Automatic Classification of Agricultural Crops Using Sentinel-2 Data in the Rainfed Zone of Southern Kazakhstan
Abstract
1. Introduction
- Developing an automated and reproducible workflow for both methodologies;
- Conducting multi-level validation of the classification results using independent field data and official government statistics;
- Assessing the applicability of each methodology for solving practical challenges in regional agricultural management.
2. Materials and Methods
2.1. Study Area
- 1a—Very dry and hot agro-climatic zone (located in the northern part of the region up to the Karatau Mountains)
- 1b—Extremely dry and very hot agro-climatic zone (covers the Syr Darya valley, the right-bank Pre-Syrdarya plain, and the Kyzylkum desert)
- 2—Dry foothill zone (located in the central and eastern parts of the Karatau Mountains)
- 3—Mountain agro-climatic zone (includes the highest elevations of the Karatau range and Western Tien Shan) (Figure 3)
2.2. RS and Ground Data
2.3. Methods
2.4. Classification Methodology
- NDVI temporal composites: mean NDVI rasters calculated from all available cloud-free images within a 3–5-day window (e.g., NDVI_25apr_composite). These were created using the Cell Statistics—Mean function and used to track vegetation dynamics.
- NDVI peak composite (NDVI_peak): a raster reflecting the maximum NDVI value for each pixel over a characteristic peak-growth period for a specific crop (e.g., 5–25 May for winter cereals), created using Cell Statistics—Max.
- Con(((“Agri_zone” == 1) & (“PLI_autumn” > 0) & (“PLI_spring” <= 0) &
- (“NDVI_25apr_composite” > “NDVI_25mar_composite”) &
- (“NDVI_15may_composite” > “NDVI_25apr_composite”) &
- (“NDVI_30may_composite” < “NDVI_peak”)), 1, 0)
- Con(((“Agri_zone” == 1) & (“PLI_spring” > 0) & (“PLI_autumn” <= 0) &
- (“NDVI_05may_composite” > “NDVI_05apr_composite”) &
- (“NDVI_25may_composite” > “NDVI_05may_composite”) &
- (“NDVI_5jun_composite” < “NDVI_peak”)), 2, 0)
- Con(((“Agri_zone” == 1) & (“PLI_spring” > 0) & (“PLI_autumn” <= 0) &
- (“NDVI_25may_composite” > “NDVI_25apr_composite”) &
- (“NDVI_15jun_composite” > “NDVI_25may_composite”) &
- (“NDVI_25jun_composite” < “NDVI_peak”)), 3, 0)
- Con(((“Agri_zone” == 1) & (“PLI_autumn” < 0) & (“PLI_spring” < 0) &
- (“NDVI_25apr_composite” > “NDVI_25mar_composite”) &
- (“NDVI_15may_composite” > “NDVI_25apr_composite”)), 4, 0)
3. Results
- Official statistics: Government-reported sown area data for wheat, barley, safflower, and perennial forage crops by district.
- Field boundary-based classification (“mask-based” method): Crop areas derived from a methodology based on detailed digitization of individual field boundaries.
- Rainfed zone classification (“rainfed mask” method): Area estimates for wheat, barley, safflower, and perennial grasses obtained from the developed rule-based classification algorithm applied to the broader Agri_zone.tif mask.
3.1. Verification Analysis of RS Data Against Official Statistics
3.2. Validation of Classification Accuracy Using Field Survey Data
3.3. Validation of Classification Accuracy at the Farm Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turebayeva, S.; Sydyk, D.; Seilkkhan, A.; Kazybaeva, A.; Zhanbyrbayev, Y.; Dossymbetova, S.; Abdrassulova, Z. Productivity of Winter Wheat (Triticum aestivum) as Influenced by Fertilizer Rates in Rainfed Fields of South Kazakhstan. Res. Crops 2021, 22, 747–758. [Google Scholar] [CrossRef]
- Sydykov, M.A. Direct Sowing of Winter Wheat on Rainfed Lands of Southern Kazakhstan. In Proceedings of the International Congress on Global Climate Change and Biodiversity, Almaty, Kazakhstan, 5–6 November 2015; pp. 177–182. [Google Scholar]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Sun, X.; Wang, J.; Luginaah, I.; Kerr, R.B.; Lupafya, E.; Dakishoni, L. Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data. Remote Sens. 2021, 13, 700. [Google Scholar] [CrossRef]
- Foerster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop Type Mapping Using Spectral–Temporal Profiles and Phenological Information. Comput. Electron. Agric. 2012, 89, 30–40. [Google Scholar] [CrossRef]
- Ren, T.; Xu, H.; Cai, X.; Yu, S.; Qi, J. Smallholder Crop Type Mapping and Rotation Monitoring in Mountainous Areas with Sentinel-1/2 Imagery. Remote Sens. 2021, 14, 566. [Google Scholar] [CrossRef]
- Prins, A.J.; Van Niekerk, A. Crop Type Mapping Using LiDAR, Sentinel-2 and Aerial Imagery with Machine Learning Algorithms. Geo-Spat. Inf. Sci. 2020, 24, 215–227. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Song, X.; Huang, W.; Hansen, M.C.; Potapov, P. An Evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS Data for Crop Type Mapping. Sci. Remote Sens. 2021, 3, 100018. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Bukowiecki, J.; Rose, T.; Kage, H. Sentinel-2 Data for Precision Agriculture?—A UAV-Based Assessment. Sensors 2020, 21, 2861. [Google Scholar] [CrossRef] [PubMed]
- Gumma, M.K.; Tummala, K.; Dixit, S.; Collivignarelli, F.; Holecz, F.; Kolli, R.N.; Whitbread, A.M. Crop Type Identification and Spatial Mapping Using Sentinel-2 Satellite Data with Focus on Field-Level Information. Geocarto Int. 2020, 37, 1833–1849. [Google Scholar] [CrossRef]
- Luo, K.; Lu, L.; Xie, Y.; Chen, F.; Yin, F.; Li, Q. Crop Type Mapping in the Central Part of the North China Plain Using Sentinel-2 Time Series and Machine Learning. Comput. Electron. Agric. 2023, 205, 107577. [Google Scholar] [CrossRef]
- Zhao, H.; Duan, S.; Liu, J.; Sun, L.; Reymondin, L. Evaluation of Five Deep Learning Models for Crop Type Mapping Using Sentinel-2 Time Series Images with Missing Information. Remote Sens. 2021, 13, 2790. [Google Scholar] [CrossRef]
- Bellón, B.; Bégué, A.; Lo Seen, D.; De Almeida, C.A.; Simões, M. A Remote Sensing Approach for Regional-Scale Mapping of Agricultural Land-Use Systems Based on NDVI Time Series. Remote Sens. 2017, 9, 600. [Google Scholar] [CrossRef]
- Filgueiras, R.; Mantovani, E.C.; Althoff, D.; Filho, E.I.F.; da Cunha, F.F. Crop NDVI Monitoring Based on Sentinel-1. Remote Sens. 2019, 11, 1441. [Google Scholar] [CrossRef]
- Benedetti, R.; Rossini, P. On the Use of NDVI Profiles as a Tool for Agricultural Statistics: The Case Study of Wheat Yield Estimate and Forecast in Emilia Romagna. Remote Sens. Environ. 1993, 45, 311–326. [Google Scholar] [CrossRef]
- Khlif, M.; Escorihuela, M.J.; Chahbi Bellakanji, A.; Paolini, G.; Kassouk, Z.; Lili Chabaane, Z. Multi-Year Cereal Crop Classification Model in a Semi-Arid Region Using Sentinel-2 and Landsat 7–8 Data. Agriculture 2023, 13, 1633. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Crop Identification Using Harmonic Analysis of Time-Series AVHRR NDVI Data. Comput. Electron. Agric. 2002, 37, 127–139. [Google Scholar] [CrossRef]
- De Bie, C.A.J.M.; Khan, M.R.; Smakhtin, V.U.; Venus, V.; Weir, M.J.C.; Smaling, E.M.A. Analysis of Multi-Temporal SPOT NDVI Images for Small-Scale Land-Use Mapping. Int. J. Remote Sens. 2011, 32, 6673–6693. [Google Scholar] [CrossRef]
- Hao, P.; Wang, L.; Zhan, Y.; Niu, Z. Using Moderate-Resolution Temporal NDVI Profiles for High-Resolution Crop Mapping in Years of Absent Ground Reference Data: A Case Study of Bole and Manas Counties in Xinjiang, China. ISPRS Int. J. Geo-Inf. 2016, 5, 67. [Google Scholar] [CrossRef]
- Ashourloo, D.; Nematollahi, H.; Huete, A.; Aghighi, H.; Azadbakht, M.; Shahrabi, H.S.; Goodarzdashti, S. A New Phenology-Based Method for Mapping Wheat and Barley Using Time-Series of Sentinel-2 Images. Remote Sens. Environ. 2022, 280, 113206. [Google Scholar] [CrossRef]
- Peña, J.M.; Gutiérrez, P.A.; Hervás-Martínez, C.; Six, J.; Plant, R.E.; López-Granados, F. Object-Based Image Classification of Summer Crops with Machine Learning Methods. Remote Sens. 2014, 6, 5019–5041. [Google Scholar] [CrossRef]
- Arystanov, A.; Karabkina, N.; Sagin, J.; Nurguzhin, M.; King, R.; Bekseitova, R. Use of Indices Applied to Remote Sensing for Establishing Winter–Spring Cropping Areas in the Republic of Kazakhstan. Sustainability 2023, 16, 7548. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Hu, Z.; Li, Z.; Wang, Y.; Molinier, M. Deep Learning Based Thin Cloud Removal Fusing Vegetation Red Edge and Short Wave Infrared Spectral Information for Sentinel-2A Imagery. Remote Sens. 2020, 13, 157. [Google Scholar] [CrossRef]
- Skakun, S.; Wevers, J.; Brockmann, C.; Doxani, G.; Aleksandrov, M.; Batič, M.; Frantz, D.; Gascon, F.; Gómez-Chova, L.; Hagolle, O.; et al. Cloud Mask Intercomparison Exercise (CMIX): An Evaluation of Cloud Masking Algorithms for Landsat 8 and Sentinel-2. Remote Sens. Environ. 2022, 274, 112990. [Google Scholar] [CrossRef]
- Anzalone, A.; Pagliaro, A.; Tutone, A. An Introduction to Machine and Deep Learning Methods for Cloud Masking Applications. Appl. Sci. 2023, 14, 2887. [Google Scholar] [CrossRef]
- Mateo-García, G.; Gómez-Chova, L.; Amorós-López, J.; Muñoz-Marí, J.; Camps-Valls, G. Multitemporal Cloud Masking in the Google Earth Engine. Remote Sens. 2018, 10, 1079. [Google Scholar] [CrossRef]
- Karabkina, N. Operational Solution of Space Monitoring of Grain Crops in South Kazakhstan Based on Data of Sentinel-2, Landsat-8, Planet Scope. In Proceedings of the 16th All-Russia Open Conf. Current Problems in Remote Sensing of the Earth from Space, Moscow, Russia, 12–16 November 2018; pp. 321–328. [Google Scholar]
- Rahman, M.S.; Di, L.; Yu, Z.; Yu, E.G.; Tang, J.; Lin, L.; Zhang, C.; Gaigalas, J. Crop Field Boundary Delineation Using Historical Crop Rotation Pattern. In Proceedings of the 2019 8th Int. Conf. on Agro-Geoinformatics, Istanbul, Turkey, 16–19 July 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Hamuda, E.; Mc Ginley, B.; Glavin, M.; Jones, E. Automatic Crop Detection under Field Conditions Using the HSV Colour Space and Morphological Operations. Comput. Electron. Agric. 2017, 133, 97–107. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, Z.; Liu, H. Automatic Detection of Crop Rows Based on Multi-ROIs. Expert Syst. Appl. 2015, 42, 2429–2441. [Google Scholar] [CrossRef]
- Tenhunen, H.; Pahikkala, T.; Nevalainen, O.; Teuhola, J.; Mattila, H.; Tyystjärvi, E. Automatic Detection of Cereal Rows by Means of Pattern Recognition Techniques. Comput. Electron. Agric. 2019, 162, 677–688. [Google Scholar] [CrossRef]
- Kabzhanova, G.; Arystanova, R.; Bissembayev, A.; Arystanov, A.; Sagin, J.; Nasiyev, B.; Kurmasheva, A. Remote Sensing Applications for Pasture Assessment in Kazakhstan. Agronomy 2025, 15, 526. [Google Scholar] [CrossRef]
- Hydrometeoizdat. Agroclimatic Resources of the Chimkent Region of the Kazakh SSR; State Committee for Hydrometeorology and Environmental Control of the USSR: Leningrad, Russia, 1979. (In Russian) [Google Scholar]
- Gringof, I.; Popova, V.; Strashnoy, V. Agrometeorology; Hydrometeoizdat: Moscow, Russia, 1987. (In Russian) [Google Scholar]
- European Space Agency (ESA). Sentinel-2 User Handbook; Rev. 2; ESA Standard Document; ESA: Paris, France, 2015. [Google Scholar]
- Hagolle, O.; Sylvander, S.; Huc, M.; Claverie, M.; Clesse, D.; Dechoz, C.; Lonjou, V.; Poulain, V. SPOT-4 (Take 5): Simulation of Sentinel-2 Time Series on 45 Large Sites. Remote Sens. 2015, 7, 12242–12264. [Google Scholar] [CrossRef]
- Bauer-Marschallinger, B.; Falkner, K. Wasting Petabytes: A Survey of the Sentinel-2 UTM Tiling Grid and Its Spatial Overhead. ISPRS J. Photogramm. Remote Sens. 2023, 202, 682–690. [Google Scholar] [CrossRef]
- Kempeneers, P.; Soille, P. Optimizing Sentinel-2 Image Selection in a Big Data Context. Big Earth Data 2017, 1, 145–158. [Google Scholar] [CrossRef]
- Packt Publishing. ArcGIS Pro 2.x Cookbook; Packt Publishing Ltd.: Birmingham, UK, 2018. [Google Scholar]
- Packt Publishing. ArcGIS Pro 3.x Cookbook, 2nd ed.; Packt Publishing Ltd.: Birmingham, UK, 2024. [Google Scholar]
- Bajali, W. ArcGIS Pro and ArcGIS Online: Applications in Water and Environmental Sciences; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Sanchez, C.; Mena, F.; Charfuelan, M.; Nuske, M.; Dengel, A. Assessment of Sentinel-2 Spatial and Temporal Coverage Based on the Scene Classification Layer. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 4099–4103. [Google Scholar] [CrossRef]
- Hacar, M. A Rule-Based Approach for Generating Urban Footprint Maps: From Road Network to Urban Footprint. Int. J. Eng. Geosci. 2020, 5, 100–108. [Google Scholar] [CrossRef]
- Pundir, S.K.; Garg, R.D. Development of Rule-Based Approach for Assessment of Off-Road Trafficability Using Remote Sensing and Ancillary Data. Quat. Int. 2021, 575–576, 308–316. [Google Scholar] [CrossRef]
- Lund, M.G.; Carter, P.R.; Oplinger, E.S. Tillage and Crop Rotation Affect Corn, Soybean, and Winter Wheat Yields. J. Prod. Agric. 1992, 6, 207–213. [Google Scholar] [CrossRef]
- Smiley, R.W.; Wilkins, D.E. Annual Spring Barley Growth, Yield, and Root Rot in High- and Low-Residue Tillage Systems. J. Prod. Agric. 1992, 6, 270–275. [Google Scholar] [CrossRef]
- Torabi, B.; Adibnya, M.; Rahimi, A.; Azari, A. Modeling Flowering Response to Temperature and Photoperiod in Safflower. Ind. Crops Prod. 2020, 151, 112474. [Google Scholar] [CrossRef]
- Yau, S. Winter versus Spring Sowing of Rain-Fed Safflower in a Semi-Arid, High-Elevation Mediterranean Environment. Eur. J. Agron. 2007, 26, 249–256. [Google Scholar] [CrossRef]
- Kosolapov, V.M.; Cherniavskikh, V.I.; Dumacheva, E.V.; Marinich, M.N.; Sajfutdinova, L.D.; Lanin, D.O. The Role of Perennial Grasses in the Protection of Soil Resources of Erosive Ecosystems with Active Development of Linear Erosion. IOP Conf. Ser. Earth Environ. Sci. 2021, 901, 012007. [Google Scholar] [CrossRef]
- Kilcher, M.R.; Anderson, L.J. Wheat Yields and Soil Aggregation after Perennial Grasses in a Semi-Arid Environment. Can. J. Plant Sci. 1963, 43, 305–312. [Google Scholar] [CrossRef]
Agroclimatic Region | 1a | 1b | II | III |
---|---|---|---|---|
District name | Very dry hot | Very dry and very hot | Dry foothill | Mountainous |
HTC | 0.1–0.3 | 0.1–0.3 | 0.3–0.5 | >0.5 |
ΣT > 10 °C | 3600–3900 | 4000–4600 | 3300–4400 | <3300 |
Districts | Wheat (%) | Barley (%) | Safflower (%) | Fodder (%) |
---|---|---|---|---|
Arys c.a. | 4 | 27 | - | - |
Baydibek district | 1 | 2 | 4 | 6 |
Keles district | 18 | - | - | - |
Kazygurt district | 0 | 3 | 4 | 3 |
Ordabasy district | 15 | 3 | 12 | 1 |
Sairam district | 16 | 6 | 1 | 6 |
Saryagash district | 11 | 1 | 7 | 3 |
Sozak district | 15 | 2 | 2 | 13 |
Tolebi district | 4 | 7 | 3 | 4 |
Tulkubas district | 6 | 12 | 10 | 4 |
Mean deviation | 9 | 8 | 5 | 5 |
Districts | Wheat (%) | Barley (%) | Safflower (%) | Fodder (%) |
---|---|---|---|---|
Arys c.a. | 13 | 27 | - | - |
Baydibek district | 3 | 27 | 16 | 22 |
Keles district | 25 | - | - | - |
Kazygurt district | 2 | 15 | 10 | 14 |
Ordabasy district | 17 | - | 23 | - |
Sairam district | 5 | 19 | 11 | 15 |
Saryagash district | 3 | 19 | 19 | 12 |
Sozak district | 23 | 25 | - | 32 |
Tolebi district | 8 | 7 | 18 | 3 |
Tulkubas district | 8 | 15 | 21 | 7 |
Mean deviation | 11 | 19 | 17 | 15 |
Culture | Results of Classification Using the Field Delineation Method | Results of Classification According to the Methodology of Dry Farming |
---|---|---|
Spring grains | 92.5% | 80.0% |
Alfalfa | 90.5% | 75.0% |
Winter wheat | 94.0% | 85.0% |
Safflower | 87.5% | 70.0% |
Average accuracy | 91.1% | 77.5% |
Farm | Number of Fields | Errors in the Results of Classification Using the Field Delineation Method (“By Mask”) | Errors in the Results of Classification According to the Method of Dry Farming (“Dry Farming”) |
---|---|---|---|
Kyzylzhar | 54 | 0 | 7 |
Karabau | 94 | 2 | 12 |
Makulbek | 7 | 0 | 2 |
Brothers | 5 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arystanov, A.; Sagin, J.; Karabkina, N.; Arystanova, R.; Yermekov, F.; Kabzhanova, G.; Bekseitova, R.; Aktymbayeva, A.; Kutymova, N. Automatic Classification of Agricultural Crops Using Sentinel-2 Data in the Rainfed Zone of Southern Kazakhstan. Agronomy 2025, 15, 2040. https://doi.org/10.3390/agronomy15092040
Arystanov A, Sagin J, Karabkina N, Arystanova R, Yermekov F, Kabzhanova G, Bekseitova R, Aktymbayeva A, Kutymova N. Automatic Classification of Agricultural Crops Using Sentinel-2 Data in the Rainfed Zone of Southern Kazakhstan. Agronomy. 2025; 15(9):2040. https://doi.org/10.3390/agronomy15092040
Chicago/Turabian StyleArystanov, Asset, Janay Sagin, Natalya Karabkina, Ranida Arystanova, Farabi Yermekov, Gulnara Kabzhanova, Roza Bekseitova, Aliya Aktymbayeva, and Nuray Kutymova. 2025. "Automatic Classification of Agricultural Crops Using Sentinel-2 Data in the Rainfed Zone of Southern Kazakhstan" Agronomy 15, no. 9: 2040. https://doi.org/10.3390/agronomy15092040
APA StyleArystanov, A., Sagin, J., Karabkina, N., Arystanova, R., Yermekov, F., Kabzhanova, G., Bekseitova, R., Aktymbayeva, A., & Kutymova, N. (2025). Automatic Classification of Agricultural Crops Using Sentinel-2 Data in the Rainfed Zone of Southern Kazakhstan. Agronomy, 15(9), 2040. https://doi.org/10.3390/agronomy15092040