Greenhouse Gas Emissions and Arsenic Mobilization in Rice Paddy Fields: Coupling Mechanisms, Influencing Factors, and Simultaneous Mitigation Measures
Abstract
1. Introduction
2. GHG Emissions and as Migration in Rice Paddy Fields
2.1. GHG Generation and Emissions in Rice Paddy Fields
2.2. Migration and Transformation of as in Rice Paddy Fields
2.2.1. Influence of Soil Properties on as Dynamics
2.2.2. Geographic Variations in as Behavior
2.2.3. Natural vs. Anthropogenic Factors Regulating as Immobilization
3. The Coupling Relationship Between GHG Emissions and as Migration in Rice Paddy Fields
4. Factors Affecting GHG Emissions and as Migration in Rice Paddy Fields
4.1. Physicochemical Properties of Soil
4.2. Water Management in Rice Paddy Fields
4.3. Type of Fertilizers
4.4. Other Factors
5. Simultaneous Mitigation Measures for GHG Emissions and as Mobilization in Rice Paddy Fields
5.1. Water Management Optimization
5.2. Rational Fertilization
5.3. Soil Amendment Additions
5.4. Microbial Agent Applications
5.5. Summary of the Potential Measures for Simultaneous Mitigation of GHG Emissions and as Migration
6. Summary and Future Perspectives
6.1. Summary
- (1)
- Synergistic mechanisms
- (2)
- Coupled pathways
- (3)
- Mitigation strategies
6.2. Future Perspectives
6.2.1. Short-Term Actionable Priorities
- (1)
- Optimization of existing agronomic practices
- (2)
- Localized application of soil amendments
- (3)
- Policy incentives and knowledge dissemination
6.2.2. Long-Term Research Directions
- (1)
- In-depth analysis of multi-factor interaction mechanisms
- (2)
- Precision agriculture
- (3)
- Advanced materials
- (4)
- Development of regionally adaptive and sustainable strategies
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOM | Anaerobic methane oxidation |
AeOM | Aerobic methane oxidation |
ANME | Anaerobic methanotrophic archaea |
AsRB | Arsenate-reducing bacteria |
AWD | Alternate wetting and drying |
GHG | Greenhouse gas |
GWP | Global warming potential |
IRB | Iron-reducing bacteria |
NRFO | Nitrate-reduction coupled with Fe(II) oxidation |
NRAO | Nitrate-reduction coupled with As(III) oxidation |
References
- Bandumula, N. Rice production in Asia: Key to global food security. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1323–1328. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, Y.; Hu, J.; Wang, H.; Ye, Z.; Zhang, J.; Meng, J.; Li, J.; Dahlgren, R.; Zhang, S.; et al. Efficacy of nitrate and biochar@birnessite composite microspheres for simultaneous suppression of As(III) mobilization and greenhouse gas emissions in flooded paddy soils. Environ. Res. 2025, 279, 121757. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Niu, L.; Chen, Q.; Zhou, Q.; Xiao, N.; Man, J.; Ma, J.; Wei, C.; Zhang, S.; et al. Escalating arsenic contamination throughout Chinese soils. Nat. Sustain. 2024, 7, 766–775. [Google Scholar] [CrossRef]
- Qian, H.; Zhu, X.; Huang, S.; Linquist, B.; Kuzyakov, Y.; Wassmann, R.; Minamikawa, K.; Martinez-Eixarch, M.; Yan, X.; Zhou, F.; et al. Greenhouse gas emissions and mitigation in rice agriculture. Nat. Rev. Earth Environ. 2023, 4, 716–732. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, H.; Hu, J.; Zhang, J.; Wang, F.; Wang, T.; Zhou, Q.; Dahlgren, R.; Gao, M.; Gao, H.; et al. Illuminated fulvic acid stimulates denitrification and As(III) immobilization in flooded paddy soils via an enhanced biophotoelectrochemical pathway. Sci. Total Environ. 2024, 912, 169670. [Google Scholar] [CrossRef]
- Linquist, B.; Van Groenigen, K.J.; Adviento-Borbe, M.A.; Pittelkow, C.; Van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Change Biol. 2012, 18, 194–209. [Google Scholar] [CrossRef]
- Andersen, I. UNEP Emissions Gap Report 2024: Call for Urgent Climate Action; United Nations Environment Programme: Cali, Colombia, 2024. [Google Scholar]
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O’Connell, C.S.; Johnson, J.A.; Saatchi, S.; et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, R.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.; Plattner, G.; Rogelj, J.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Verhoeven, E.; Decock, C.; Barthel, M.; Bertora, C.; Sacco, D.; Romani, M.; Sleutel, S.; Six, J. Nitrification and coupled nitrification-denitrification at shallow depths are responsible for early season N2O emissions under alternate wetting and drying management in an Italian rice paddy system. Soil Biol. Biochem. 2018, 120, 58–69. [Google Scholar] [CrossRef]
- Zhao, C.; Qiu, R.; Zhang, T.; Luo, Y.; Agathokleous, E. Effects of Alternate Wetting and Drying Irrigation on Methane and Nitrous Oxide Emissions from Rice Fields: A Meta-Analysis. Glob. Change Biol. 2024, 30, e17581. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Ma, J.F.; Meharg, A.A.; McGrath, S.P. Arsenic uptake and metabolism in plants. New Phytol. 2009, 181, 777–794. [Google Scholar] [CrossRef]
- Duan, G.; Shao, G.; Tang, Z.; Chen, H.; Wang, B.; Tang, Z.; Yang, Y.; Liu, Y.; Zhao, F.J. Genotypic and Environmental Variations in Grain Cadmium and Arsenic Concentrations Among a Panel of High Yielding Rice Cultivars. Rice 2017, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.M.; Bibi, I.; Niazi, N.K.; Shahid, M.; Iqbal, J.; Shakoor, M.B.; Ahmad, A.; Shah, N.S.; Bhattacharya, P.; Mao, K.; et al. Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients. Sci. Total Environ. 2021, 773, 145040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, P.; Wei, X.; Peng, H.; Hu, L.; Zhu, X. Migration, transformation of arsenic, and pollution controlling strategies in paddy soil-rice system: A comprehensive review. Sci. Total Environ. 2024, 951, 175500. [Google Scholar] [CrossRef]
- Liang, F.; Li, Y.; Zhang, G.; Tan, M.; Lin, J.; Liu, W.; Li, Y.; Lu, W. Total and speciated arsenic levels in rice from China. Food Addit. Contam. 2010, 27, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.A.; Signes-Pastor, A.J.; Argos, M.; Slaughter, F.; Pendergrast, C.; Punshon, T.; Gossai, A.; Ahsan, H.; Karagas, M.R. Assessment of human dietary exposure to arsenic through rice. Sci. Total Environ. 2017, 586, 1237. [Google Scholar] [CrossRef]
- Muehe, E.M.; Wang, T.; Kerl, C.F.; Planer-Friedrich, B.; Fendorf, S. Rice production threatened by coupled stresses of climate and soil arsenic. Nat. Commun. 2019, 10, 4985. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, T.; Gustave, W.; Yuan, Z.; Yang, J.; Chen, D.; Tang, X. Anaerobic methane oxidation coupled to arsenate reduction in paddy soils: Insights from laboratory and field studies. Chemosphere 2023, 311, 137055. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.-D.; Guo, T.; Lv, P.-L.; Niu, Z.-F.; Zhou, Y.-J.; Tang, X.-J.; Zheng, P.; Zhu, L.-Z.; Zhu, Y.-G.; Kappler, A.; et al. Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. Nat. Geosci. 2020, 13, 799–805. [Google Scholar] [CrossRef]
- Shi, L.-D.; Zhou, Y.-J.; Tang, X.-J.; Kappler, A.; Chistoserdova, L.; Zhu, L.-Z.; Zhao, H.-P. Coupled aerobic methane oxidation and arsenate reduction contributes to soil-arsenic mobilization in agricultural fields. Environ. Sci. Technol. 2022, 56, 11845–11856. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, J.; Zeng, Y.; Wang, H.; Zhao, X.; Chen, Y.; Deng, H.; Ge, L.; Dahlgren, R.A.; Gao, H.; et al. Arsenic mobilization and nitrous oxide emission modulation by different nitrogen management strategies in a flooded ammonia-enriched paddy soil. Pedosphere 2024, 34, 1051–1065. [Google Scholar] [CrossRef]
- Wang, C.; Lai, D.Y.; Sardans, J.; Wang, W.; Zeng, C.; Peñuelas, J. Factors related with CH4 and N2O emissions from a paddy field: Clues for management implications. PLoS ONE 2017, 12, e0169254. [Google Scholar] [CrossRef]
- Kappler, A.; Bryce, C.; Mansor, M.; Lueder, U.; Byrne, J.M.; Swanner, E.D. An evolving view on biogeochemical cycling of iron. Nat. Rev. Microbiol. 2021, 19, 360–374. [Google Scholar] [CrossRef]
- Grimm, H.; Drabesch, S.; Nicol, A.; Straub, D.; Joshi, P.; Zarfl, C.; Planer-Friedrich, B.; Muehe, E.B.; Kappler, A. Arsenic immobilization and greenhouse gas emission depend on quantity and frequency of nitrogen fertilization in paddy soil. Heliyon 2024, 10, e35706. [Google Scholar] [CrossRef]
- Gorny, J.; Billon, G.; Lesven, L.; Dumoulin, D.; Madé, B.; Noiriel, C. Arsenic behavior in river sediments under redox gradient: A review. Sci. Total Environ. 2015, 505, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Allevato, E.; Stazi, S.R.; Marabottini, R.; D’Annibale, A. Mechanisms of arsenic assimilation by plants and countermeasures to attenuate its accumulation in crops other than rice. Ecotoxicol. Environ. Saf. 2019, 185, 109701. [Google Scholar] [CrossRef]
- Muehe, E.M.; Kappler, A. Arsenic mobility and toxicity in South and South-east Asia–a review on biogeochemistry, health and socio-economic effects, remediation and risk predictions. Environ. Chem. 2014, 11, 483–495. [Google Scholar] [CrossRef]
- Glodowska, M.; Stopelli, E.; Schneider, M.; Rathi, B.; Straub, D.; Lightfoot, A.; Kipfer, R.; Berg, M.; Jetten, M.; Kleindienst, S.; et al. Arsenic mobilization by anaerobic iron-dependent methane oxidation. Commun. Earth Environ. 2020, 1, 42. [Google Scholar] [CrossRef]
- Islam, F.S.; Gault, A.G.; Boothman, C.; Polya, D.A.; Charnock, J.M.; Chatterjee, D.; Lloyd, J.R. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 2004, 430, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Wei, H.; Chen, Z.; Ye, P.; Zhang, J.; Sun, M.; Huang, L.; Li, J. Soil particle size fractions affect arsenic (As) release and speciation: Insights into dissolved organic matter and functional genes. J. Hazard. Mater. 2023, 443, 130100. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R.; Mittal, S.; Arora, M.; Babu, J.N. Role of soil physicochemical characteristics on the present state of arsenic and its adsorption in alluvial soils of two agri-intensive region of Bathinda, Punjab, India. J. Soils Sediments 2016, 16, 605–620. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Nakamura, T.; Dong, D.; Takahashi, Y.; Amachi, S.; Makino, T. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 2011, 83, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Meharg, A.A. Arsenic in rice–understanding a new disaster for South-East Asia. Trends Plant Sci. 2004, 9, 415–417. [Google Scholar] [CrossRef]
- Barla, A.; Barla, A.; Sathyavelu, S.; Afsal, F.; Ojha, M.; Bose, S. Agronomics Management for Arsenic Stress Mitigation. In Mechanisms of Arsenic Toxicity and Tolerance in Plants; Springer: Singapore, 2018; pp. 341–359. [Google Scholar] [CrossRef]
- Zhou, Y.; Niu, L.; Liu, K.; Yin, S.; Liu, P. Arsenic in agricultural soils across China: Distribution pattern, accumulation trend, influencing factors, and risk assessment. Sci. Total Environ. 2018, 616, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Hoang, A.T.; Prinpreecha, N.; Kim, K.-W. Influence of mining activities on arsenic concentration in rice in Asia: A review. Minerals 2021, 11, 472. [Google Scholar] [CrossRef]
- Gupta, A.D.; Rene, E.R.; Giri, B.S.; Pandey, A.; Singh, H. Adsorptive and photocatalytic properties of metal oxides towards arsenic remediation from water: A review. J. Environ. Chem. Eng. 2021, 9, 106376. [Google Scholar] [CrossRef]
- Liu, L.; Shen, R.-L.; Zhao, Z.-Q.; Ding, L.-J.; Cui, H.-L.; Li, G.; Yang, Y.-P.; Duan, G.-L.; Zhu, Y.-G. How different nitrogen fertilizers affect arsenic mobility in paddy soil after straw incorporation? J. Hazard. Mater. 2022, 436, 129135. [Google Scholar] [CrossRef]
- Zhao, X.-D.; Gao, Z.-Y.; Peng, J.; Konstantinidis, K.T.; Zhang, S.-Y. Various microbial taxa couple arsenic transformation to nitrogen and carbon cycling in paddy soils. Microbiome 2024, 12, 238. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, X.; Wang, W.; Chen, J.; Luo, H.; Chen, W.; Ma, D.; An, X.; Chen, F.; Cheng, L.; et al. Anaerobic oxidation of methane (AOM) driven by multiple electron acceptors in constructed wetland and the related mechanisms of carbon, nitrogen, sulfur cycles. Chem. Eng. J. 2022, 433, 133663. [Google Scholar] [CrossRef]
- Fan, L.; Schneider, D.; Dippold, M.A.; Poehlein, A.; Wu, W.; Gui, H.; Ge, T.; Wu, J.; Thiel, V.; Kuzyakov, Y.; et al. Active metabolic pathways of anaerobic methane oxidation in paddy soils. Soil Biol. Biochem. 2021, 156, 108215. [Google Scholar] [CrossRef]
- Ettwig, K.F.; Butler, M.K.; Le Paslier, D.; Pelletier, E.; Mangenot, S.; Kuypers, M.M.; Schreiber, F.; Dutilh, B.E.; Zedelius, J.; de Beer, D.; et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010, 464, 543. [Google Scholar] [CrossRef]
- Jiang, O.-Y.; Zhang, S.-Y.; Zhao, X.-D.; Liu, Z.-T.; Kappler, A.; Xu, J.-M.; Tang, X.-J. Arsenic Reduces Methane Emissions from Paddy Soils: Insights from Continental Investigation and Laboratory Incubations. Environ. Sci. Technol. 2024, 58, 17685–17694. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Z.; Häggblom, M.M.; Young, L.; He, Z.; Li, F.; Xu, R.; Sun, X.; Sun, W. Characterization of nitrate-dependent As(III)-oxidizing communities in arsenic-contaminated soil and investigation of their metabolic potentials by the combination of DNA-stable isotope probing and metagenomics. Environ. Sci. Technol. 2020, 54, 7366–7377. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, S.; Xu, Y.; Zhou, W.; Huang, K.; Tang, Z.; Zhao, F.-J. Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils. Environ. Sci. Technol. 2017, 51, 4377–4386. [Google Scholar] [CrossRef]
- Feng, M.; Du, Y.; Li, X.; Li, F.; Qiao, J.; Chen, G.; Huang, Y. Insight into universality and characteristics of nitrate reduction coupled with arsenic oxidation in different paddy soils. Sci. Total Environ. 2023, 866, 161342. [Google Scholar] [CrossRef] [PubMed]
- Maguffin, S.C.; Abu-Ali, L.; Tappero, R.V.; Pena, J.; Rohila, J.S.; McClung, A.M.; Reid, M.C. Influence of manganese abundances on iron and arsenic solubility in rice paddy soils. Geochim. Cosmochim. Acta 2020, 276, 50–69. [Google Scholar] [CrossRef]
- Wang, X.; Fu, Q.; Zhu, J.; Fang, L.; Hu, H. Mobilization of Cadmium and Arsenic During Anoxic-Oxic Alteration in Paddy Soils: A Vital Role of Manganese. Soil Sediment Contam. Int. J. 2024, 33, 1348–1364. [Google Scholar] [CrossRef]
- Xu, X.; Chen, C.; Wang, P.; Kretzschmar, R.; Zhao, F.J. Control of arsenic mobilization in paddy soils by manganese and iron oxides. Environ. Pollut. 2017, 231, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Dai, Q.; Hai, J.; Wang, Q.; Liao, D.; Liu, G.; Wang, Y.; Huang, J.; Zhang, R.; Siddig, A.A.H.; et al. Manganese slag amendment reduces greenhouse gas emissions from paddy soil. Atmosphere 2023, 14, 131. [Google Scholar] [CrossRef]
- LeMonte, J.J.; Stuckey, J.W.; Sanchez, J.Z.; Tappero, R.; Rinklebe, J.; Sparks, D.L. Sea level rise induced arsenic release from historically contaminated coastal soils. Environ. Sci. Technol. 2017, 51, 5913–5922. [Google Scholar] [CrossRef]
- Yang, X.; Shaheen, S.M.; Wang, J.; Hou, D.; Ok, Y.S.; Wang, S.-L.; Wang, H.; Rinklebe, J. Elucidating the redox-driven dynamic interactions between arsenic and iron-impregnated biochar in a paddy soil using geochemical and spectroscopic techniques. J. Hazard. Mater. 2022, 422, 126808. [Google Scholar] [CrossRef]
- Bogdan, K.; Schenk, M.K. Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.). Environ. Pollut. 2009, 157, 2617–2621. [Google Scholar] [CrossRef]
- Yamaguchi, N. Mechanisms underlying abiotic immobilization of inorganic arsenic in flooded paddy soils: A review. Soil Sci. Plant Nutr. 2025, 1–11. [Google Scholar] [CrossRef]
- Xie, X.; Liu, Q.; Li, X.; Li, W. Research progress in influencing factors of methane production and emission as well as emission reduction measures in paddy fields. Chin. J. Rice Sci. 2024, 38, 475–494. [Google Scholar] [CrossRef]
- Meharg, A.A.; Rahman, M.M. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environ. Sci. Technol. 2003, 37, 229–234. [Google Scholar] [CrossRef]
- Shaw, D. Mobility of arsenic in saturated, laboratory test sediments under varying pH conditions. Eng. Geol. 2006, 85, 158–164. [Google Scholar] [CrossRef]
- Xiao, Z.; Fu, Z.; Xu, H.; Su, S.; Guo, Y.; Zhang, L.; Tang, J. Differences and relationship between rhizosphere characteristics and methane emissions of double-cropping rice variety. Environ. Sci. 2019, 40, 904–914. [Google Scholar] [CrossRef]
- Yuan, Z.-F.; Zhou, Y.-J.; Zou, L.; Chen, Z.; Gustave, W.; Duan, D.; Kappler, A.; Tang, X.; Xu, J. pH dependence of arsenic speciation in paddy soils: The role of distinct methanotrophs. Environ. Pollut. 2023, 318, 120880. [Google Scholar] [CrossRef]
- Perry, H.; Carrijo, D.R.; Duncan, A.H.; Fendorf, S.; Linquist, B.A. Mid-season drain severity impacts on rice yields, greenhouse gas emissions and heavy metal uptake in grain: Evidence from on-farm studies. Field Crops Res. 2024, 307, 109248. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Q.; Zhang, J. Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission. Crop J. 2017, 5, 151–158. [Google Scholar] [CrossRef]
- Linquist, B.A.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; Da Rosa, E.F.; Van Kessel, C. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Change Biol. 2015, 21, 407–417. [Google Scholar] [CrossRef]
- Wichelns, D. Managing water and soils to achieve adaptation and reduce methane emissions and arsenic contamination in Asian rice production. Water 2016, 8, 141. [Google Scholar] [CrossRef]
- Han, B.; Chen, W.-Q.; Jiao, Y.-Q.; Yang, R.; Niu, L.-L.; Chen, X.-R.; Ji, C.-Y.; Yin, D.-X. Effects of nitrogen fertilizer application on soil properties and arsenic mobilization in paddy soil. Sustainability 2024, 16, 5565. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, H.; Zhao, H.; Xu, H.; Xiong, X.; Tang, C.; Xu, J. Interactions between arsenic and nitrogen regulate nitrogen availability and arsenic mobility in flooded paddy soils. J. Hazard. Mater. 2024, 480, 135981. [Google Scholar] [CrossRef]
- Yang, Y.-P.; Zhang, H.-M.; Yuan, H.-Y.; Duan, G.-L.; Jin, D.-C.; Zhao, F.-J.; Zhu, Y.-G. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environ. Pollut. 2018, 236, 598–608. [Google Scholar] [CrossRef]
- Yang, Y.-P.; Tang, X.-J.; Zhang, H.-M.; Cheng, W.-D.; Duan, G.-L.; Zhu, Y.-G. The characterization of arsenic biotransformation microbes in paddy soil after straw biochar and straw amendments. J. Hazard. Mater. 2020, 391, 122200. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Kwong, R.W.M.; Tang, W.; Yang, Y.; Zhong, H. Straw return enhances the risks of metals in soil? Ecotoxicol. Environ. Saf. 2021, 207, 111201. [Google Scholar] [CrossRef]
- Suda, A.; Yamaguchi, N. Prior decomposition of organic matter in amendments under aerobic soil conditions attenuates As dissolution after soil submersion. Int. J. Environ. Sci. Technol. 2025, 22, 11955–11966. [Google Scholar] [CrossRef]
- Fang, W.; Yang, D.; Williams, P.N.; Yang, Y. Distinct response of arsenic speciation and bioavailability to different exogenous organic matter in paddy soil. Chemosphere 2022, 309, 136653. [Google Scholar] [CrossRef]
- Zandi, P.; Yang, J.; Darma, A.; Bloem, E.; Xia, X.; Wang, Y.; Li, Q.; Schnug, E. Iron plaque formation, characteristics, and its role as a barrier and/or facilitator to heavy metal uptake in hydrophyte rice (Oryza sativa L.). Environ. Geochem. Health 2023, 45, 525–559. [Google Scholar] [CrossRef]
- Lee, C.-H.; Hsieh, Y.-C.; Lin, T.-H.; Lee, D.-Y. Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice. Plant Soil 2013, 363, 231–241. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Fei, C.; Lu, H.; Ma, Y.; Ma, Z.; Ye, W. Chemical-microbial effects of acetic acid, oxalic acid and citric acid on arsenic transformation and migration in the rhizosphere of paddy soil. Ecotoxicol. Environ. Saf. 2023, 259, 115046. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tong, D.; Zou, L.; Ji, H.; Zhou, X.; Gustave, W.; Tang, X. Low-molecular-weight organic acids inhibit the methane-dependent arsenate reduction process in paddy soils. Ecotoxicol. Environ. Saf. 2024, 282, 116716. [Google Scholar] [CrossRef]
- Ninin, J.M.L.; Mori, A.H.; Pausch, J.; Planer-Friedrich, B. Long-term paddy use influences response of methane production, arsenic mobility and speciation to future higher temperatures. Sci. Total Environ. 2024, 943, 173793. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, Z.; Jiang, O.; Chen, D.; Gustave, W.; Xu, J.; Tang, X. Elevated temperature promotes methane-dependent arsenate reduction in paddy soils. Soil Biol. Biochem. 2025, 206, 109800. [Google Scholar] [CrossRef]
- Qin, J.; Ying, J.; Li, H.; Qiu, R.; Lin, C. Rainwater input reduces greenhouse gas emission and arsenic uptake in paddy rice systems. Sci. Total Environ. 2023, 902, 166096. [Google Scholar] [CrossRef]
- Minamikawa, K.; Takahashi, M.; Makino, T.; Tago, K.; Hayatsu, M. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy. Environ. Res. Lett. 2015, 10, 084012. [Google Scholar] [CrossRef]
- Li, X.; Qiao, J.; Li, S.; Haggblom, M.M.; Li, F.; Hu, M. Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil. Environ. Sci. Technol. 2019, 54, 2172–2181. [Google Scholar] [CrossRef]
- Glodowska, M.; Ma, Y.; Smith, G.; Kappler, A.; Jetten, M.; Welte, C.U. Nitrate leaching and its implication for Fe and As mobility in a Southeast Asian aquifer. FEMS Microbiol. Ecol. 2023, 99, fiad025. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; He, Q.; Zhang, J.; Chai, H.; Yang, Y.; Pavlostathis, S.G.; Wu, H. New insight into ammonium oxidation processes and mechanisms mediated by manganese oxide in constructed wetlands. Water Res. 2022, 215, 118251. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Park, S.Y.; Galgo, S.J.C.; Chae, H.G.; Gwon, H.S.; Kim, P.J. Coupled reduction in arsenic methylation and methanogenesis with silicate amendment in arsenic-enriched paddy soils. Environ. Res. 2024, 263, 120257. [Google Scholar] [CrossRef]
- Das, S.; Hwang, H.Y.; Song, H.J.; Cho, S.R.; Van Nostrand, J.D.; Kim, P.J. Soil microbial response to silicate fertilization reduces bioavailable arsenic in contaminated paddies. Soil Biol. Biochem. 2021, 159, 108307. [Google Scholar] [CrossRef]
- Hemmat-Jou, M.H.; Gao, R.; Chen, G.; Liang, Y.; Li, F.; Fang, L. Synergistic effects of warming and humic substances on driving arsenic reduction and methanogenesis in flooded paddy soil. J. Hazard. Mater. 2024, 476, 134947. [Google Scholar] [CrossRef]
- Qiao, J.; Chen, M.; Zong, S.; Tong, H.; Li, F. Soil humic acid stimulates potentially active dissimilatory arsenate-reducing bacteria in flooded paddy soil as revealed by metagenomic stable isotope probing. Environ. Sci. Technol. 2024, 58, 2303–2312. [Google Scholar] [CrossRef]
- Islam, S.F.-u.; de Neergaard, A.; Sander, B.O.; Jensen, L.S.; Wassmann, R.; van Groenigen, J.W. Reducing greenhouse gas emissions and grain arsenic and lead levels without compromising yield in organically produced rice. Agric. Ecosyst. Environ. 2020, 295, 106922. [Google Scholar] [CrossRef]
- Muehe, E.M.; Morin, G.; Scheer, L.; Pape, P.L.; Esteve, I.; Daus, B.; Kappler, A. Arsenic(V) incorporation in vivianite during microbial reduction of arsenic(V)-bearing biogenic Fe(III) (oxyhydr) oxides. Environ. Sci. Technol. 2016, 50, 2281–2291. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, T.; Li, F.; Li, B.; Liu, C. Effects of simultaneous application of ferrous iron and nitrate on arsenic accumulation in rice grown in contaminated paddy soil. ACS Earth Space Chem. 2018, 2, 103–111. [Google Scholar] [CrossRef]
- Zhai, W.; Zhang, R.; Zhou, X.; Ma, Y.; Zhang, X.; Fan, L.; Hashmi, M.Z.; Zhang, D.; Pan, X. Simultaneously reducing methane emissions and arsenic mobility by birnessite in flooded paddy soil: Overlooked key role of organic polymerisation. Sci. Total Environ. 2024, 953, 176167. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, J.; Hu, J.; Wang, H.; Zeng, Y.; Wang, Y.; Huang, P.; Deng, H.; Dahlgren, R.A.; Gao, H.; et al. Simultaneous suppression of As mobilization and N2O emission from NH4+/As-rich paddy soils by combined nitrate and birnessite amendment. J. Hazard. Mater. 2024, 465, 133451. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, X.; Li, C.; Zhang, M.; Cao, X.; Ruan, X.; Li, H.; Qiu, R. Optimized production of invasive animal biochar for arsenic immobilization and methane oxidation in contaminated soils using response surface methodology. J. Clean. Prod. 2024, 450, 141777. [Google Scholar] [CrossRef]
- Yang, J.; Zou, L.; Zheng, L.; Yuan, Z.; Huang, K.; Gustave, W.; Shi, L.; Tang, X.; Liu, X.; Xu, J. Iron-based passivator mitigates the coupling process of anaerobic methane oxidation and arsenate reduction in paddy soils. Environ. Pollut. 2022, 313, 120182. [Google Scholar] [CrossRef] [PubMed]
- Si, D.; Wu, S.; Wu, H.; Wang, D.; Fu, Q.; Wang, Y.; Wang, P.; Zhao, F.; Zhou, D. Activated carbon application simultaneously alleviates paddy soil arsenic mobilization and carbon emission by decreasing porewater dissolved organic matter. Environ. Sci. Technol. 2024, 58, 7880–7890. [Google Scholar] [CrossRef] [PubMed]
- Xiu, W.; Guo, H.; Shen, J.; Liu, S.; Ding, S.; Hou, W.; Ma, J.; Dong, H. Stimulation of Fe(II) oxidation, biogenic lepidocrocite formation, and arsenic immobilization by Pseudogulbenkiania sp. strain 2002. Environ. Sci. Technol. 2016, 50, 6449–6458. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, W.; Liu, B.; He, J.; Shen, Q.; Zhao, F.J. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Environ. Sci. Technol. 2015, 49, 5956–5964. [Google Scholar] [CrossRef]
- Jiang, O.; Chen, Y.; Li, C.; Yang, X.; Gustave, W.; Tang, X. Loss of microbial diversity increases methane emissions and arsenic release in paddy soils. Sci. Total Environ. 2024, 948, 174656. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tong, D.; Yu, H.; Zhou, Y.; Tang, C.; Dahlgren, R.A.; Xu, J. Viral involvement in microbial anaerobic methane oxidation-mediated arsenic mobilization in paddy soil. J. Hazard. Mater. 2025, 484, 136758. [Google Scholar] [CrossRef] [PubMed]
Types | Dosages | Mitigation Effects on GHG Emissions and As Migration | Mechanisms | References |
---|---|---|---|---|
Calcium sulfate: Iron oxide at a mass ratio of 9:1 (IBP) | 0.3% of soil mass | Arsenite concentration reduced by 78%, AOM increased by 55% | Promote the coupled reduction in AOM and Fe(III), reduce electron transfer from AOM to As(V) reduction | [93] |
Activated carbon with BET-specific surface area of 871 m2/g | 2% of soil mass | CO2 emissions reduced by 47.8%, methane emissions reduced by 97.6%, As release almost completely inhibited | Inhibiting Fe(III) reduction, reducing As release and carbon emissions | [94] |
Synthetic birnessite with average manganese oxidation state of 3.73 | Birnessite at 0.5% (w/w), with soil manganese concentration of 3000 mg/kg | Methane emissions reduced by 47–54%, As release reduced by 38–85% | Birnessite catalyzes the polymerization of DOM to form refractory DOM, inhibits methanogenesis, increases methane oxidation, inhibits As release by reducing iron reduction. | [90] |
Pyrolytic carbon (at 550 °C) @birnessite at a mass ratio of 1:1 | 5% of soil mass | 98.11% of total As is immobilized, CO2, methane, and N2O emissions are reduced by 14–20%, 6–42% and 21–60% respectively | Immobilize As through NRAO and iron oxidation/adsorption; promote AOM to reduce methane emissions; N2O emission reduction through reactions such as Mnammox and Feammox | [2] |
Combined treatment of nitrate and birnessite | Sodium nitrate is 0.25% of soil mass, and birnessite is 0.5% or 0.83% of soil mass | The combined treatment shows almost no As release, and N2O emissions are reduced by at least 87% | Birnessite inhibits the activity of denitrifying enzymes, reduces denitrification electron consumption; NRMO and MnO2 regeneration promote As(III) immobilization and N2O emission reduction | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, G.; Liu, H.; Dong, H.; Zhang, Y.; Li, X.; Li, Y.; Wang, N.; Wang, H.; Lu, H.; Wang, Y. Greenhouse Gas Emissions and Arsenic Mobilization in Rice Paddy Fields: Coupling Mechanisms, Influencing Factors, and Simultaneous Mitigation Measures. Agronomy 2025, 15, 2081. https://doi.org/10.3390/agronomy15092081
Qi G, Liu H, Dong H, Zhang Y, Li X, Li Y, Wang N, Wang H, Lu H, Wang Y. Greenhouse Gas Emissions and Arsenic Mobilization in Rice Paddy Fields: Coupling Mechanisms, Influencing Factors, and Simultaneous Mitigation Measures. Agronomy. 2025; 15(9):2081. https://doi.org/10.3390/agronomy15092081
Chicago/Turabian StyleQi, Gaoxiang, Hongyuan Liu, Hongyun Dong, Yan Zhang, Xinhua Li, Ying Li, Nana Wang, Hongcheng Wang, Han Lu, and Yanjun Wang. 2025. "Greenhouse Gas Emissions and Arsenic Mobilization in Rice Paddy Fields: Coupling Mechanisms, Influencing Factors, and Simultaneous Mitigation Measures" Agronomy 15, no. 9: 2081. https://doi.org/10.3390/agronomy15092081
APA StyleQi, G., Liu, H., Dong, H., Zhang, Y., Li, X., Li, Y., Wang, N., Wang, H., Lu, H., & Wang, Y. (2025). Greenhouse Gas Emissions and Arsenic Mobilization in Rice Paddy Fields: Coupling Mechanisms, Influencing Factors, and Simultaneous Mitigation Measures. Agronomy, 15(9), 2081. https://doi.org/10.3390/agronomy15092081