Synergistic Effects of Agronet Covers and Companion Cropping on Reducing Whitefly Infestation and Improving Yield of Open Field-Grown Tomatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Planting Material
2.3. Experimental Design and Treatment Application
2.4. Crop Establishment and Maintenance
2.5. Data Collection
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions and Recommendations
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Levy, J.; Sharoni, Y. The functions of tomato lycopene and its role in human health. HerbalGram 2004, 62, 49–56. [Google Scholar]
- Hsu, Y.M.; Lai, C.H.; Chang, C.Y.; Fan, C.T.; Chen, C.T.; Wu, C.H. Characterizing the lipid-lowering effects and antioxidant mechanisms of tom paste. Biosci. Biotechnol. Biochem. 2008, 72, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Wamache, A. Vegetable Seeds Handbook; Regina Seeds Seminis Ltd.: Nairobi, Kenya, 2005; p. 12. [Google Scholar]
- Mungai, J.; Ouko, J.; Heiden, M. Processing of Fruits and Vegetables in Kenya; Agricultural Information Resource Centre: Nairobi, Kenya, 2000; p. 180. [Google Scholar]
- Horticultural Crops Development Authority (HCDA). Horticultural Policy. CFR Policy Paper 2013. Available online: http://www.hcda.or.ke/downloads/Policyobjectives.pdf (accessed on 22 November 2014).
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Caliman, F.R.B.; da Silva, D.J.H.; Stringheta, P.C.; Fontes, P.C.R.; Moreira, G.R.; Mantovani, E.C. Quality of tomatoes grown under protected environment and field conditions. Idesia 2010, 28, 75–82. [Google Scholar]
- Haji, F.N.P.; Prezotti, L.; Carneiro, J.S.; Alencar, J.A. Trichogramma pretiosum para controle de pragas no tomateiro industrial. In Controle Biológico no Brasil: Parasitoides e Predadores; Parra, J.R.P., Botelho, P.S.M., Corrêa Ferreira, J.M.S., Eds.; Editora Manole: São Paulo, Brasil, 2002; pp. 477–494. [Google Scholar]
- Abate, T.; van Huis, A.; Ampofo, J.K.O. Pest management strategies in traditional agriculture: An African perspective. Ann. Rev. Entomol. 2000, 45, 631–659. [Google Scholar] [CrossRef] [PubMed]
- Muigai, S.G.; Schuster, D.J.; Snyder, J.C.; Scott, J.W.; Bassett, M.J.; McAuslane, H.J. Mechanism of resistance in Lycopersicon germoplasm to the whitefly Bemisia argentifolli. Phytoparasitica 2002, 30, 347–360. [Google Scholar] [CrossRef]
- Mansoor, S.; Briddon, R.W.; Zafar, Y.; Stanley, J. Geminivirus disease complexes: An emerging threat. J. Plant Sci. 2003, 8, 128–134. [Google Scholar] [CrossRef]
- Castellano, S.; Mugnozza, G.S.; Russo, R.; Brassoulis, D.; Mistriotis, A.; Hemming, S.; Waaijenberg, D. Design and use criteria of netting systems for agricultural production in Italy. J. Agric. Eng. 2008, 39, 31–42. [Google Scholar] [CrossRef]
- Martin, T.; Assogba-komlan, F.; Houndete, T.; Hougard, J.M.; Chandre, F. Efficacy of mosquito netting for sustainable small holder’s cabbage production in Africa. J. Econ. Entomol. 2006, 99, 450–454. [Google Scholar] [PubMed]
- Saidi, M.; Gogo, E.O.; Itulya, F.M.; Martin, T.; Ngouajio, M. Microclimate modification using eco-friendly nets and floating row covers improves tomato (Lycopersicon esculentum) yield and quality for small holder farmers in East Africa. Agric. Sci. 2013, 4, 577–584. [Google Scholar] [CrossRef]
- Gogo, E.O.; Saidi, M.; Itulya, F.M.; Martin, T.; Ngouajio, M. Microclimate modification using eco-friendly nets for tomato transplant production fort small-scale farmers in East Africa. Horttechnology 2012, 22, 292–298. [Google Scholar]
- Simmons, A.T.; McGrath, D.; Gurr, G.M. Trichome characteristics of F1 Lycopersicon esculentum × L. cheesmanii f. minor and L. esculentum × L. pennellii and effects on Myzus persicae. Euphytica 2005, 144, 313–320. [Google Scholar] [CrossRef]
- Talekar, N.S.; Su, F.C.; Lin, M.Y. How to Produce Safer Leafy Vegetables in Net House Sand Net Tunnels; Asian Vegetable Research and Development Center: Shanhua, Taiwan, 2003; p. 18. [Google Scholar]
- Rapisarda, C.; Tropea, G.; Cascone, G.; Mazzarella, R.; Colombo, A.; Serges, T. UV-absorbing plastic films for the control of Bemisia tabaci (Gennadius) and Tomato Yellow Leaf Curl Disease (TYLCD) on protected cultivations in Sicily (South Italy). Acta Hortic. 2006, 719, 597–604. [Google Scholar] [CrossRef]
- Doukas, D.; Payne, C.C. Greenhouse whitefly (Homoptera: Aleyrodidae) dispersal under different UV-light environments. J. Econ. Entomol. 2007, 100, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Biondi, A.; Zappalà, L.; Desneux, N.; Aparo, A.; Siscaro, G.; Rapisarda, C.; Martin, T.; Tropea, G. Potential toxicity of α-cypermethrin-treated net on Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 2015, 108, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Pek, Z.; Heyles, L. The effect if daily temperature on truss flowering rate of tomato. J. Sci. Food Agric. 2004, 84, 1671–1674. [Google Scholar] [CrossRef]
- Kuepper, G.; Dodson, M. Companion Planting: Basic Concept and Resources. National Sustainable Agriculture Information Service. 2001. Available online: http://attra.ncat.org/attra-pub/complant.html (accessed on 17 October 2014).
- Legaspi, J.C.; Simmons, A.M.; Legaspi, B.C. Evaluating mustard as a potential companion crop for collards to control the silverleaf whitefly (Bemisia argentifolii Hemiptera: Aleyrodidae) Olfactometer and outdoor experiments. J. Subtrop. Plant Sci. 2011, 63, 36–44. [Google Scholar]
- Sivapragasam, A.; Tees, S.P.; Ruwaida, M. Effects of intercropping cabbage with tomato on the incidence of Plutella xylostella (L.) MAPPS. Newsletter 1982, 6, 6–7. [Google Scholar]
- Song, B.Z.; Wu, H.Y.; Kong, Y.; Zhang, J.; Du, Y.L.J.; Hu, H.; Yao, Y.C. Effects of intercropping with aromatic plants on diversity and structure of an arthropod community in a pear orchard. BioControl 2010, 55, 741–751. [Google Scholar] [CrossRef]
- Deletre, E.; Chandre, F.; Barkman, B.; Menut, C.; Martin, T. Naturally occurring bioactive compounds from four repellent essential oils against Bemisia tabaci whiteflies. Pest Manag. Sci. 2016, 72, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Azhari, H.N.; Elhussein, S.A.; Osman, N.A.; Abduelrahman, H.N. Repellent activities of the essential oils of four Sudanese accessions of basil (Ocimum basilicum L.) against mosquito. Appl. Sci. 2009, 9, 2645–2648. [Google Scholar]
- Roxas, A.C. Repellency of different plants against flea beetle Phyllotretastriolata (Chrysomelidae, Coleoptera) on Brassica pekinensis. J. Entomol. 2009, 23, 185–195. [Google Scholar]
- Schader, C.; Zaller, J.G.; Köpke, U. Cotton-basil intercropping: Effects on pests, yields and economical parameters in an organic field in Fayoum, Egypt. Biol. Agric. Hortic. 2005, 23, 59–72. [Google Scholar] [CrossRef]
- Jaetzold, R.; Schmidt, H. Farm Management Handbook of Kenya; Ministry of Agriculture Kenya: Nairobi, Kenya, 2006; p. 35. [Google Scholar]
- Horticultural Crops Development Authority (HCDA). Fruits and Vegetables; Agricultural Information Resource Centre: Nairobi, Kenya, 2006; p. 150. [Google Scholar]
- Gu, X.S.; Bu, W.J.; Xu, W.H.; Bai, Y.C.; Liu, B.M.; Liu, T.X. Population suppression of Bemisia tabaci (Hemiptera: Aleyrodidae) using yellow sticky traps and Eretmocerus nr. Rajasthanicus (Hymenoptera: Aphelinidae) on tomato plants in greenhouses. Insect Sci. 2008, 15, 263–270. [Google Scholar] [CrossRef]
- SAS Institute. Step by Step Basic Statistics Using SAS: Student Guide; Version 10.1; SAS Institute Inc.: Cary, NC, USA, 2010; p. 40. [Google Scholar]
- Majumdar, A. Large-Scale Net-House for Vegetable Production: Pest Management Successes and Challenges for a New Technology; Alabama Cooperative Extension System: Auburn, AL, USA, 2010. [Google Scholar]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2005, 45, 175–201. [Google Scholar] [CrossRef] [PubMed]
- Songa, J.M.; Jiang, N.; Schulthess, F.; Omwega, C. The role of intercropping different cereal species in controlling lepidopteran stemborers on maize in Kenya. J. Appl. Entomol. 2007, 131, 40–49. [Google Scholar] [CrossRef]
- Antignus, Y.; Ben-Yakir, D. Ultraviolet-absorbing barriers, an efficient integrated pest management tool to protect greenhouses from insects and virus disease. In Insect Pest Management: Field and Protected Crops; Rami Horowitz, A., Ishaaya, I., Eds.; Springer: New York, NY, USA, 2004; p. 365. [Google Scholar]
- Licciardi, S.; Assogba-Komlan, F.; Sidick, I.; Chandre, F.; Hougard, J.M.; Martin, T. A temporary tunnel screen as an eco-friendly method for small-scale farmers to protect cabbage crops in Benin. J. Trop. Insect Sci. 2007, 27, 152–158. [Google Scholar] [CrossRef]
- Neave, S.M.; Kelly, G.; Furlong, M.J. Field Evaluation of Insect Exclusion Netting for the Management of Pests on Cabbage (Brassica oleraceae var. Capitata) in the Solomon Islands; AVRDC—The World Vegetable Center: Tainan, Taiwan, 2011; p. 101. [Google Scholar]
- Renwick, J.A.A. Phytochemical modification of taste: An insect model. In Biologically Active Natural Products: Agrochemicals; CRC Press: Boca Paton, FL, USA, 1999; pp. 221–229. [Google Scholar]
- Matteson, P.C.; Altieri, M.A.; Gagne, W.C. Modification of smallholder farmer practices for better management. Annu. Rev. Entomol. 1984, 29, 383–402. [Google Scholar] [CrossRef]
- Shelton, A.M.; Hatch, S.L.; Zhao, J.Z.; Chen, M.; Earle, E.D.; Cao, J. Suppression of diamondback moth using Bt-transgenic plants as a trap crop. Crop Prot. 2008, 27, 403–409. [Google Scholar] [CrossRef]
- Koul, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008, 4, 63–84. [Google Scholar]
- Martins, P.A.; Carmona, C.; Martinez, E.L.; Sbaite, P.; Filho, R.M.; Maciel, M.R.W. Short path evaporation for methyl chavicol enrichment from basil essential oil. Sep. Purif. Technol. 2012, 87, 71–78. [Google Scholar] [CrossRef]
- Gogo, E.O.; Saidi, M.; Itulya, F.M.; Martin, T.; Ngouajio, M. Eco-friendly nets and floating row covers reduce pest infestation and improve tomato (Solanum lycopersicum L.) Yields for Smallholder Farmers in Kenya. Agronomy 2014, 4, 1–12. [Google Scholar] [CrossRef]
- Muleke, E.M.; Saidi, M.; Itulya, F.M.; Martin, T.; Ngouajio, M. Enhancing cabbage (Brassica oleraceae Var capitata) yields and qality through microclimate modification and physiological improvement using agronet covers. Sustain. Agric. Res. 2014, 3, 24–34. [Google Scholar] [CrossRef]
- Soltani, N.; Anderson, J.L.; Hamson, A.R. Growth analysis of watermelon plants grown with mulches and row covers. J. Am. Soc. Hortic. Sci. 1995, 120, 1001–1004. [Google Scholar]
- Weerakkody, W.A.P.; Peiris, B.C.N.; Karunananda, P.H. Fruit formation, marketable yield and fruit quality of tomato varieties grown under protected culture in two agro-ecological zones during the rainy season. J. Nat. Sci. Found. Sri Lanka 1999, 27, 177–186. [Google Scholar] [CrossRef]
- Dorais, M.; Papadopoulos, A.P.; Gosselin, A. Greenhouse tomato fruit quality. Hortic. Rev. 2001, 26, 239–319. [Google Scholar]
- Feike, T.; Chen, Q.; Graeff-Honninger, S.; Pfenning, J.; Claupein, W. Farmer-developed vegetable intercropping systems in southern Hebei, China. Renew. Agric. Food Syst. 2010, 25, 272–280. [Google Scholar] [CrossRef]
- Miyazawa, K.; Murakami, T.; Takeda, M.; Murayama, T. Intercropping green manure crops—Effects on rooting patterns. Plant Soil 2010, 331, 231–239. [Google Scholar] [CrossRef]
- Bamford, M.K. Yield, Pest Density, and Tomato Flavor Effects of Companion Planting in Garden-Scale Studies Incorporating Tomato, Basil, and Brussels Sprout. Ph.D. Thesis, Davis College of Agriculture, West Virginia University, Morgantown, WV, USA, 2004. [Google Scholar]
- Moreno, D.A.; Villora, G.; Soriano, M.T.; Castilla, N.; Romero, L. Floating row covers affect the molybdenum and nitrogen status of Chinese cabbage grown under field conditions. Funct. Plant Biol. 2002, 29, 585–593. [Google Scholar] [CrossRef]
- Banik, P.; Midya, A.; Sarkar, B.K.; Ghose, S.S. Wheat and chickpea intercropping systems in an additive series experiment: Advantages and weed smothering. Eur. J. Agron. 2006, 24, 325–332. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Luna, J.M. Multi-function agricultural biodiversity: pest management and other benefits. Basic Appl. Ecol. 2003, 4, 107–116. [Google Scholar] [CrossRef]
Treatment | Season | Total Marketable Fruit Number (No./ha) | Total Marketable Fruit Weight (t/ha) | Total Non-Marketable Fruits (No./ha) | Total Non-Marketable Fruit Weight (t/ha) |
---|---|---|---|---|---|
T + N + BB | 1 | 350,000ab ** | 12.41ab | 48,875fg | 6.98c |
T + N + BI | 1 | 385,000a | 13.75a | 43,625g | 6.44cd |
T + N | 1 | 345,000ab | 11.58ab | 64,375cde | 7.44c |
T + BB | 1 | 274,500bc | 9.51bc | 95,625abc | 9.91ab |
T + BI | 1 | 299,500b | 10.47bc | 811,25bc | 8.78b |
TC | 1 | 223,750cd | 8.75cd | 101,875ab | 11.05a |
T + N + BB | 2 | 276,250bc | 10.74b | 56,875de | 6.54cd |
T + N + BI | 2 | 300,000b | 12.59ab | 51,250ef | 5.90d |
T + N | 2 | 243,125c | 9.79bc | 68,125cd | 6.50cd |
T + BB | 2 | 180,750de | 8.21cd | 98,250ab | 8.73b |
T + BI | 2 | 200,750cde | 8.73cd | 79,460bc | 8.21bc |
TC | 2 | 160,165e | 5.9d | 118,125a | 9.80ab |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutisya, S.; Saidi, M.; Opiyo, A.; Ngouajio, M.; Martin, T. Synergistic Effects of Agronet Covers and Companion Cropping on Reducing Whitefly Infestation and Improving Yield of Open Field-Grown Tomatoes. Agronomy 2016, 6, 42. https://doi.org/10.3390/agronomy6030042
Mutisya S, Saidi M, Opiyo A, Ngouajio M, Martin T. Synergistic Effects of Agronet Covers and Companion Cropping on Reducing Whitefly Infestation and Improving Yield of Open Field-Grown Tomatoes. Agronomy. 2016; 6(3):42. https://doi.org/10.3390/agronomy6030042
Chicago/Turabian StyleMutisya, Stella, Mwanarusi Saidi, Arnold Opiyo, Mathieu Ngouajio, and Thibaud Martin. 2016. "Synergistic Effects of Agronet Covers and Companion Cropping on Reducing Whitefly Infestation and Improving Yield of Open Field-Grown Tomatoes" Agronomy 6, no. 3: 42. https://doi.org/10.3390/agronomy6030042
APA StyleMutisya, S., Saidi, M., Opiyo, A., Ngouajio, M., & Martin, T. (2016). Synergistic Effects of Agronet Covers and Companion Cropping on Reducing Whitefly Infestation and Improving Yield of Open Field-Grown Tomatoes. Agronomy, 6(3), 42. https://doi.org/10.3390/agronomy6030042