Distribution Patterns of Humus and Mineral Composition in Dark-Brown, Meadow, and Paddy Soils in Northeast China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Soil Sampling Procedures
2.2. Experimental Method
2.2.1. Three-Dimensional Fluorescence Spectrum (3D-EEM) of Dissolved Organic Matter (DOM)
2.2.2. Extraction of Humus Components and Determination of Their C Contents
2.2.3. Clay Mineral Separation and Extraction
2.3. Statistical Analysis
3. Results
3.1. C Content and Optical Indices of Dissolved Organic Matter (DOM)
3.2. C Content of Humus Components and CHA/CFA
3.3. Elemental Composition and FTIR Spectra of HA
3.4. Identification of Clay Mineral Composition and Determination
4. Discussion
4.1. Variations in the Fluorescence Index of DOM and Its C Content (CDOM) with Depth in Dark-Brown Soil, Meadow Soil, and Paddy Soil
4.2. Variations in Humus Composition with Depth in Dark-Brown Soil, Meadow Soil, and Paddy Soil
4.3. Variations in Functional Groups and Elemental Composition of HA with Depth in Dark-Brown Soil, Meadow Soil, and Paddy Soil
4.4. Variations in Clay Mineral with Depth in Dark-Brown Soil, Meadow Soil, and Paddy Soil
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Zhu, X.M.; Fang, Y.Y.; Vancov, T.; Zou, Z.C.; Jin, X.Y.; Ma, L.X.; Wu, D.; Du, Z.L. Long-term nitrogen fertilization accelerates labile biomolecules decomposition and retains recalcitrant compounds in a temperate agroecosystem. Agr. Ecosys Environ. 2025, 379, 109373. [Google Scholar] [CrossRef]
- Nardi, S.; Morari, F.; Berti, A.; Tosoni, M.; Giardini, L. Soil organic matter properties after 40 years of different use of organic and mineral fertilisers. Eur. J. Agron. 2004, 21, 357–367. [Google Scholar] [CrossRef]
- Nazir, M.J.; Li, G.L.; Nazir, M.M.; Zulfiqar, F.; Siddique, K.H.M.; Iqbal, B.; Du, D.L. Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Till. Res. 2024, 237, 105959. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, C.; Yu, Z.; Qu, H.; Zheng, Z.; Zheng, L.; Kao, S. Consistency and environmental variability in mineral-organic interactions: The role of illite in organic carbon preservation in the northern South China Sea. Global Planet. Change 2025, 253, 104983. [Google Scholar] [CrossRef]
- Possinger, A.R.; Zachman, M.J.; Enders, A.; Levin, B.D.A.; Muller, D.A.; Kourkoutis, L.F.; Lehmann, J. Organo–organic and organo–mineral interfaces in soil at the nanometer scale. Nat. Commun. 2020, 11, 6103. [Google Scholar] [CrossRef]
- Rodríguez-Albarracín, H.S.; Demattê, J.A.M.; Rosin, N.A.; Contreras, A.E.D.; Silvero, N.E.Q.; Cerri, C.E.P.; Mendes, W.D.M.; Tayebi, M. Potential of soil minerals to sequester soil organic carbon. Geoderma 2023, 436, 116549. [Google Scholar] [CrossRef]
- Tombácz, E.; Szekeres, M.; Baranyi, L.; Michéli, E. Surface modification of clay minerals by organic polyions. Colloid Surf. A 1998, 141, 379–384. [Google Scholar] [CrossRef]
- Hidayat, W.; Suryaningtyas, D.T.; Mulyanto, B. Soil fertility based on mineralogical properties to support sustainable agriculture management. J. Soil Sci. Agroclimatol. 2024, 21, 95. [Google Scholar] [CrossRef]
- Drewnik, M.; Skiba, M.; Szymański, W.; Żyła, M. Mineral composition vs. soil forming processes in loess soils—A case study from Kraków (Southern Poland). Catena 2014, 119, 166–173. [Google Scholar] [CrossRef]
- Hampl, F.J.; Schiperski, F.; Byrne, J.M.; Schwerdhelm, C.; Kappler, A.; Bryce, C.; von Blanckenburg, F.; Neumann, T. The role of iron-bearing minerals for the deep weathering of a hydrothermally altered plutonic rock in semi-arid climate (Chilean Coastal Cordillera). Chem. Geol. 2022, 604, 120922. [Google Scholar] [CrossRef]
- Zhang, H.; Cui, K.P.; Guo, Z.; Li, X.Y.; Chen, J.; Qi, Z.G.; Xu, S.Y. Spatiotemporal variations of spectral characteristics of dissolved organic matter in river flowing into a key drinking water source in China. Sci. Total Environ. 2020, 700, 134360. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jia, X.X.; Li, M.; Wu, H.M. Insight into the vertical characteristics of dissolved organic matter in 5-m soil profiles under different land-use types on the Loess Plateau. Sci. Total Environ. 2019, 692, 613–621. [Google Scholar] [CrossRef]
- Liu, D.; Li, M.Y.; Yu, R.D.; Li, H.Y.; Shen, Y.G.; Tian, Q.; Bu, H.L.; Huang, C.Q.; Tan, W.F. Interlayer organic matter within hydroxy-interlayered clay minerals enhances soil organic carbon stability under long-term organic fertilization. Appl. Clay Sci. 2023, 239, 106963. [Google Scholar] [CrossRef]
- Xue, B.; Huang, L.; Li, X.K.; Lu, J.W.; Gao, R.L.; Kamran, M.; Fahad, S. Effect of clay mineralogy and soil organic carbon in aggregates under straw incorporation. Agronomy 2022, 12, 534. [Google Scholar] [CrossRef]
- Zheng, Q.F.; Zhao, L.P.; Feng, J.; Wang, H.; Li, C. Effects of land-use patterns on evolution of clay minerals of Black soil in Northeast China. Acta Mineral. Sin. 2011, 31, 139–145. (In Chinese) [Google Scholar]
- Gmach, M.R.; Cherubin, M.R.; Kaiser, K.; Cerri, C.E.P. Processes that influence dissolved organic matter in the soil: A review. Sci. Agr. 2020, 77, e20180164. [Google Scholar] [CrossRef]
- Huo, P.; Gao, P.C. Seasonal changes of dissolved CO2 and its linkage with optical characteristics of DOM in groundwater in agricultural areas. J. Hydrol. 2024, 643, 131927. [Google Scholar] [CrossRef]
- Xiao, M.; Chen, Z.C.; Zhang, Y.; Wen, Y.N.; Shang, L.H.; Zhong, J. The optical characterization and distribution of dissolved organic matter in water regimes of Qilian mountains watershed. Int. J. Environ. Res. Public Health 2021, 19, 59. [Google Scholar] [CrossRef]
- Xiao, R.; Lei, H.J.; Zhang, Y.L.; Xiao, Z.Y.; Yang, G.; Pan, H.W.; Hou, Y.R.; Yu, J.; Sun, K.P.; Dong, Y.C. The influence of aerated irrigation on the evolution of dissolved organic matter based on Three-dimensional fluorescence spectrum. Agronomy 2023, 13, 980. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, M.H.; Hur, J. A new molecular weight (MW) descriptor of dissolved organic matter to represent the MW-dependent distribution of aromatic condensation: Insights from biodegradation and pyrene binding experiments. Sci. Total Environ. 2019, 660, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.C.; Wang, C.; Geng, X.Y.; Zhao, Y.; Mohamed, T.A.; Wu, D.; Wei, Z.M. Effect of Maillard reaction based on catechol polymerization on the conversion of food waste to humus. Chemosphere 2024, 353, 141560. [Google Scholar] [CrossRef] [PubMed]
- Lanno, M.; Klavins, M.; Purmalis, O.; Shanskiy, M.; Kisand, A.; Kriipsalu, M. Properties of humic substances in composts comprised of different organic source material. Agriculture 2022, 12, 1797. [Google Scholar] [CrossRef]
- Wang, S.; Liu, P.X.; Wang, M.S.; Cui, Y.Q.; Tuo, Y.X.; Zhao, B.W.; Wang, N. Evaluation of chemical properties and humification process during co-composting of spent mushroom substrate (Pleurotus ostreatus) and pig manure under different mass ratios. Int. Biodeter. Biodegr. 2024, 193, 105858. [Google Scholar] [CrossRef]
- Li, H.H.; Zhang, T.; Shaheen, S.M.; Abdelrahman, H.; Ali, E.F.; Bolan, N.S.; Li, G.X.; Rinklebe, J. Microbial inoculants and struvite improved organic matter humification and stabilized phosphorus during swine manure composting: Multivariate and multiscale investigations. Bioresour. Technol. 2022, 351, 126976. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.Y.; Feng, Q.; Li, X.; Xu, B.C.; Shi, X.S.; Guo, R.B. Effects of arginine modified additives on humic acid formation and microbial metabolic functions in biogas residue composting. J. Environ. Chem. Eng. 2022, 10, 108675. [Google Scholar] [CrossRef]
- Atiroğlu, V.; Atiroğlu, A.; Atiroğlu, A.; Al-Hajri, A.S.; Özacar, M. Green immobilization: Enhancing enzyme stability and reusability on eco-friendly support. Food Chem. 2024, 448, 138978. [Google Scholar] [CrossRef]
- Hu, Q.N.; Yang, B.J.; Liu, J.H.; Li, B.; Dang, Y.; Zhu, A.M.; Zhang, P.P.; Chen, J.; Li, C.S.; Song, Z.J.; et al. Geochemical and mineral composition characteristics of hydrothermal-related clay-sized surface sediments from southern Mid-Atlantic Ridge: Implications for hydrothermal depositional environment. Ore Geol. Rev. 2023, 162, 105674. [Google Scholar] [CrossRef]
- Pasieczna-Patkowska, S.; Cichy, M.; Flieger, J. Application of Fourier transform infrared (FTIR) spectroscopy in characterization of green synthesized nanoparticles. Molecules 2025, 30, 684. [Google Scholar] [CrossRef]
- Wolzak, L.A.; van Gemert, R.; van den Berg, K.J.; Reek, J.N.H.; Tromp, M.; Korstanje, T.J. Kinetic studies on Lewis acidic metal polyesterification catalysts-hydrolytic degradation is a key factor for catalytic performance. Catal. Sci. Technol. 2022, 12, 2056–2060. [Google Scholar] [CrossRef]
- Musa, A.M.; Ishak, C.F.; Jaafar, N.M.; Karam, D.S. Carbon dynamics of fruit and vegetable wastes and biodegradable municipal waste compost-amended Oxisol. Sustainability 2021, 13, 10869. [Google Scholar] [CrossRef]
- Abid, W.; Mahmoud, I.B.; Masmoudi, S.; Triki, M.A.; Mounier, S.; Ammar, E. Physico-chemical and spectroscopic quality assessment of compost from date palm (Phoenix dactylifera L.) waste valorization. J. Environ. Manag. 2020, 264, 110492. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, H.M.; Zhao, B.; Gao, Z.P.; Yu, C.; Zhang, C.R.; Wu, X. High biodegradability of microbially-derived dissolved organic matter facilitates arsenic enrichment in groundwater: Evidence from molecular compositions and structures. J. Hazard. Mater. 2024, 470, 134133. [Google Scholar] [CrossRef]
- Wang, X.Q.; Tian, P.J.; Muhmood, A.; Liu, J.; Su, Y.J.; Zhang, Q.Q.; Zheng, Y.; Dong, R.J. Investigating the evolution of structural characteristics of humic acid generated during the continuous anaerobic digestion and its potential for chromium adsorption and reduction. Fermentation 2022, 8, 322. [Google Scholar] [CrossRef]
- Tinoco, P.; Almendros, G.; González-Vila, F.J.; Sanz, J.; González-Pérez, J.A. Revisiting molecular characteristics responsive for the aromaticity of soil humic acids. J. Soil Sediment 2014, 15, 781–791. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, X.; Gao, W.; Huang, B.W.; He, M.C. First-principles calculations investigation on different coverage of H2O adsorption on the Mg-montmorillonite (010) edge surface. Appl. Surf. Sci. 2023, 626, 157232. [Google Scholar] [CrossRef]
- Aja, S.U. On the thermodynamic stability of illite and I-S minerals. Clays Clay Minertia. 2019, 67, 518–536. [Google Scholar] [CrossRef]
- Deon, F.; van Ruitenbeek, F.; van der Werff, H.; van der Meijde, M.; Marcatelli, C. Detection of interlayered illite/smectite clay minerals with XRD, SEM analyses and reflectance spectroscopy. Sensors 2022, 22, 3602. [Google Scholar] [CrossRef]
- Buckley, P.; Hargreaves, N.; Cooper, S. Nucleation of quartz under ambient conditions. Commun. Chem. 2018, 1, 49. [Google Scholar] [CrossRef]
- Fu, Y.; Hao, Q.Z.; Peng, S.Z.; Marković, S.B.; Gao, X.B.; Han, L.; Wu, X.C.; Namier, N.; Zhang, W.; Gavrilov, M.B.; et al. Clay mineralogy of the Stari Slankamen (Serbia) loess-paleosol sequence during the last glacial cycle —Implications for dust provenance and interglacial climate. Quat. Sci. Rev. 2021, 263, 106990. [Google Scholar] [CrossRef]
- Islam, M.R.; Singh, B.; Dijkstra, F.A. Stabilisation of soil organic matter: Interactions between clay and microbes. Biogeochemistry 2022, 160, 145–158. [Google Scholar] [CrossRef]
- Warr, L.N.; Mählmann, R.F. Recommendations for Kübler index standardization. Clay Miner. 2015, 50, 283–286. [Google Scholar] [CrossRef]
- Panwar, S.; Agarwal, V.; Chakrapani, G.J. Morphometric and sediment source characterization of the Alaknanda river basin, headwaters of river Ganga, India. Nat. Hazards 2017, 87, 1649–1671. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Chen, J.; Castellano, M.J.; Ye, C.; Zhang, N.; Miao, Y.; Zheng, H.; Li, J.; Ding, W. Oxygen availability regulates the quality of soil dissolved organic matter by mediating microbial metabolism and iron oxidation. Glob. Change Biol. 2022, 28, 7410–7427. [Google Scholar] [CrossRef] [PubMed]
- Mazzoleni, S.; Bonanomi, G.; Giannino, F.; Incerti, G.; Piermatteo, D.; Spaccini, R.; Piccolo, A. New Modeling Approach to Describe and Predict Carbon Sequestration Dynamics in Agricultural Soils. In Carbon Sequestration in Agricultural Soils; Springer: Berlin/Heidelberg, Germany, 2011; pp. 291–307. [Google Scholar]
- Verrone, V.; Gupta, A.; Laloo, A.E.; Dubey, R.K.; Hamid, N.A.A.; Swarup, S. Organic matter stability and lability in terrestrial and aquatic ecosystems: A chemical and microbial perspective. Sci. Total Environ. 2024, 906, 167757. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Wu, M.Y.; Graham, N.; Siddique, M.S.; Tian, L.; Yu, W.Z. Revealing molecular level changes of dissolved organic matter in Black soils during continuous leaching and their implications for drinking water treatment. Acs. Est. Eng. 2023, 3, 1592–1603. [Google Scholar] [CrossRef]
- Su, F.; Li, Y.H.; Qian, J.; Zhang, Y.; Wang, Y.Y.; Li, H.B.; Li, M.X. Effect of repeated freezing–thawing on soil dissolved organic matter: A case study of brown farmland soil in Northeast China. Arab. J. Geosci. 2022, 15, 1754. [Google Scholar] [CrossRef]
- Olshansky, Y.; Root, R.A.; Chorover, J. Wet–dry cycles impact DOM retention in subsurface soils. Biogeosciences 2018, 15, 821–832. [Google Scholar] [CrossRef]
- Tuo, P.P.; Zhang, Z.P.; Du, P.; Hu, L.J.; Li, R.Y.; Ren, J. Changes in coal waste DOM chemodiversity and Fe/Al oxides during weathering drive the fraction conversion of heavy metals. Sci. Total Environ. 2024, 926, 172063. [Google Scholar] [CrossRef]
- Dong, W.; Wan, J.; Tokunaga, T.K.; Gilbert, B.; Williams, K.H. Transport and humification of dissolved organic matter within a semi-arid floodplain. J. Environ. Sci. 2017, 57, 24–32. [Google Scholar] [CrossRef]
- Jiang, T.; Kaal, J.; Liang, J.; Zhang, Y.L.; Wei, S.Q.; Wang, D.Y.; Green, N.W. Composition of dissolved organic matter (DOM) from periodically submerged soils in the Three Gorges Reservoir areas as determined by elemental and optical analysis, infrared spectroscopy, pyrolysis-GC–MS and thermally assisted hydrolysis and methylation. Sci. Total Environ. 2017, 603–604, 461–471. [Google Scholar] [CrossRef]
- Lu, M.Z.; He, G.; Fan, L.; Liu, G.H.; Wu, J.J.; Liu, W.Z.; Ma, L. Temperature sensitivity of aerobic and anaerobic organic carbon mineralization varies with climate and soil depth in riparian zones. Soil Biol. Biochem. 2024, 195, 109455. [Google Scholar] [CrossRef]
- Zhou, S.X.; Li, P.; Zhang, Y. Factors influencing and changes in the organic carbon pattern on slope surfaces induced by soil erosion. Soil Till. Res. 2024, 238, 106001. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, D.D.; Zhang, Y.; McLaughlin, N.; Zhang, Y.; Wang, Y.; Chen, X.W.; Zhang, S.X.; Lu, Y.F.; Liang, A.Z. Precipitation increment reinforced warming-induced increases in soil mineral-associated and particulate organic matter under agricultural ecosystem. Appl. Soil Ecol. 2024, 196, 105301. [Google Scholar] [CrossRef]
- Neto, E.C.D.; dos Anjos, L.H.C.; Calegari, M.R.; Horák-Terra, I.; de Oliveira, F.S.; Valladares, G.S.; de Souza, J.J.L.L.; Pereira, M.G. Organic soils in southeastern Brazilian highlands: Formation and relations to vegetation history. Catena 2024, 237, 107786. [Google Scholar] [CrossRef]
- Jha, A.; Aburto, F.; Calabrese, S. A soil structure-based modeling approach to soil heterotrophic respiration. Biogeochemistry 2025, 168, 32. [Google Scholar] [CrossRef]
- Incerti, G.; Bonanomi, G.; Giannino, F.; Cartenì, F.; Spaccini, R.; Mazzei, P.; Piccolo, A.; Mazzoleni, S. OMDY: A new model of organic matter decomposition based on biomolecular content as assessed by 13C-CPMAS-NMR. Plant Soil 2016, 411, 377–394. [Google Scholar] [CrossRef]
- Shen, X.; Yang, F.; Xiao, C.W.; Zhou, Y. Increased contribution of root exudates to soil carbon input during grassland degradation. Soil Biol. Biochem. 2020, 146, 107817. [Google Scholar] [CrossRef]
- Dash, P.K.; Patra, S.R.; Mishra, A.; Barala, J.; Abhishek, S.; Kishore, M.A.; Pattnaik, T. Physico-chemical characterization and taxonomic classification of soil profiles in a Toposequence located in RRTTS and KVK Farm, Keonjhar, Odisha, India. J. Sci. Res. Rep. 2024, 30, 386–399. [Google Scholar] [CrossRef]
- de Azevedo, A.C.; de Araújo Pedron, F.; Sartor, L.R.; Casarini, P.G. Filossilicatos 2:1 com hidróxi entre camadas em solos: Estado atual do conhecimento e das perspectivas de pesquisa. Rev. De Ciências Agrárias 2012, 55, 236–243. [Google Scholar] [CrossRef]
- Nguyen, L.T.T.; Osanai, Y.; Anderson, I.C.; Bange, M.P.; Tissue, D.T.; Singh, B.K. Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity. Plant Soil 2018, 431, 371–387. [Google Scholar] [CrossRef]
- Lan, Y.B.; Gai, S.; Cheng, K.; Liu, Z.Q.; Antonietti, M.; Yang, F. Artificial humic acid mediated carbon–iron coupling to promote carbon sequestration. Research 2024, 7, 0308. [Google Scholar] [CrossRef]
- Neurath, R.A.; Pett-Ridge, J.; Chu-Jacoby, I.; Herman, D.; Whitman, T.; Nico, P.S.; Lipton, A.S.; Kyle, J.; Tfaily, M.M.; Thompson, A.; et al. Root carbon interaction with soil minerals is dynamic, leaving a legacy of microbially derived residues. Environ. Sci. Technol. 2021, 55, 13345–13355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; Bi, Z.T.; Tian, W.X.; Ge, Z.Y.; Xu, Y.; Xu, R.; Zhang, H.Q.; Tang, S.F. Synergistic effect triggered by Fe2O3 and oxygen-induced hydroxyl radical enhances formation of amino-phenolic humic-like substance. J. Environ. Manag. 2023, 348, 119312. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wang, C.; Gao, Y.J.; Zhao, L.; Xi, B.D.; Tan, W.B. Structure and composition of rhizosphere-soil humic acid and fulvic acid as affected by the land-use change from paddy to upland fields. Sustain. Horiz. 2024, 10, 100097. [Google Scholar] [CrossRef]
- Ufimtseva, L.V.; Kalganov, A.A. Influence of long-term flood with surface waters with high mineralization on group and fractional composition of the Meadow soils humus. Contemp. Probl. Ecol. 2011, 4, 550–553. [Google Scholar] [CrossRef]
- Kloster, N.; Avena, M. Interaction of humic acids with soil minerals: Adsorption and surface aggregation induced by Ca2+. Environ. Chem. 2015, 12, 731–738. [Google Scholar] [CrossRef]
- Bernal, B.; McKinley, D.C.; Hungate, B.A.; White, P.M.; Mozdzer, T.J.; Megonigal, J.P. Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs. Soil Biol. Biochem. 2016, 98, 85–94. [Google Scholar] [CrossRef]
- Qiu, H.S.; Liu, J.Y.; Ge, T.D.; Su, Y.R. Fate of low molecular weight organics in Paddy vs. upland soil: A microbial biomarker approach. Eur. J. Soil Biol. 2024, 120, 103604. [Google Scholar] [CrossRef]
- Liang, G.P.; Stark, J.; Waring, B.G. Mineral reactivity determines root effects on soil organic carbon. Nat. Commun. 2023, 14, 4962. [Google Scholar] [CrossRef]
- Li, X.J.; Zhang, X.Z.; Wu, J.S.; Shen, Z.X.; Zhang, Y.J.; Xu, X.L.; Fan, Y.Z.; Zhao, Y.P.; Yan, W. Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environ. Earth Sci. 2011, 64, 1911–1919. [Google Scholar] [CrossRef]
- Zhang, X.W.; Dou, S.; Ndzelu, B.S.; Zhang, Y.F.; Liu, X. Accumulation of straw-derived carbon and changes in soil humic acid structural characteristics during corn straw decomposition. Can. J. Soil Sci. 2021, 101, 452–465. [Google Scholar] [CrossRef]
- Chen, W.X.; Wang, H.; Gao, Q.; Chen, Y.; Li, S.L.; Yang, Y.; Werner, D.; Tao, S.; Wang, X.L. Association of 16 priority polycyclic aromatic hydrocarbons with humic acid and humin fractions in a peat soil and implications for their long-term retention. Environ. Pollut. 2017, 230, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, D.C.; Hu, G.Q.; Xu, W.H.; Zhuge, Y.P.; Bai, E. Drying-rewetting events enhance the priming effect on soil organic matter mineralization by maize straw addition. Catena 2024, 238, 107872. [Google Scholar] [CrossRef]
- Avila, C.C.E.; Schaefer, M.V.; Duro, A.M.; Haensel, T.P.; Garniwan, A.; Lin, Y.; Darrel Jenerette, G.; Nico, P.S.; Dubinsky, E.; Keiluweit, M.; et al. Carbon dynamics as a function of soil moisture following repeated wet-dry cycles in irrigated soils. Geoderma 2023, 439, 116681. [Google Scholar] [CrossRef]
- Jiang, L.; Zhu, J.; Wang, H.; Fu, Q.L.; Hu, H.Q.; Huang, Q.Y. Spatial variability of the molecular composition of humic acids from subtropical forest soils. J. Soil Sediment 2021, 21, 766–774. [Google Scholar] [CrossRef]
- Meng, W.S.; An, N.; Guan, S.; Dou, S.; Zhang, B.W.; Zhu, W.J.; Yue, J.H. Unraveling mechanisms of carbon enrichment via straw and biochar application to enhance soil fertility and improve maize yield. Eur. J. Agron. 2025, 169, 127673. [Google Scholar] [CrossRef]
- Peng, Q.N.; Lin, L.; Tu, Q.C.; Wang, X.P.; Zhou, Y.Y.; Chen, J.Y.; Jiao, N.Z.; Zhou, J.Z. Unraveling the roles of coastal bacterial consortia in degradation of various lignocellulosic substrates. Environ. Microbiol. 2023, 8, e01283-22. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, J.; Pan, F.X.; Chapman, S.J.; Yao, H.Y. Soil nitrogen availability alters rhizodeposition carbon flux into the soil microbial community. J. Soil Sediment 2016, 16, 1472–1480. [Google Scholar] [CrossRef]
- Liu, C.Z.; Si, B.C.; Zhao, Y.; Wu, Z.M.; Lu, X.C.; Chen, X.; Han, X.Z.; Zhu, Y.C.; Zou, W.X. Drivers of soil quality and maize yield under long-term tillage and straw incorporation in Mollisols. Soil Till. Res. 2025, 246, 106360. [Google Scholar] [CrossRef]
- Núñez, A.; Schipanski, M. Changes in soil organic matter after conversion from irrigated to dryland cropping systems. Agr. Ecosyst. Environ. 2023, 347, 108392. [Google Scholar] [CrossRef]
- Niu, Y.L.; Li, Y.; Lou, M.X.; Cheng, Z.; Ma, R.J.; Guo, H.; Zhou, J.; Jia, H.T.; Fan, L.C.; Wang, T.C. Microbial transformation mechanisms of particulate organic carbon to mineral-associated organic carbon at the chemical molecular level: Highlighting the effects of ambient temperature and soil moisture. Soil Biol. Biochem. 2024, 195, 109454. [Google Scholar] [CrossRef]
- Xu, T.L.; Chen, X.; Hou, Y.H.; Zhu, B. Changes in microbial biomass, community composition and diversity, and functioning with soil depth in two alpine ecosystems on the Tibetan plateau. Plant Soil 2020, 459, 137–153. [Google Scholar] [CrossRef]
- Hui, K.L.; Xi, B.D.; Tan, W.B.; Song, Q.D. Long-term application of nitrogen fertilizer alters the properties of dissolved soil organic matter and increases the accumulation of polycyclic aromatic hydrocarbons. Environ. Res. 2022, 215, 114267. [Google Scholar] [CrossRef]
- Zhou, L.P.; Yuan, L.; Zhao, B.Q.; Li, Y.T.; Lin, Z.A. Structural characteristics of humic acids derived from Chinese weathered coal under different oxidizing conditions. PLoS ONE 2019, 14, e0217469. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Haeckel, M.; Dale, A.W.; Wallmann, K. Degradation and accumulation of organic matter in euxinic surface sediments. Geochim. Cosmochim. Acta 2024, 370, 128–143. [Google Scholar] [CrossRef]
- Wang, Z.C.; Wu, Z.Q.; Wang, Q.; Pan, C.X.; Yan, J.C.; Li, Z.K.; Lei, Z.P.; Ren, S.B.; Wang, X.L.; Kang, S.G.; et al. Efficient oxidative depolymerization of Xilinguole lignite to produce humic acids with little CO2 production. Solid Fuel Chem. 2021, 55, 348–356. [Google Scholar] [CrossRef]
- Françoys, A.; Mendoza, O.; Hu, J.W.; Boeckx, P.; Cornelis, W.; De Neve, S.; Sleutel, S. The effect of groundwater depth on topsoil organic matter mineralization during a simulated dry summer in northwestern Europe. Soil 2025, 11, 121–140. [Google Scholar] [CrossRef]
- Abdelrahman, H.; Hofmann, D.; Sleighter, R.L.; Olk, D.C.; Berns, A.E.; Miano, T.; Shaheen, S.M.; Cocozza, C. Molecular composition and possible transformations of labile soil organic matter fractions in Mediterranean arable soils: Relevance and implications. Environ. Res. 2023, 232, 116315. [Google Scholar] [CrossRef]
- Gamage, J.; Voroney, P.; Gillespie, A.; Lo, A.; Longstaffe, J. Evidence for the formation of fused aromatic ring structures in an organic soil profile in the early diagenesis. Sci. Rep. 2023, 13, 12378. [Google Scholar] [CrossRef]
- Ali Maroof, M.; Eidgahee, D.R.; Mahboubi, A. Particle morphology effect on the soil pore structure. In International Conference on Civil Engineering, Proceedings of the 8th International Conference on Civil Engineering, Nanchang, China, 4–5 December 2021; Lecture Notes in Civil Engineering; Springer: Singapore, 2022; pp. 1–10. [Google Scholar]
- Gao, M.; Li, M.; Wang, S.L.; Lu, X.C. Land degradation affects soil microbial properties, organic matter composition, and maize yield. Agronomy 2024, 14, 1348. [Google Scholar] [CrossRef]
- Tang, S.R.; Liu, T.; Hu, R.G.; Xu, X.K.; Wu, Y.Z.; Meng, L.; Hattori, S.; Tawaraya, K.; Cheng, W.G. Twelve-year conversion of rice Paddy to wetland does not alter SOC content but decreases C decomposition and N mineralization in Japan. J. Environ. Manag. 2024, 354, 120319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Liu, Y.; Zhao, W.; Li, J.T.; Xie, S.Y.; Zhang, C.Y.; He, X.R.; Yan, D.D.; Wang, M.H. Impact of hydrological changes on wetland landscape dynamics and implications for Ecohydrological restoration in Honghe national nature reserve, northeast China. Water 2023, 15, 3350. [Google Scholar] [CrossRef]
- Yun, J.W.; Chen, X.G.; Liu, S.J.; Zhang, W.H. Effects of temperature and moisture on soil organic carbon Mineralization. IOP Conf. Ser. Mater. Sci. Eng. 2019, 562, 012085. [Google Scholar] [CrossRef]
- Liu, S.; Hu, J.L.; Zhong, Y.D.; Hu, X.Y.; Yin, J.Y.; Xiong, T.; Nie, S.P.; Xie, M.Y. A review: Effects of microbial fermentation on the structure and bioactivity of polysaccharides in plant-based foods. Food Chem. 2024, 440, 137453. [Google Scholar] [CrossRef]
- Wang, C.Q.; Bilyera, N.; Blagodatskaya, E.; Zhang, X.C.; Dippold, M.A.; Dorodnikov, M. Keep oxygen in check: An improved in-situ zymography approach for mapping anoxic hydrolytic enzyme activities in a paddy soil. Sci. Total Environ. 2022, 850, 158118. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wu, L.; Liu, K.L.; Shang, J.Y.; Zhang, W.J. Contrasting effects of iron oxides on soil organic carbon accumulation in paddy and upland fields under long-term fertilization. J. Environ. Manag. 2024, 369, 122286. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Liu, X.Q.; Zhang, X.Y.; Dai, G.H.; Wang, Z.H.; Feng, X.J. Evaluating wetland soil carbon stability related to iron transformation during redox oscillations. Geoderma 2022, 428, 116222. [Google Scholar] [CrossRef]
- Rafiei, M.; Kennedy, M. Weathering in a world without terrestrial life recorded in the Mesoproterozoic Velkerri Formation. Nat. Commun. 2019, 10, 3448. [Google Scholar] [CrossRef]
- Andrade, G.R.P.; Furquim, S.A.C.; do Nascimento, T.T.V.; Brito, A.C.; Camargo, G.R.; de Souza, G.C. Transformation of clay minerals in salt-affected soils, Pantanal wetland, Brazil. Geoderma 2020, 371, 114380. [Google Scholar] [CrossRef]
- Zhou, W.W.; Wang, Q.Y.; Chen, S.; Chen, F.; Lv, H.F.; Li, J.L.; Chen, Q.; Zhou, J.B.; Liang, B. Nitrate leaching is the main driving factor of soil calcium and magnesium leaching loss in intensive plastic-shed vegetable production systems. Agr. Water Manag. 2024, 293, 108708. [Google Scholar] [CrossRef]
- Götz, E.; Neder, R.B.; Kolb, U.; Kleebe, H.J. The alteration of illite by Bad Nauheim and Gerolstein brine; Implications on fluid permeability in geothermal systems. Appl. Clay Sci. 2023, 243, 107082. [Google Scholar] [CrossRef]
- Vetterlein, D.; Kühn, T.; Kaiser, K.; Jahn, R. Illite transformation and potassium release upon changes in composition of the rhizophere soil solution. Plant Soil 2013, 371, 267–279. [Google Scholar] [CrossRef]
- Li, S.Y.; He, H.P.; Tao, Q.; Zhu, J.X.; Tan, W.; Ji, S.C.; Yang, Y.P.; Zhang, C.Q. Kaolinization of 2:1 type clay minerals with different swelling properties. Am. Mineral. 2020, 105, 687–696. [Google Scholar] [CrossRef]
- Wellbrock, N.; Cools, N.; de Vos, B.; Jandl, R.; Lehtonen, A.; Leitgeb, E.; Mäkipää, R.; Pavlenda, P.; Schwärtzel, K.; Šrámek, V. There is a need to better take into account forest soils in the planned soil monitoring law of the European union. Ann. Forest Sci. 2024, 81, 22. [Google Scholar] [CrossRef]
- Dove, P.M.; Han, N.Z.; De Yoreo, J.J. Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior. Proc. Natl. Acad. Sci. USA 2005, 102, 15357–15362. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.K.; Luo, X.R.; Zeng, Z.P.; Xiu, J.L.; Lei, Y.H.; Cheng, M.; Hu, C.Z.; Zhang, M.; He, W.J. Clay mineral transformations of mesozoic mudstones in the central Junggar Basin, northwestern China: Implications for compaction properties and pore pressure responses. Mar. Petrol. Geol. 2022, 144, 105847. [Google Scholar] [CrossRef]
- Carcione, J.M.; Gei, D.; Yu, T.; Ba, J. Effect of clay and mineralogy on permeability. Pure Appl. Geophys. 2019, 176, 2581–2594. [Google Scholar] [CrossRef]
- Liao, R.X.; Chen, W.W.; Liu, P.R.; Wang, L.; Xia, Q.; Yang, X.Y.; He, Y.J.; Guo, Q.L. Mineral transformation, element transport and hydrological impact in weathering at the Bingling Temple Grottoes: Implications for weathering in alkaline environments in NW China. Catena 2024, 239, 107966. [Google Scholar] [CrossRef]
- Xia, W.T.; Niu, C.C.; Yu, Q.B.; Wang, Q.; Wang, J.Q.; Sun, X.; Wang, Z.; Shan, X.H. Experimental investigation of the erodibility of soda saline-alkali soil under freeze-thaw cycle from a microscopic view. Catena 2023, 232, 107430. [Google Scholar] [CrossRef]
Soil Types | Layers of Soil Profile | CDOM (mg/L) | Fluorescence Index (FI) | Autochthonous Contribution (BIX) | Humification Index (HIX) |
---|---|---|---|---|---|
Dark-brown soil | Ap | 0.231 c | 2.1 b | 0.7 b | 5.5 a |
AB | 0.232 c | 2.2 ab | 0.7 b | 4.7 ab | |
Bt | 0.243 b | 2.2 ab | 0.7 b | 4.6 b | |
C | 2.212 a | 2.3 a | 0.8 a | 0.9 c | |
Meadow soil | Ap | 0.277 a | 2.1 b | 0.8 c | 6.3 a |
AB | 0.236 b | 2.2 a | 0.8 c | 4.5 b | |
Bg | 0.277 a | 2.1 b | 0.9 b | 3.1 c | |
Br | 0.274 a | 2.2 a | 1.0 a | 2.4 d | |
Paddy soil | Ap1 | 0.351 s | 2.0 d | 0.7 c | 5.8 a |
Ap2 | 0.340 b | 2.3 a | 0.9 a | 2.6 d | |
Br | 0.231 c | 2.1 c | 0.8 b | 3.1 c | |
C | 0.200 d | 2.2 b | 0.8 b | 5.5 b |
Soil Types | Layers of Soil Profile | cm−1 | |||||||||
3428–3437 | 2922–2925a | 2852–2855b | 1773–1779d | 1602–1604e | 1443–1449c | 1029–1047 | 882 | (a + b + c)/d | (a + b + c)/e | ||
Dark-brown soil | Ap | 37.7 | 7.25 | 2.29 | 3.35 | 13.4 | 19.8 | 19.5 | 2.37 | 8.76 | 2.19 |
AB | 42.9 | 9.29 | 2.68 | 2.46 | 7.60 | 21.7 | 19.4 | 2.47 | 13.7 | 4.43 | |
Bt | 39.7 | 11.1 | 2.80 | 2.35 | 6.20 | 22.1 | 17.8 | 3.67 | 15.3 | 5.81 | |
C | 36.7 | 10.6 | 3.10 | 1.72 | 4.35 | 18.7 | 15.5 | 5.07 | 18.8 | 7.45 | |
Soil Type | Layers of Soil Profile | cm−1 | |||||||||
3423–3442 | 2921–2923a | 2852–2856b | 1773–1779d | 1600–1604e | 1430–1440c | 1027–1047 | 882 | (a + b+ c)/d | (a + b + c)/e | ||
Meadow soil | Ap | 39.3 | 8.63 | 2.17 | 2.69 | 11.4 | 19.6 | 22.0 | 2.17 | 11.3 | 2.67 |
AB | 42.5 | 8.19 | 2.04 | 2.35 | 11.1 | 20.9 | 20.7 | 2.32 | 13.2 | 2.80 | |
Bg | 38.4 | 7.67 | 2.11 | 1.99 | 6.21 | 18.0 | 19.8 | 2.39 | 14.0 | 4.47 | |
Br | 36.6 | 7.86 | 2.00 | 1.45 | 5.87 | 18.2 | 19.6 | 2.47 | 19.4 | 4.78 | |
Soil Type | Layers of Soil Profile | cm−1 | |||||||||
3424–3443 | 2920–2924a | 2852–2856b | 1773–1779d | 1601–1604e | 1437–1443c | 1028–1047 | 882 | (a + b+ c)/d | (a+ b + c)/e | ||
Paddy soil | Ap1 | 34.8 | 6.53 | 2.09 | 2.16 | 13.3 | 19.8 | 19.5 | 1.85 | 13.2 | 2.14 |
Ap2 | 38.3 | 7.34 | 1.81 | 2.01 | 12.2 | 18.6 | 19.1 | 2.20 | 13.8 | 2.27 | |
Br | 36.0 | 7.76 | 2.05 | 1.84 | 11.7 | 19.1 | 18.7 | 2.20 | 15.7 | 2.47 | |
C | 34.6 | 7.68 | 2.38 | 1.61 | 11.2 | 16.3 | 17.8 | 2.14 | 16.4 | 2.35 |
Soil Type | Layers of Soil Profile | C (%) | N (%) | H (%) | O (%) | H/C Ratio | C/N Ratio | O/C Ratio |
---|---|---|---|---|---|---|---|---|
Dark-brown soil | Ap | 19.65 a | 1.02 a | 0.01 d | 27.9 a | 0.006 d | 22.5 d | 1.07 a |
AB | 14.38 b | 0.20 b | 0.03 c | 20.5 b | 0.025 c | 83.9 c | 1.07 a | |
Bt | 14.17 c | 0.14 c | 0.04 b | 18.0 c | 0.034 b | 118.1 b | 0.95 b | |
C | 13.74 d | 0.02 d | 0.05 a | 13.2 d | 0.044 a | 801.5 a | 0.72 c | |
Meadow soil | Ap | 15.96 a | 0.71 a | 0.02 b | 42.9 a | 0.015 c | 26.2 d | 2.02 a |
AB | 14.79 b | 0.35 b | 0.02 b | 25.6 b | 0.016 c | 49.3 c | 1.30 a | |
Bg | 11.24 c | 0.14 c | 0.02 b | 17.6 c | 0.021 b | 93.7 b | 1.17 b | |
Br | 11.05 c | 0.02 d | 0.04 a | 16.0 c | 0.043 a | 644.6 a | 1.09 c | |
Paddy soil | Ap1 | 26.19 a | 1.79 a | 0.06 a | 35.3 a | 0.027 c | 17.1 c | 1.01 a |
Ap2 | 21.31 b | 1.38 b | 0.06 a | 28.1 b | 0.034 bc | 18.0 c | 0.99 a | |
Br | 14.65 c | 0.11 c | 0.05 b | 17.8 c | 0.041 b | 155.4 b | 0.91 b | |
C | 9.69 d | 0.04 d | 0.06 a | 11.4 d | 0.074 a | 282.6 a | 0.88 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, D.; Sun, H.; Huang, Y.; Gao, J.; Song, B.; Gao, H.; Lu, B.; Wang, S. Distribution Patterns of Humus and Mineral Composition in Dark-Brown, Meadow, and Paddy Soils in Northeast China. Agronomy 2025, 15, 2108. https://doi.org/10.3390/agronomy15092108
Dai D, Sun H, Huang Y, Gao J, Song B, Gao H, Lu B, Wang S. Distribution Patterns of Humus and Mineral Composition in Dark-Brown, Meadow, and Paddy Soils in Northeast China. Agronomy. 2025; 15(9):2108. https://doi.org/10.3390/agronomy15092108
Chicago/Turabian StyleDai, Donghui, Haihang Sun, Yubao Huang, Jingwei Gao, Bowen Song, Haoyu Gao, Baoyi Lu, and Shuai Wang. 2025. "Distribution Patterns of Humus and Mineral Composition in Dark-Brown, Meadow, and Paddy Soils in Northeast China" Agronomy 15, no. 9: 2108. https://doi.org/10.3390/agronomy15092108
APA StyleDai, D., Sun, H., Huang, Y., Gao, J., Song, B., Gao, H., Lu, B., & Wang, S. (2025). Distribution Patterns of Humus and Mineral Composition in Dark-Brown, Meadow, and Paddy Soils in Northeast China. Agronomy, 15(9), 2108. https://doi.org/10.3390/agronomy15092108