, 360–372. [Google Scholar] [CrossRef]
- Ortuzar-Iragorri, M.A.; Aizpurua, A.; Castellón, A.; Alonso, A.; José, M.; Estavillo, J.M.; Besga, G. Use of an N-tester chlorophyll meter to tune a late third nitrogen application to wheat under humid Mediterranean conditions. J. Plant Nutr. 2017, 41, 627–635. [Google Scholar] [CrossRef]
- Fuertes-Mendizabal, T.; Aizpurua, A.; González-Moro, M.B.; Estavillo, J.M. Improving wheat breadmaking quality by splitting the N fertilizer rate. Eur. J. Agron. 2010, 33, 52–61. [Google Scholar] [CrossRef]
Soil | Location | Soil Texture | Sand a % | Silt a % | Clay a % | SOM b % | Ntot c % | pH d % | CaCO3 e % |
---|---|---|---|---|---|---|---|---|---|
1 | Villanañe | Clay-loam | 30.5 | 37.1 | 32.4 | 1.8 | 0.12 | 8.3 | 29.0 |
2 | Soportilla | Loam | 35.9 | 39.3 | 24.8 | 1.0 | 0.07 | 8.5 | 29.4 |
3 | Lantaron | Loam | 31.7 | 43.0 | 25.4 | 1.3 | 0.09 | 8.4 | 56.5 |
4 | Arangiz | Silty-loam | 19.4 | 55.9 | 24.6 | 1.6 | 0.12 | 8.3 | 56.3 |
5 | Arangiz | Clay-loam | 26.1 | 45.6 | 28.3 | 2.0 | 0.16 | 8.3 | 21.7 |
6 | Arangiz | Silty-clay-loam | 16.2 | 56.9 | 27.0 | 2.0 | 0.13 | 8.3 | 53.0 |
7 | Betolaza | Silty-clay-loam | 12.1 | 58.6 | 29.3 | 3.1 | 0.24 | 8.3 | 29.3 |
8 | Gauna | Sandy-clay-loam | 47.4 | 24.9 | 27.6 | 2.0 | 0.15 | 8.1 | 8.0 |
9 | Tuesta | Silty-loam | 18.8 | 54.8 | 26.4 | 1.4 | 0.11 | 8.3 | 55.8 |
10 | Arangiz | Silty-clay-loam | 17.5 | 55.3 | 27.2 | 2.0 | 0.12 | 8.3 | 56.8 |
11 | Arangiz | Silty-clay-loam | 18.0 | 52.8 | 28.5 | 1.8 | 0.11 | 8.4 | 40.9 |
12 | Gauna | Clay-loam | 38.5 | 32.6 | 29.0 | 2.0 | 0.12 | 8.1 | 9.2 |
13 | Arangiz | Silty-loam | 19.8 | 54.8 | 25.4 | 1.5 | 0.10 | 8.4 | 53.8 |
14 | Tuesta | Clay-loam | 36.8 | 28.4 | 34.8 | 1.9 | 0.15 | 8.2 | 16.4 |
15 | Gauna | Sandy-clay-loam | 47.6 | 24.5 | 27.9 | 2.2 | 0.17 | 8.0 | 12.1 |
16 | Gauna | Clay loam | 44 | 25.9 | 30.1 | 2.1 | 0.16 | 8.0 | 7.2 |
Soil | Sowing | GS30 | GS37 | GS60 | Harvest | Post-Harvest | Pre-Sowing | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd | Mean | sd | |
1 | 16.6 AB | 4.0 | 10.2 ABC | 3.2 | 2.6 A | 0.5 | 7.5 ABC | 0.7 | 4.7 BC | 0.9 | 7.2 AB | 1.2 | 3.3 ABC | 1.0 |
2 | 8.5 EFG | 2.1 | 3.7 C | 0.9 | 0.4 B | 0.1 | 5.2 C | 1.0 | 3.8 CD | 0.6 | 3.0 C | 0.7 | 2.5 C | 0.9 |
3 | 10.3 ABC | 1.8 | 12.3 AB | 1.7 | 1.7 AB | 0.5 | 6.2 BC | 2.2 | 3.7 CD | 0.8 | 5.6 BC | 0.3 | 3.2 ABC | 0.6 |
4 | 12.6 ABC | 6.1 | 6.1 BC | 1.9 | 2.2 AB | 0.7 | 7.1 ABC | 2.0 | 4.9 B | 0.9 | 8.0 AB | 1.2 | 3.2 ABC | 0.6 |
5 | 11.3 ABC | 2.3 | 9.0 ABC | 1.9 | 1.7 AB | 0.9 | 8.2 ABC | 2.2 | 4.6 BC | 0.8 | 6.5 BC | 0.9 | 3.3 ABC | 0.6 |
6 | 11.4 ABC | 5.9 | 5.3 BC | 1.7 | 2.9 A | 0.3 | 8.0 ABC | 0.8 | 5.1 B | 0.5 | 6.8 BC | 0.8 | 3.6 ABC | 0.5 |
7 | 6.5 FG | 0.4 | 6.6 BC | 0.9 | 3.0 A | 0.7 | 8.1 A | 0.9 | 6.6 A | 0.9 | 8.9 A | 0.6 | 3.8 ABC | 1.0 |
8 | 7.3 EFG | 2.6 | 3.3 C | 0.9 | 2.9 A | 0.6 | 7.5 A | 1.8 | 3.1 D | 0.7 | 4.3 BC | 1.0 | 2.7 C | 0.2 |
9 | 9.7 CDE | 3.5 | 16.4 A | 1.2 | 0.9 AB | 0.1 | 5.9 AB | 1.0 | 4.4 BC | 0.6 | 4.4 BC | 0.8 | 3.2 ABC | 0.2 |
10 | 12.7 ABC | 2.9 | 4.2 C | 0.7 | 2.2 AB | 0.4 | 8.3 ABC | 0.7 | 4.9 BC | 0.9 | 5.5 ABC | 1.0 | 3.9 A | 0.5 |
11 | 11.6 ABC | 3.2 | 4.9 BC | 1.1 | 1.6 AB | 0.7 | 7.4 ABC | 1.4 | 5.3 BC | 1.7 | 7.0 AB | 1.3 | 3.6 ABC | 0.7 |
12 | 5.7 G | 2.0 | 4.4 C | 0.7 | 2.7 A | 0.7 | 8.2 ABC | 1.9 | 5.1 BC | 1.2 | 5.2 ABC | 0.7 | 3.3 ABC | 0.8 |
13 | 9.4 CDE | 1.8 | 5.0 BC | 0.9 | 1.3 BC | 0.6 | 9.6 AB | 1.4 | 4.7 BC | 1.2 | 5.7 ABC | 0.8 | 3.5 ABC | 1.7 |
14 | 10.3 CDE | 6.0 | 3.7 C | 0.8 | 2.8 A | 0.3 | 10.2 A | 1.2 | 5.2 BC | 1.3 | 7.1 AB | 0.7 | 4.0 AB | 0.9 |
15 | 13.7 A | 3.5 | 5.0 BC | 1.3 | 1.5 AB | 0.4 | 8.1 ABC | 2.0 | 4.3 BC | 1.0 | 5.8 ABC | 1.7 | 3.5 ABC | 0.2 |
16 | 7.9 EFG | 1.3 | 2.8 C | 0.8 | 1.2 AB | 0.5 | 4.9 C | 2.3 | 4.5 BC | 1.4 | 5.4 ABC | 0.7 | 3.0 ABC | 0.8 |
Soil Characteristics | Sowing | GS30 | GS37 | GS60 | Harvest | Post-Harvest | Pre-Sowing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | r | p | r | p | ||
Soil properties | Sand | −0.11 | ns | −0.25 | ns | 0.00 | ns | −0.01 | ns | −0.63 | ** | −0.48 | ns | −0.47 | ns |
Silt | 0.09 | ns | 0.27 | ns | −0.12 | ns | −0.11 | ns | 0.50 | * | 0.36 | ns | 0.33 | ns | |
Clay | 0.05 | ns | −0.11 | ns | 0.55 | * | 0.56 | * | 0.38 | ns | 0.40 | ns | 0.47 | ns | |
SOM | −0.16 | ns | −0.24 | ns | 0.70 | ** | 0.50 | * | 0.60 | ** | 0.58 | * | 0.49 | ns | |
Ntot | −0.16 | ns | −0.12 | ns | 0.57 | * | 0.43 | ns | 0.54 | * | 0.59 | ** | 0.44 | ns | |
pH | 0.04 | ns | 0.22 | ns | −0.47 | ns | −0.38 | ns | 0.06 | ns | −0.03 | ns | −0.07 | ns | |
CaCO3 | 0.33 | ns | 0.40 | ns | −0.29 | ns | −0.25 | ns | 0.09 | ns | 0.10 | ns | 0.22 | ns | |
Aerobic incubations | N2wk | 0.54 | * | 0.02 | ns | 0.25 | ns | 0.30 | ns | 0.05 | ns | 0.14 | ns | 0.46 | ns |
N30wk | 0.37 | ns | 0.15 | ns | 0.43 | ns | 0.57 | ** | 0.51 | * | 0.61 | ** | 0.83 | *** | |
No | 0.29 | ns | 0.16 | ns | 0.43 | ns | 0.65 | ** | 0.38 | ns | 0.49 | ns | 0.73 | ** | |
Chemical extractions | MI CaCl2 I | 0.19 | ns | −0.44 | ns | 0.35 | ns | 0.55 | * | 0.16 | ns | 0.37 | ns | 0.43 | ns |
MI CaCl2II | 0.34 | ns | −0.41 | ns | 0.31 | ns | 0.52 | * | −0.03 | ns | 0.29 | ns | 0.38 | ns | |
MI-HotKCl | 0.36 | ns | −0.29 | ns | 0.62 | ** | 0.70 | * | 0.50 | * | 0.69 | ** | 0.64 | ** | |
205ABS | 0.59 | ** | 0.07 | ns | −0.16 | ns | 0.23 | ns | 0.18 | ns | 0.30 | ns | 0.59 | ** | |
260ABS | 0.31 | ns | 0.08 | ns | −0.15 | ns | 0.15 | ns | 0.26 | ns | 0.32 | ns | 0.33 | ns |
Soil Characteristics | N Uptake | Yield | GPC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sowing-GS30 | GS30-GS37 | GS37-Harvest | |||||||||
r | p | r | p | r | p | r | p | r | p | ||
Soil properties | Sand | −0.06 | ns | −0.04 | ns | 0.01 | ns | −0.22 | ns | −0.06 | ns |
Silt | −0.02 | ns | 0.09 | ns | −0.10 | ns | 0.22 | ns | −0.10 | ns | |
Clay | 0.39 | ns | −0.26 | ns | 0.45 | ns | −0.07 | ns | 0.73 | *** | |
SOM | 0.46 | ns | −0.47 | ns | −0.10 | ns | 0.09 | ns | 0.31 | ns | |
Ntot | 0.52 | * | 0.49 | * | 0.06 | ns | 0.24 | ns | 0.26 | ns | |
pH | −0.43 | ns | 0.33 | ns | −0.06 | ns | −0.16 | ns | −0.22 | ns | |
CaCO3 | −0.24 | ns | 0.33 | ns | 0.08 | ns | 0.32 | ns | −0.13 | ns | |
Aerobic incubations | N2wk | 0.30 | ns | −0.24 | ns | 0.39 | ns | 0.26 | ns | 0.40 | ns |
N30wk | 0.39 | ns | −0.25 | ns | 0.64 | ** | 0.34 | ns | 0.75 | ** | |
No | 0.47 | ns | −0.38 | ns | 0.64 | ** | 0.43 | ns | 0.74 | ** | |
Chemical Extractions | MI CaCl2 I | −0.01 | ns | −0.21 | ns | −0.11 | ns | −0.07 | ns | 0.04 | ns |
MI CaCl2 II | −0.06 | ns | −0.14 | ns | −0.05 | ns | −0.07 | ns | 0.03 | ns | |
MI-HotKCl | 0.43 | ns | −0.35 | ns | 0.21 | ns | −0.07 | ns | 0.05 | ns | |
205ABS | 0.29 | ns | −0.24 | ns | 0.24 | ns | 0.57 | * | 0.00 | ns | |
260ABS | −0.11 | ns | 0.10 | ns | −0.04 | ns | 0.10 | ns | −0.08 | ns |
Soil Nmin | N Uptake | Yield | GPC | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Sowing-GS30 | GS30-GS37 | GS37-Harvest | ||||||||
r | p | r | p | r | p | r | p | r | p | |
Sowing | 0.01 | ns | 0.18 | ns | 0.53 | * | 0.22 | ns | 0.09 | ns |
GS30 | −0.02 | ns | 0.31 | ns | 0.65 | ** | 0.59 | ** | 0.31 | ns |
GS37 | 0.27 | ns | −0.25 | ns | 0.00 | ns | −0.04 | ns | 0.38 | ns |
GS60 | 0.22 | ns | −0.31 | ns | 0.09 | ns | −0.07 | ns | 0.53 | ** |
Harvest | 0.38 | ns | −0.25 | ns | 0.00 | ns | 0.22 | ns | 0.24 | ns |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranguren, M.; Aizpurua, A.; Castellón, A.; Besga, G.; Villar, N. Soil Properties for Predicting Soil Mineral Nitrogen Dynamics Throughout a Wheat Growing Cycle in Calcareous Soils. Agronomy 2018, 8, 303. https://doi.org/10.3390/agronomy8120303
Aranguren M, Aizpurua A, Castellón A, Besga G, Villar N. Soil Properties for Predicting Soil Mineral Nitrogen Dynamics Throughout a Wheat Growing Cycle in Calcareous Soils. Agronomy. 2018; 8(12):303. https://doi.org/10.3390/agronomy8120303
Chicago/Turabian StyleAranguren, Marta, Ana Aizpurua, Ander Castellón, Gerardo Besga, and Nerea Villar. 2018. "Soil Properties for Predicting Soil Mineral Nitrogen Dynamics Throughout a Wheat Growing Cycle in Calcareous Soils" Agronomy 8, no. 12: 303. https://doi.org/10.3390/agronomy8120303
APA StyleAranguren, M., Aizpurua, A., Castellón, A., Besga, G., & Villar, N. (2018). Soil Properties for Predicting Soil Mineral Nitrogen Dynamics Throughout a Wheat Growing Cycle in Calcareous Soils. Agronomy, 8(12), 303. https://doi.org/10.3390/agronomy8120303