Machine Learning for Reference Crop Evapotranspiration Modeling: A State-of-the-Art Review and Future Directions
Abstract
1. Introduction
2. Research Methodology and Related Literature
3. Traditional Empirical Equations
4. Machine Learning Models
4.1. Artificial Neural Network
4.2. Support Vector Machine
4.3. Adaptive Neuro-Fuzzy Inference System
4.4. Ensemble Learning
4.5. Deep Learning
5. Data Preprocessing and Model Post-Evaluation
5.1. Data Preprocessing
5.2. Model Post-Evaluation
6. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allan, R.; Pereira, L.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 56. [Google Scholar]
- Kang, S.; Su, X.; Tong, L.; Zhang, J.; Zhang, L.; Davies. A Warning from an Ancient Oasis: Intensive Human Activities Are Leading to Potential Ecological and Social Catastrophe. Int. J. Sustain. Dev. World Ecol. 2008, 15, 440–447. [Google Scholar] [CrossRef]
- Wen, X.; Si, J.; He, Z.; Wu, J.; Shao, H.; Yu, H. Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration with Limited Climatic Data in Extreme Arid Regions. Water Resour. Manag. 2015, 29, 3195–3209. [Google Scholar] [CrossRef]
- Hargreaves, G.; Samani, Z. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; FAO: Rome, Italy, 1975. [Google Scholar]
- Makkink, G.F. Testing the Penman Formula by Means of Lysimeters. J. Inst. Water Eng. 1957, 11, 277–288. [Google Scholar]
- Ritchie, J.T. Model for Predicting Evaporation from a Row Crop with Incomplete Cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef]
- DehghaniSanij, H.; Yamamoto, T.; Rasiah, V. Assessment of Evapotranspiration Estimation Models for Use in Semi-Arid Environments. Agric. Water Manag. 2004, 64, 91–106. [Google Scholar] [CrossRef]
- Allen, R.G.; Clemmens, A.J.; Burt, C.M.; Solomon, K.; O’Halloran, T. Prediction Accuracy for Projectwide Evapotranspiration Using Crop Coefficients and Reference Evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 24–36. [Google Scholar] [CrossRef]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A Recommendation on Standardized Surface Resistance for Hourly Calculation of Reference ETo by the FAO56 Penman-Monteith Method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Alizamir, M.; Kisi, O.; Zounemat-Kermani, M. Modelling Long-Term Groundwater Fluctuations by Extreme Learning Machine Using Hydro-Climatic Data. Hydrol. Sci. J. 2018, 63, 63–73. [Google Scholar] [CrossRef]
- Roy, D.K.; Biswas, S.K.; Mattar, M.A.; El-Shafei, A.A.; Murad, K.F.I.; Saha, K.K.; Datta, B.; Dewidar, A.Z. Groundwater Level Prediction Using a Multiple Objective Genetic Algorithm-Grey Relational Analysis Based Weighted Ensemble of ANFIS Models. Water 2021, 13, 3130. [Google Scholar] [CrossRef]
- An, Y.; Zhang, Y.; Yan, X. An Integrated Bayesian and Machine Learning Approach Application to Identification of Groundwater Contamination Source Parameters. Water 2022, 14, 2447. [Google Scholar] [CrossRef]
- Kisi, O.; Cimen, M. Evapotranspiration Modelling Using Support Vector Machines. Hydrol. Sci. J. 2009, 54, 918–928. [Google Scholar] [CrossRef]
- Tabari, H.; Kisi, O.; Ezani, A.; Hosseinzadeh Talaee, P. SVM, ANFIS, Regression and Climate Based Models for Reference Evapotranspiration Modeling Using Limited Climatic Data in a Semi-Arid Highland Environment. J. Hydrol. 2012, 444–445, 78–89. [Google Scholar] [CrossRef]
- Granata, F. Evapotranspiration Evaluation Models Based on Machine Learning Algorithms—A Comparative Study. Agric. Water Manag. 2019, 217, 303–315. [Google Scholar] [CrossRef]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H.; Ng, J.L.; Ahmed, A.N.; El-Shafie, A. Long-Term Forecasting of Monthly Mean Reference Evapotranspiration Using Deep Neural Network: A Comparison of Training Strategies and Approaches. Appl. Soft Comput. 2022, 126, 109221. [Google Scholar] [CrossRef]
- Ge, J.; Zhao, L.; Yu, Z.; Liu, H.; Zhang, L.; Gong, X.; Sun, H. Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model. Plants 2022, 11, 1923. [Google Scholar] [CrossRef]
- Vaz, P.J.; Schütz, G.; Guerrero, C.; Cardoso, P.J.S. Hybrid Neural Network Based Models for Evapotranspiration Prediction Over Limited Weather Parameters. IEEE Access 2023, 11, 963–976. [Google Scholar] [CrossRef]
- Chi, D.; Wang, X.; Zhou, B.; Wang, X.; Cao, J. Real-Time Forecast Application Based on Improved Weather Forecast Model ET0. Yangtze River 2008, 8, 5–6+16. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, N.; Gong, D. Comparison of Machine Learning Algorithms and Hargreaves Model for Reference Evapotranspiration Estimation in Sichuan. Chin. J. Agrometeorol. 2016, 37, 415–421. [Google Scholar] [CrossRef]
- Hu, Z.; Bashir, R.N.; Rehman, A.U.; Iqbal, S.I.; Shahid, M.M.A.; Xu, T. Machine Learning Based Prediction of Reference Evapotranspiration (ET0) Using IoT. IEEE Access 2022, 10, 70526–70540. [Google Scholar] [CrossRef]
- Mangalath Ravindran, S.; Moorakkal Bhaskaran, S.K.; Ambat, S.K.; Balakrishnan, K.; Manguttathil Gopalakrishnan, M. An Automated Machine Learning Methodology for the Improved Prediction of Reference Evapotranspiration Using Minimal Input Parameters. Hydrol. Process. 2022, 36, e14571. [Google Scholar] [CrossRef]
- Shaloo; Kumar, B.; Bisht, H.; Rajput, J.; Mishra, A.K.; Tm, K.K.; Brahmanand, P.S. Reference Evapotranspiration Prediction Using Machine Learning Models: An Empirical Study from Minimal Climate Data. Agron. J. 2024, 116, 956–972. [Google Scholar] [CrossRef]
- Tang, P.; Xu, B.; Gao, Z.; Gao, X. Simplified Limited Data ET0 Equation Adapted for High-Elevation Locations in Tibet. J. Hydraul. Eng. 2017, 48, 1055–1063. [Google Scholar] [CrossRef]
- Wei, Q.; Wei, Q.; Xu, J.; Bai, Y.; Li, X.; He, M.; Xu, J. Research on ET0 Prediction Based on Machine Learning Algorithm. Water Sav. Irrig. 2022, 2022, 9–17. [Google Scholar] [CrossRef]
- Zhou, R.; Wei, Z.; Zhang, Y.; Zhang, S. Prediction of Reference Crop Evapotranspiration Based on Generalized RegressionNeural Network and Particle Swarm Optimization Algorithm. China Rural. Water Hydropower 2017, 6, 1–7. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Hansen, S. Estimation of Potential and Actual Evapotranspiration: Paper Presented at the Nordic Hydrological Conference (Nyborg, Denmark, August—1984). Hydrol. Res. 1984, 15, 205–212. [Google Scholar] [CrossRef]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and Difference of Potential Evapotranspiration and Reference Crop Evapotranspiration—A Review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Almorox, J.; Quej, V.H.; Martí, P. Global Performance Ranking of Temperature-Based Approaches for Evapotranspiration Estimation Considering Köppen Climate Classes. J. Hydrol. 2015, 528, 514–522. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, X.; Ge, J.; Zhang, J.; Traore, S.; Fipps, G.; Luo, Y. Evaluation of Five Equations for Short-Term Reference Evapotranspiration Forecasting Using Public Temperature Forecasts for North China Plain. Water 2022, 14, 2888. [Google Scholar] [CrossRef]
- Awal, R.; Rahman, A.; Fares, A.; Habibi, H. Calibration and Evaluation of Empirical Methods to Estimate Reference Crop Evapotranspiration in West Texas. Water 2022, 14, 3032. [Google Scholar] [CrossRef]
- Fu, Y.; Shen, X.; Li, W.; Wu, X.; Zhang, Q. Applicability of Reference Crop Evapotranspiration Calculation Based on Hargreaves-Samani Regression Correction. Arid Land Geogr. 2022, 45, 1752–1760. [Google Scholar] [CrossRef]
- Trajkovic, S. Hargreaves versus Penman-Monteith under Humid Conditions. J. Irrig. Drain. Eng. 2007, 133, 38–42. [Google Scholar] [CrossRef]
- George, B.; Reddy, B.; Raghuwanshi, N.; Wallender, W. Decision Support System for Estimating Reference Evapotranspiration. J. Irrig. Drain. Eng. 2002, 128, 1–10. [Google Scholar] [CrossRef]
- Odhiambo, L.; Wright, W.; Yoder, R. Biological Evaluation of Methods for Estimating Daily Reference Crop Evapotranspiration at a Site in the Humid Southeast United States. Appl. Eng. Agric. 2005, 21, 197–202. [Google Scholar] [CrossRef]
- López-Urrea, R.; Martín de Santa Olalla, F.; Fabeiro, C.; Moratalla, A. Testing Evapotranspiration Equations Using Lysimeter Observations in a Semiarid Climate. Agric. Water Manag. 2006, 85, 15–26. [Google Scholar] [CrossRef]
- Abbaspour, K.C. A Comparison of Different Methods of Estimating Energy-limited Evapotranspiration in the Peace River Region of British Columbia. Atmos. Ocean. 1991, 29, 686–698. [Google Scholar] [CrossRef]
- Zhai, L.; Feng, Q.; Li, Q.; Xu, C. Comparison and Modification of Equations for Calculating Evapotranspiration (ET) with Data from Gansu Province, Northwest China. Irrig. Drain. 2010, 59, 477–490. [Google Scholar] [CrossRef]
- Valipour, M. Use of Average Data of 181 Synoptic Stations for Estimation of Reference Crop Evapotranspiration by Temperature-Based Methods. Water Resour. Manag. 2014, 28, 4237–4255. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, C.; Han, Y.; Yuan, Y. Improvement and Applicability of Reference Crop Evapotranspiration ModelBased on Temperature in Haihe River Basin. Yellow River 2021, 43, 155–160. [Google Scholar] [CrossRef]
- Berengena, J.; Gavilán, P. Reference Evapotranspiration Estimation in a Highly Advective Semiarid Environment. J. Irrig. Drain. Eng. 2005, 131, 147–163. [Google Scholar] [CrossRef]
- Xystrakis, F.; Matzarakis, A. Evaluation of 13 Empirical Reference Potential Evapotranspiration Equations on the Island of Crete in Southern Greece. J. Irrig. Drain. Eng. 2011, 137, 211–222. [Google Scholar] [CrossRef]
- Gao, F.; Feng, G.; Ouyang, Y.; Wang, H.; Fisher, D.; Adeli, A.; Jenkins, J. Evaluation of Reference Evapotranspiration Methods in Arid, Semiarid, and Humid Regions. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 791–808. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, N.; Hu, X.; Gong, D.; Wang, Y.; Feng, Y.; Xing, L.; Zhu, B.; Zou, Q. Estimation of Reference Crop Evapotranspiration in Sichuan Basin Based on Improved Makkink Model. J. Drain. Irrig. Mach. Eng. 2021, 39, 509–516. [Google Scholar]
- Xu, C.-Y.; Singh, V.P. Evaluation and Generalization of Radiation-Based Methods for Calculating Evaporation. Hydrol. Process. 2000, 14, 339–349. [Google Scholar] [CrossRef]
- Gabriela Arellano, M.; Irmak, S. Reference (Potential) Evapotranspiration. I: Comparison of Temperature, Radiation, and Combination-Based Energy Balance Equations in Humid, Subhumid, Arid, Semiarid, and Mediterranean-Type Climates. J. Irrig. Drain. Eng. 2016, 142, 04015065. [Google Scholar] [CrossRef]
- Wang, J.; Ye, S.; Fan, Y.; Wang, J.; Ye, S.; Fan, Y. Applicability Evaluation of Reference Crop Evapotranspiration Calculation Models in Different Climatic Regions of China. Water Sav. Irrig. 2022, 3, 82–91. [Google Scholar] [CrossRef]
- Liu, W.; Sun, F. Assessing Estimates of Evaporative Demand in Climate Models Using Observed Pan Evaporation over China. J. Geophys. Res. Atmos. 2016, 121, 8329–8349. [Google Scholar] [CrossRef]
- Heydari, M.; Agha Majidi, R.; Beygipoor, G.; Heydari, M. Comparison and Evaluation of 38 Equations for Estimating Reference Evapotranspiration in an Arid Region. Fresenius Environ. Bull. 2014, 23, 1985–1996. [Google Scholar]
- Abed, M.; Imteaz, M.A.; Ahmed, A.N.; Huang, Y.F. Modelling Monthly Pan Evaporation Utilising Random Forest and Deep Learning Algorithms. Sci. Rep. 2022, 12, 13132. [Google Scholar] [CrossRef]
- Elzain, H.E.; Abdalla, O.A.; Abdallah, M.; Al-Maktoumi, A.; Eltayeb, M.; Abba, S.I. Innovative Approach for Predicting Daily Reference Evapotranspiration Using Improved Shallow and Deep Learning Models in a Coastal Region: A Comparative Study. J. Environ. Manag. 2024, 354, 120246. [Google Scholar] [CrossRef]
- Huang, G.; Zhu, Q.; Siew, C.K. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 985–990. [Google Scholar]
- Elbeltagi, A.; Nagy, A.; Mohammed, S.; Pande, C.B.; Kumar, M.; Bhat, S.A.; Zsembeli, J.; Huzsvai, L.; Tamás, J.; Kovács, E.; et al. Combination of Limited Meteorological Data for Predicting Reference Crop Evapotranspiration Using Artificial Neural Network Method. Agronomy 2022, 12, 516. [Google Scholar] [CrossRef]
- Fang, S.-L.; Lin, Y.-S.; Chang, S.-C.; Chang, Y.-L.; Tsai, B.-Y.; Kuo, B.-J. Using Artificial Intelligence Algorithms to Estimate and Short-Term Forecast the Daily Reference Evapotranspiration with Limited Meteorological Variables. Agriculture 2024, 14, 510. [Google Scholar] [CrossRef]
- Gocić, M.; Motamedi, S.; Shamshirband, S.; Petković, D.; Ch, S.; Hashim, R.; Arif, M. Soft Computing Approaches for Forecasting Reference Evapotranspiration. Comput. Electron. Agric. 2015, 113, 164–173. [Google Scholar] [CrossRef]
- Landeras, G.; Ortiz-Barredo, A.; López, J.J. Forecasting Weekly Evapotranspiration with ARIMA and Artificial Neural Network Models. J. Irrig. Drain. Eng. 2009, 135, 323–334. [Google Scholar] [CrossRef]
- Skhiri, A.; Ferhi, A.; Bousselmi, A.; Khlifi, S.; Mattar, M.A. Artificial Neural Network for Forecasting Reference Evapotranspiration in Semi-Arid Bioclimatic Regions. Water 2024, 16, 602. [Google Scholar] [CrossRef]
- Trajkovic, S.; Todorovic, B.; Stankovic, M. Forecasting of Reference Evapotranspiration by Artificial Neural Networks. J. Irrig. Drain. Eng. 2003, 129, 454–457. [Google Scholar] [CrossRef]
- Traore, S.; Wang, Y.M.; Chung, W.G. Predictive Accuracy of Backpropagation Neural Network Methodology in Evapotranspiration Forecasting in Dédougou Region, Western Burkina Faso. J. Earth Syst. Sci. 2014, 123, 307–318. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Shen, Y.; Yang, H. Comparison of Different Methods for Estimating Reference Evapotranspiration with Weather Data from Nearby Station. J. Nat. Resour. 2019, 34, 179–190. [Google Scholar] [CrossRef]
- Zhou, J.; Dong, Q. Using Temperature Models to Estimate ET0 in Data-Scarce Regions with Limited Solar Radiation Data. Chin. J. Agrometeorol. 2024, 45, 701–714. [Google Scholar] [CrossRef]
- Achite, M.; Jehanzaib, M.; Sattari, M.; Abderrezak Kamel, T.; Elshaboury, N.; Walega, A.; Krakauer, N.; Yoo, J.-Y.; Kim, T.-W. Modern Techniques to Modeling Reference Evapotranspiration in a Semiarid Area Based on ANN and GEP Models. Water 2022, 14, 1210. [Google Scholar] [CrossRef]
- Abdullah, S.S.; Malek, M.A.; Abdullah, N.S.; Kisi, O.; Yap, K.S. Extreme Learning Machines: A New Approach for Prediction of Reference Evapotranspiration. J. Hydrol. 2015, 527, 184–195. [Google Scholar] [CrossRef]
- Hameed, M.M.; AlOmar, M.K.; Mohd Razali, S.F.; Kareem Khalaf, M.A.; Baniya, W.J.; Sharafati, A.; AlSaadi, M.A. Application of Artificial Intelligence Models for Evapotranspiration Prediction along the Southern Coast of Turkey. Complexity 2021, 2021, 8850243. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Artificial Neural Networks for the Prediction of the Reference Evapotranspiration of the Peloponnese Peninsula, Greece. Water 2022, 14, 2027. [Google Scholar] [CrossRef]
- Pino-Vargas, E.; Taya-Acosta, E.; Ingol-Blanco, E.; Torres-Rúa, A. Deep Machine Learning for Forecasting Daily Potential Evapotranspiration in Arid Regions, Case: Atacama Desert Header. Agriculture 2022, 12, 1971. [Google Scholar] [CrossRef]
- Mandal, N.; Chanda, K. Performance of Machine Learning Algorithms for Multi-Step Ahead Prediction of Reference Evapotranspiration across Various Agro-Climatic Zones and Cropping Seasons. J. Hydrol. 2023, 620, 129418. [Google Scholar] [CrossRef]
- Chauhan, S.; Shrivastava, R.K. Reference Evapotranspiration Forecasting Using Different Artificial Neural Networks Algorithms. Can. J. Civ. Eng. 2009, 36, 1491–1505. [Google Scholar] [CrossRef]
- Abdullahi, J.; Elkiran, G. Prediction of the Future Impact of Climate Change on Reference Evapotranspiration in Cyprus Using Artificial Neural Network. Procedia Comput. Sci. 2017, 120, 276–283. [Google Scholar] [CrossRef]
- Kartal, V. Prediction of Monthly Evapotranspiration by Artificial Neural Network Model Development with Levenberg–Marquardt Method in Elazig, Turkey. Environ. Sci. Pollut. Res. 2024, 31, 20953–20969. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.; Hu, X.; Zhao, J.; Dong, W.; Zhu, F.; Wang, H. Multi-Algorithm Hybrid Optimization of Back Propagation (BP) Neural Networks for Reference Crop Evapotranspiration Prediction Models. Water 2023, 15, 3718. [Google Scholar] [CrossRef]
- Zhao, L.; Xing, L.; Wang, Y.; Cui, N.; Zhou, H.; Shi, Y.; Chen, S.; Zhao, X.; Li, Z. Prediction Model for Reference Crop Evapotranspiration Based on the Back-Propagation Algorithm with Limited Factors. Water Resour. Manag. 2023, 37, 1207–1222. [Google Scholar] [CrossRef]
- Wu, D.; Wang, G.G. Causal Artificial Neural Network and Its Applications in Engineering Design. Eng. Appl. Artif. Intell. 2021, 97, 104089. [Google Scholar] [CrossRef]
- Tallec, G.; Yvinec, E.; Dapogny, A.; Bailly, K. Fighting Over-Fitting with Quantization for Learning Deep Neural Networks on Noisy Labels. In Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023; pp. 575–579. [Google Scholar]
- Ünal, H.T.; Başçiftçi, F. Evolutionary Design of Neural Network Architectures: A Review of Three Decades of Research. Artif. Intell. Rev. 2022, 55, 1723–1802. [Google Scholar] [CrossRef]
- Torres, A.F.; Walker, W.R.; McKee, M. Forecasting Daily Potential Evapotranspiration Using Machine Learning and Limited Climatic Data. Agric. Water Manag. 2011, 98, 553–562. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Shukla, S. Support Vector Machine Based Modeling of Evapotranspiration Using Hydro-Climatic Variables in a Sub-Tropical Environment. Agric. For. Meteorol. 2015, 200, 172–184. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Shamshirband, S.; Zare Haghi, D.; Azani, A.; Bonakdari, H.; Ebtehaj, I. Application of Firefly Algorithm-Based Support Vector Machines for Prediction of Field Capacity and Permanent Wilting Point. Soil Tillage Res. 2017, 172, 32–38. [Google Scholar] [CrossRef]
- Hou, Z.; Yang, P.; Su, Y.; Ren, S. Simulation of ET0 Based on LS-SVM Method. J. Hydraul. Eng. 2011, 42, 743–749. [Google Scholar] [CrossRef]
- Kisi, O. Least Squares Support Vector Machine for Modeling Daily Reference Evapotranspiration. Irrig. Sci. 2013, 31, 611–619. [Google Scholar] [CrossRef]
- Fan, J.; Yue, W.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Lu, X.; Xiang, Y. Evaluation of SVM, ELM and Four Tree-Based Ensemble Models for Predicting Daily Reference Evapotranspiration Using Limited Meteorological Data in Different Climates of China. Agric. For. Meteorol. 2018, 263, 225–241. [Google Scholar] [CrossRef]
- Mao, Y.; Fang, S. Research of Reference Evapotranspiration’s Simulation Based on Machine Learning. J. Geo. Inf. Sci. 2020, 22, 1692–1701. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Mostafa, R.R.; Chen, Z.; Islam, A.R.M.T.; Kisi, O.; Kuriqi, A.; Zounemat-Kermani, M. Advanced Hybrid Metaheuristic Machine Learning Models Application for Reference Crop Evapotranspiration Prediction. Agronomy 2023, 13, 98. [Google Scholar] [CrossRef]
- Citakoglu, H.; Cobaner, M.; Haktanir, T.; Kisi, O. Estimation of Monthly Mean Reference Evapotranspiration in Turkey. Water Resour. Manag. 2014, 28, 99–113. [Google Scholar] [CrossRef]
- Keshtegar, B.; Kisi, O.; Ghohani Arab, H.; Zounemat-Kermani, M. Subset Modeling Basis ANFIS for Prediction of the Reference Evapotranspiration. Water Resour. Manag. 2018, 32, 1101–1116. [Google Scholar] [CrossRef]
- Quej Chi, V.; Castillo Aguilar, C.; Almorox, J.; Rivera, B. Evaluation of Artificial Intelligence Models for Daily Prediction of Reference Evapotranspiration Using Temperature, Rainfall and Relative Humidity in a Warm Sub-Humid Environment. Ital. J. Agrometeorol. 2022, 1, 49–63. [Google Scholar] [CrossRef]
- Sharafi, S.; Ghaleni, M.M.; Scholz, M. Comparison of Predictions of Daily Evapotranspiration Based on Climate Variables Using Different Data Mining and Empirical Methods in Various Climates of Iran. Heliyon 2023, 9, e13245. [Google Scholar] [CrossRef] [PubMed]
- Aghelpour, P.; Varshavian, V.; Khodamorad Pour, M.; Hamedi, Z. Comparing Three Types of Data-Driven Models for Monthly Evapotranspiration Prediction under Heterogeneous Climatic Conditions. Sci. Rep. 2022, 12, 17363. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Diop, L.; Bodian, A.; Djaman, K.; Ndiaye, P.M.; Yaseen, Z.M. Reference Evapotranspiration Prediction Using Hybridized Fuzzy Model with Firefly Algorithm: Regional Case Study in Burkina Faso. Agric. Water Manag. 2018, 208, 140–151. [Google Scholar] [CrossRef]
- El-Shafie, A.; Najah, A.; Alsulami, H.M.; Jahanbani, H. Optimized Neural Network Prediction Model for Potential Evapotranspiration Utilizing Ensemble Procedure. Water Resour. Manag. 2014, 28, 947–967. [Google Scholar] [CrossRef]
- El-kenawy, E.-S.M.; Zerouali, B.; Bailek, N.; Bouchouich, K.; Hassan, M.A.; Almorox, J.; Kuriqi, A.; Eid, M.; Ibrahim, A. Improved Weighted Ensemble Learning for Predicting the Daily Reference Evapotranspiration under the Semi-Arid Climate Conditions. Environ. Sci. Pollut. Res. 2022, 29, 81279–81299. [Google Scholar] [CrossRef]
- Roy, D.K.; Barzegar, R.; Quilty, J.; Adamowski, J. Using Ensembles of Adaptive Neuro-Fuzzy Inference System and Optimization Algorithms to Predict Reference Evapotranspiration in Subtropical Climatic Zones. J. Hydrol. 2020, 591, 125509. [Google Scholar] [CrossRef]
- Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2016. [Google Scholar]
- Manikumari, N.; Murugappan, A.; Vinodhini, G. Time Series Forecasting of Daily Reference Evapotranspiration by Neural Network Ensemble Learning for Irrigation System. IOP Conf. Ser. Earth Environ. Sci. 2017, 80, 012069. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Matin, S.S.; Chelgani, S.C. Estimation of Coal Gross Calorific Value Based on Various Analyses by Random Forest Method. Fuel 2016, 177, 274–278. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–16 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, QB, Canada, 3–6 December 2018; Curran Associates Inc.: Red Hook, NY, USA, 2018; pp. 6639–6649. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 3149–3157. [Google Scholar]
- Feng, Y.; Cui, N.; Gong, D.; Zhang, Q.; Zhao, L. Evaluation of Random Forests and Generalized Regression Neural Networks for Daily Reference Evapotranspiration Modelling. Agric. Water Manag. 2017, 193, 163–173. [Google Scholar] [CrossRef]
- Wu, M.; Feng, Q.; Wen, X.; Deo, R.C.; Yin, Z.; Yang, L.; Sheng, D. Random Forest Predictive Model Development with Uncertainty Analysis Capability for the Estimation of Evapotranspiration in an Arid Oasis Region. Hydrol. Res. 2020, 51, 648–665. [Google Scholar] [CrossRef]
- Salam, R.; Islam, A.R.M.T. Potential of RT, Bagging and RS Ensemble Learning Algorithms for Reference Evapotranspiration Prediction Using Climatic Data-Limited Humid Region in Bangladesh. J. Hydrol. 2020, 590, 125241. [Google Scholar] [CrossRef]
- Akar, F.; Katipoğlu, O.; Yeşilyurt, S.; Taş, M. Evaluation of Tree-Based MachineLearning and Deep Learning Techniquesin Temperature-Based PotentialEvapotranspiration Prediction. Pol. J. Environ. Stud. 2023, 32, 1009–1023. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Shi, Y.; Zhao, X.; Cui, N.; Zhang, S. Selecting Essential Factors for Predicting Reference Crop Evapotranspiration through Tree-Based Machine Learning and Bayesian Optimization. Theor. Appl. Climatol. 2024, 155, 2953–2972. [Google Scholar] [CrossRef]
- Liu, X.; Dai, Z.; Wu, L.; Zhang, F.; Dong, J.; Chen, Z. Comparing the Performance of GPR, XGBoost and CatBoost Models forCalculating Reference Crop Evapotranspiration in Jiangxi Province. J. Irrig. Drain. 2021, 40, 91–96. [Google Scholar] [CrossRef]
- Liang, Y.; Feng, D.; Sun, Z.; Zhu, Y. Evaluation of Empirical Equations and Machine Learning Models for Daily Reference Evapotranspiration Prediction Using Public Weather Forecasts. Water 2023, 15, 3954. [Google Scholar] [CrossRef]
- Huang, G.; Wu, L.; Ma, X.; Zhang, W.; Fan, J.; Yu, X.; Zeng, W.; Zhou, H. Evaluation of CatBoost Method for Prediction of Reference Evapotranspiration in Humid Regions. J. Hydrol. 2019, 574, 1029–1041. [Google Scholar] [CrossRef]
- Shiri, J. Improving the Performance of the Mass Transfer-Based Reference Evapotranspiration Estimation Approaches through a Coupled Wavelet-Random Forest Methodology. J. Hydrol. 2018, 561, 737–750. [Google Scholar] [CrossRef]
- Lu, X.; Fan, J.; Wu, L.; Dong, J. Forecasting Multi-Step Ahead Monthly Reference Evapotranspiration Using Hybrid Extreme Gradient Boosting with Grey Wolf Optimization Algorithm. Comput. Model. Eng. Sci. 2020, 125, 699–723. [Google Scholar] [CrossRef]
- Heramb, P.; Ramana Rao, K.V.; Subeesh, A.; Srivastava, A. Predictive Modelling of Reference Evapotranspiration Using Machine Learning Models Coupled with Grey Wolf Optimizer. Water 2023, 15, 856. [Google Scholar] [CrossRef]
- Liu, A.; Zhao, D.; Wei, Y.; Xiao, L. Ensemble Learning Estimation of Reference Crop Evapotranspiration Taking into Account Temporal and Spatial Characteristics. J. Drain. Irrig. Mach. Eng. 2024, 42, 179–186. [Google Scholar] [CrossRef]
- Cho, K.; Van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Stroudsburg, PA, USA, 2014; pp. 1724–1734. [Google Scholar]
- Zhang, L.; Liu, P.; Zhao, L.; Wang, G.; Zhang, W.; Liu, J. Air Quality Predictions with a Semi-Supervised Bidirectional LSTM Neural Network. Atmospheric Pollut. Res. 2021, 12, 328–339. [Google Scholar] [CrossRef]
- Karbasi, M.; Jamei, M.; Ali, M.; Malik, A.; Yaseen, Z.M. Forecasting Weekly Reference Evapotranspiration Using Auto Encoder Decoder Bidirectional LSTM Model Hybridized with a Boruta-CatBoost Input Optimizer. Comput. Electron. Agric. 2022, 198, 107121. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, Z.; Shen, X.; Zhang, Z.; Shi, K.; Zhang, S. Prediction Model of Reference Crop Evapotranspiration Based on Deep Learning. J. Shanxi Agric. Sci. 2023, 51, 942–952. [Google Scholar] [CrossRef]
- Roy, D.K.; Sarkar, T.K.; Kamar, S.S.A.; Goswami, T.; Muktadir, M.A.; Al-Ghobari, H.M.; Alataway, A.; Dewidar, A.Z.; El-Shafei, A.A.; Mattar, M.A. Daily Prediction and Multi-Step Forward Forecasting of Reference Evapotranspiration Using LSTM and Bi-LSTM Models. Agronomy 2022, 12, 594. [Google Scholar] [CrossRef]
- Yin, J.; Deng, Z.; Ines, A.V.M.; Wu, J.; Rasu, E. Forecast of Short-Term Daily Reference Evapotranspiration under Limited Meteorological Variables Using a Hybrid Bi-Directional Long Short-Term Memory Model (Bi-LSTM). Agric. Water Manag. 2020, 242, 106386. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, X.; Zhu, G.; He, J.; Chen, J.; Chen, Z.; Traore, S.; Liu, J.; Singh, V.P. Short-Term Daily Reference Evapotranspiration Forecasting Using Temperature-Based Deep Learning Models in Different Climate Zones in China. Agric. Water Manag. 2023, 289, 108498. [Google Scholar] [CrossRef]
- Dang, C.; Zhang, H.; Yao, C.; Mu, D.; Lyu, F.; Zhang, Y.; Zhang, S. IWRAM: A Hybrid Model for Irrigation Water Demand Forecasting to Quantify the Impacts of Climate Change. Agric. Water Manag. 2024, 291, 108643. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, Y.; Wei, Z.; Zheng, Z.; Xie, P. Daily Reference Evapotranspiration Prediction for Irrigation Scheduling Decisions Based on the Hybrid PSO-LSTM Model. PLoS ONE 2023, 18, e0281478. [Google Scholar] [CrossRef]
- Troncoso-García, A.R.; Brito, I.S.; Troncoso, A.; Martínez-Álvarez, F. Explainable Hybrid Deep Learning and Coronavirus Optimization Algorithm for Improving Evapotranspiration Forecasting. Comput. Electron. Agric. 2023, 215, 108387. [Google Scholar] [CrossRef]
- Ahmed, A.A.M.; Deo, R.C.; Feng, Q.; Ghahramani, A.; Raj, N.; Yin, Z.; Yang, L. Hybrid Deep Learning Method for a Week-Ahead Evapotranspiration Forecasting. Stoch. Environ. Res. Risk Assess. 2022, 36, 831–849. [Google Scholar] [CrossRef]
- Sharma, G.; Singh, A.; Jain, S. A Hybrid Deep Neural Network Approach to Estimate Reference Evapotranspiration Using Limited Climate Data. Neural Comput. Appl. 2022, 34, 4013–4032. [Google Scholar] [CrossRef]
- Farooque, A.A.; Afzaal, H.; Abbas, F.; Bos, M.; Maqsood, J.; Wang, X.; Hussain, N. Forecasting Daily Evapotranspiration Using Artificial Neural Networks for Sustainable Irrigation Scheduling. Irrig. Sci. 2022, 40, 55–69. [Google Scholar] [CrossRef]
- Yan, H.; Deng, B.; Li, X.; Qiu, X. TENER: Adapting Transformer Encoder for Named Entity Recognition. arXiv 2019, arXiv:1911.04474. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljacic, M.; Hou, T.Y.; Tegmark, M. KAN: Kolmogorov–Arnold Networks. arXiv 2024, arXiv:2404.19756. [Google Scholar]
- Mahadeva, R.; Kumar, M.; Gupta, V.; Manik, G.; Patole, S.P. Modified Whale Optimization Algorithm Based ANN: A Novel Predictive Model for RO Desalination Plant. Sci. Rep. 2023, 13, 2901. [Google Scholar] [CrossRef]
- Qian, C.; Yu, Y.; Zhou, Z.-H. Pareto Ensemble Pruning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; AAAI Press: Washington, DC, USA; pp. 2935–2941. [Google Scholar]
- Santos, P.A.B.d.; Schwerz, F.; Carvalho, L.G.d.; Baptista, V.B.d.S.; Marin, D.B.; Ferraz, G.A.e.S.; Rossi, G.; Conti, L.; Bambi, G. Machine Learning and Conventional Methods for Reference Evapotranspiration Estimation Using Limited-Climatic-Data Scenarios. Agronomy 2023, 13, 2366. [Google Scholar] [CrossRef]
- Salahudin, H.; Shoaib, M.; Albano, R.; Inam Baig, M.A.; Hammad, M.; Raza, A.; Akhtar, A.; Ali, M.U. Using Ensembles of Machine Learning Techniques to Predict Reference Evapotranspiration (ET0) Using Limited Meteorological Data. Hydrology 2023, 10, 169. [Google Scholar] [CrossRef]
- Ayaz, A.; Rajesh, M.; Singh, S.K.; Rehana, S.; Ayaz, A.; Rajesh, M.; Singh, S.K.; Rehana, S. Estimation of Reference Evapotranspiration Using Machine Learning Models with Limited Data. AIMS Geosci. 2021, 7, 268–290. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.K.; Kotb Abd-Elmabod, S.; Zhang, Z.; Merwad, A.-R.M.A. Exploring the Applicability of Regression Models and Artificial Neural Networks for Calculating Reference Evapotranspiration in Arid Regions. Sustainability 2023, 15, 15494. [Google Scholar] [CrossRef]
- Raza, A.; Fahmeed, R.; Syed, N.R.; Katipoğlu, O.M.; Zubair, M.; Alshehri, F.; Elbeltagi, A. Performance Evaluation of Five Machine Learning Algorithms for Estimating Reference Evapotranspiration in an Arid Climate. Water 2023, 15, 3822. [Google Scholar] [CrossRef]
- Qin, A.; Fan, Z.; Zhang, L. Hybrid Genetic Algorithm−Based BP Neural Network Models Optimize Estimation Performance of Reference Crop Evapotranspiration in China. Appl. Sci. 2022, 12, 10689. [Google Scholar] [CrossRef]
- Huo, Z.; Feng, S.; Kang, S.; Dai, X. Artificial Neural Network Models for Reference Evapotranspiration in an Arid Area of Northwest China. J. Arid Environ. 2012, 82, 81–90. [Google Scholar] [CrossRef]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H. Reference Evapotranspiration Estimation Using Adaptive Neuro-Fuzzy Inference System with Limited Meteorological Data. IOP Conf. Ser. Earth Environ. Sci. 2020, 612, 012017. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Mo, X.; Shu, C.; Sun, Y.; Zhang, C. Assessing the Impact of Climate Change on Potential Evapotranspiration in Aksu River Basin. J. Geogr. Sci. 2011, 21, 609–620. [Google Scholar] [CrossRef]
- Xing, X.; Liu, Y.; Zhao, W.; Kang, D.; Yu, M.; Ma, X. Determination of Dominant Weather Parameters on Reference Evapotranspiration by Path Analysis Theory. Comput. Electron. Agric. 2016, 120, 10–16. [Google Scholar] [CrossRef]
- Feng, K.; Tian, J.; Hong, Y. Method for Estimating Potential Evapotranspiration by Self-Optimizing Nearest Neighboralgorithm. Trans. Chin. Soc. Agric. Eng. 2019, 35, 76–83. [Google Scholar] [CrossRef]
- Nagappan, M.; Gopalakrishnan, V.; Alagappan, M. Prediction of Reference Evapotranspiration for Irrigation Scheduling Using Machine Learning. Hydrol. Sci. J. 2020, 65, 2669–2677. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, X.; Pan, X.; Shi, Y.; Qiu, Z.; Li, X.; Xing, X.; Bai, J. Prediction of Daily Reference Crop Evapotranspiration in Different Chinese Climate Zones: Combined Application of Key Meteorological Factors and Elman Algorithm. J. Hydrol. 2022, 610, 127822. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, X.; Li, Y.; Shi, Y.; Zhou, H.; Li, X.; Wang, X.; Xing, X. Applicability of Hybrid Bionic Optimization Models with Kernel-Based Extreme Learning Machine Algorithm for Predicting Daily Reference Evapotranspiration: A Case Study in Arid and Semiarid Regions, China. Environ. Sci. Pollut. Res. 2023, 30, 22396–22412. [Google Scholar] [CrossRef] [PubMed]
- Adib, A.; Kalantarzadeh, S.S.O.; Shoushtari, M.M.; Lotfirad, M.; Liaghat, A.; Oulapour, M. Sensitive Analysis of Meteorological Data and Selecting Appropriate Machine Learning Model for Estimation of Reference Evapotranspiration. Appl. Water Sci. 2023, 13, 83. [Google Scholar] [CrossRef]
- Raza, A.; Saber, K.; Hu, Y.; Ray, R.; Yunus; Kaya, Y.; Dehghanisanij, H.; Kisi, O.; Elbeltagi, A. Modelling Reference Evapotranspiration Using Principal Component Analysis and Machine Learning Methods under Different Climatic Environments. Irrig. Drain. 2023, 72, 1–26. [Google Scholar] [CrossRef]
- Partal, T. Modelling Evapotranspiration Using Discrete Wavelet Transform and Neural Networks. Hydrol. Process. 2009, 23, 3545–3555. [Google Scholar] [CrossRef]
- Adarsh, S.; Sanah, S.; Murshida, K.K.; Nooramol, P. Scale Dependent Prediction of Reference Evapotranspiration Based on Multi-Variate Empirical Mode Decomposition. Ain Shams Eng. J. 2018, 9, 1839–1848. [Google Scholar] [CrossRef]
- Jayasinghe, W.J.M.L.P.; Deo, R.C.; Ghahramani, A.; Ghimire, S.; Raj, N. Deep Multi-Stage Reference Evapotranspiration Forecasting Model: Multivariate Empirical Mode Decomposition Integrated with the Boruta-Random Forest Algorithm. IEEE Access 2021, 9, 166695–166708. [Google Scholar] [CrossRef]
- Ali, M.; Jamei, M.; Prasad, R.; Karbasi, M.; Xiang, Y.; Cai, B.; Abdulla, S.; Ahsan Farooque, A.; Labban, A.H. New Achievements on Daily Reference Evapotranspiration Forecasting: Potential Assessment of Multivariate Signal Decomposition Schemes. Ecol. Indic. 2023, 155, 111030. [Google Scholar] [CrossRef]
- Sultan Abdullah, S.; Malek, M.A.; Sultan Abdullah, N.; Mustapha, A. Feedforward Backpropagation, Genetic Algorithm Approaches for Predicting Reference Evapotranspiration. Sains Malays. 2015, 44, 1053–1059. [Google Scholar] [CrossRef]
- Traore, S.; Luo, Y.; Fipps, G. Deployment of Artificial Neural Network for Short-Term Forecasting of Evapotranspiration Using Public Weather Forecast Restricted Messages. Agric. Water Manag. 2016, 163, 363–379. [Google Scholar] [CrossRef]
- Gocić, M.; Arab Amiri, M. Reference Evapotranspiration Prediction Using Neural Networks and Optimum Time Lags. Water Resour. Manag. 2021, 35, 1913–1926. [Google Scholar] [CrossRef]
- Wu, L.; Fan, J. Comparison of Neuron-Based, Kernel-Based, Tree-Based and Curve-Based Machine Learning Models for Predicting Daily Reference Evapotranspiration. PLoS ONE 2019, 14, e0217520. [Google Scholar] [CrossRef] [PubMed]
- Üneş, F.; Kaya, Y.Z.; Mamak, M. Daily Reference Evapotranspiration Prediction Based on Climatic Conditions Applying Different Data Mining Techniques and Empirical Equations. Theor. Appl. Climatol. 2020, 141, 763–773. [Google Scholar] [CrossRef]
- Roy, D.K.; Lal, A.; Sarker, K.K.; Saha, K.K.; Datta, B. Optimization Algorithms as Training Approaches for Prediction of Reference Evapotranspiration Using Adaptive Neuro Fuzzy Inference System. Agric. Water Manag. 2021, 255, 107003. [Google Scholar] [CrossRef]
- Fan, J.; Wu, L.; Zheng, J.; Zhang, F. Medium-Range Forecasting of Daily Reference Evapotranspiration across China Using Numerical Weather Prediction Outputs Downscaled by Extreme Gradient Boosting. J. Hydrol. 2021, 601, 126664. [Google Scholar] [CrossRef]
- Xing, L.; Cui, N.; Guo, L.; Du, T.; Gong, D.; Zhan, C.; Zhao, L.; Wu, Z. Estimating Daily Reference Evapotranspiration Using a Novel Hybrid Deep Learning Model. J. Hydrol. 2022, 614, 128567. [Google Scholar] [CrossRef]
Methods | Equations | |
---|---|---|
Temperature-based equations | Hargreaves and Samani [4] | |
FAO 24 Blaney–Criddle [5] | ||
Radiation-based equations | Makkink [6] | |
Ritchie [7] | ||
Priestly–Taylor [28] | ||
FAO 24 Radiation [5] | ||
Hansen [29] |
Model | Advantages | Disadvantages | Recommendations for Future Research |
---|---|---|---|
ANN | Adaptability and flexibility, ease of implementation. ELM has fast training speed [65]. MLP has high accuracy [66]. | Model performance dependency parameters and architecture [75,76]. | Using stochastic techniques or optimization determines the best model, which will reduce the dependency on experience [130]. |
SVM | Very good generalization and prediction accuracy [3,15]. | High computational costs [84]. | Use optimization algorithms to improve solution efficiency [85]. |
ANFIS | Usually more accurate than ANN [86,87]. | Less accurate compared to SVM [88,89]. | Integration of multiple types of optimal affiliation functions [15]. |
EL | Faster and more stable calculations [107]. | Poor generalization [83]. | Use stacking combination method [114]. Use ensemble pruning [131]. |
DL | Best simulation accuracy [118,119]. LSTM is widely used for time series forecasting [115,116]. | Higher data volume requirements [127]. Error increases with increasing time [17]. | Experiment with new algorithms such as Transformers [128]. Combine with physical mechanisms. |
References | Climate Zone | Variable | The Best Model | Timescale | R2 | MAE (mm d−1) | RMSE (mm d−1) | |
---|---|---|---|---|---|---|---|---|
ANN | Abdullah et al., 2015 [65] | Arid and Semi-arid | Tmax, Tmin, U2, Rh, N | ELM | Daily | 0.983 | 0.066 | 0.092 |
Sultan Abdullah et al., 2015 [152] | Arid | Tmax, Tmin, U2, Rh, N | FFBP-GA | Daily | 0.982 | 0.069 | 0.088 | |
Traore et al., 2016 [153] | Humid | Tmax, Tmin, Rs | MLP | Daily | - | 0.708 | 0.143 | |
Abdullahi and Elkiran, 2017 [71] | Arid | Tmax, Tmin, Rh, U2, N, Ra | FFBP-LM | Daily | 0.9996 | - | 0.0051 | |
Gocić and Arab Amiri, 2021 [154] | Humid | Tmin, Tmax. Rh, U2, N, ea | ANN | month | 0.980 | - | 0.300 | |
Dimitriadou and Nikolakopoulos, 2022 [67] | Arid and Semi-arid | Tmean, N | RBF | Daily | 0.960 | - | 0.385 | |
Zheng et al., 2023 [73] | Arid | Tmax, Tmean, Tmin, N, Rh | GA-PSO-BP | Daily | 0.952 | 0.145 | 0.163 | |
Zhao et al., 2023a [74] | Humid | T, U, N, Rh, AP | CSO-BP | Daily | 0.905 | 0.333 | 0.446 | |
Skhiri et al., 2024 [59] | Arid and Semi-arid | Tmin, Tmax, Rhmin, Rhmax, U, N | ANN | Daily | 0.992 | 0.233 | 0.326 | |
SVM | Wen et al., 2015 [3] | Arid | Tmax, Tmin, U2, Rs | SVM | Daily | 0.950 | 0.207 | 0.262 |
Wu and Fan, 2019 [155] | Arid, Semi-arid and Humid | T | SVM | Daily | 0.829 | 0.508 | 0.718 | |
Quej et al., 2022 [88] | Humid | Tmin, Tmax. Rh, U2, Rs | SVM | Daily | 0.901 | 0.333 | 0.437 | |
Ikram et al., 2023 [85] | Humid | Tmin, Tmax, Ra, Rs, U2, Rh | SVM-PSOGSA | Daily | 0.927 | 0.178 | 0.292 | |
Zhao et al., 2023 [145] | Arid and Semi-arid | Tmin, Tmax, N, Rs,, U2, Rh | SSA-KELM | Daily | 0.999 | 0.056 | 0.063 | |
Shaloo et al., 2024 [24] | Humid | Tmin, Tmax. Rh, U2, N | SVM | Daily | 0.985 | 0.168 | 0.224 | |
ANFIS | Citakoglu et al., 2014 [86] | Semi-arid | Rs, T, Rh, U2 | ANFIS | Monthly | 0.985 | 0.198 | 0.345 |
Keshtegar et al., 2018 [87] | Semi-arid | Rs, T, Rh, U2 | Subset-ANFIS | Daily | - | 0.0739 | 0.1094 | |
Üneş et al., 2020 [156] | Humid | T, Rs, U, Rh | ANFIS | Daily | 0.906 | 0.481 | - | |
Roy et al., 2021b [157] | Humid | Tmin, Tmax, Rh, U2, N | FA-ANFIS | Daily | 0.993 | 0.680 | 0.149 | |
Aghelpour et al., 2022 [90] | Arid, Semi-arid and Humid | Tmin, Tmax, Tmean, Rhmax, Rhmin | ANFIS-DE | Monthly | 0.977 | - | 0.351 | |
EL | Manikumari et al., 2017 [96] | Humid | Tmin, Tmax, Rhmin, Rhmax, U, N | Boosted NN | Daily | 0.991 | - | 0.107 |
Fan et al., 2018 [83] | Arid, Semi-arid and Humid | Tmax, Tmin, Rs, U2 | XGBoot | Daily | 0.976 | 0.129 | 0.391 | |
Salam and Islam, 2020 [105] | Humid | Tmax, Tmin, Rh, Rs, U2 | RT | Daily | 1 | 0.0002 | 0.0046 | |
Wu et al., 2020 [104] | Arid | Tmax, Tmin, N, U2, Rh | RF | Daily | 0.990 | 0.255 | 0.339 | |
Fan et al., 2021 [158] | Arid, Semi-arid and Humid | Tmax, Tmin, Rh, U10, Rs | XGBoost | Daily | 0.850 | - | 0.600 | |
Zhao et al., 2024 [107] | Arid and Semi-arid | Tmax, Tmin, Rs, U2 | BO-XGBoost | Daily | 0.990 | 0.117 | - | |
DL | Yin et al., 2020 [120] | Arid | Tmin, Tmax, N | LSTM | Daily | 0.992 | 0.039 | 0.159 |
Roy et al., 2022 [119] | Humid | Tmin, Tmax, Rh, N | Bi-LSTM | Daily | 0.998 | 0.582 | - | |
Chia et al., 2022 [17] | Humid | Tmin, Tmax, Ra, Rs, U2, | LSTM-GRU | Daily | - | 0.182 | 0.260 | |
Xing et al., 2022 [159] | Semi-arid | Tmin, Tmax, Tmean, Rh | DBN-LSTM | Daily | 0.944 | - | 0.423 | |
Farooque et al., 2022 [127] | Humid | Tmin, Tmax, Rh, U2 | Conv-LSTM | Daily | 0.740 | - | 0.620 | |
Zhang et al., 2023 [121] | Arid, Semi-arid and Humid | T | LSTM | Daily | 0.810 | 0.418 | 0.564 | |
Troncoso-García et al., 2023 [124] | Semi-arid | Tmin, Tmax, Tmean, Rhmin, Rh, Rs | LSTM-CVOA | Daily | 0.824 | 0.599 | 0.885 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Zhang, C.; Huang, J.; Chang, H.; Wang, C.; Huo, Z. Machine Learning for Reference Crop Evapotranspiration Modeling: A State-of-the-Art Review and Future Directions. Agronomy 2025, 15, 2038. https://doi.org/10.3390/agronomy15092038
Chang Y, Zhang C, Huang J, Chang H, Wang C, Huo Z. Machine Learning for Reference Crop Evapotranspiration Modeling: A State-of-the-Art Review and Future Directions. Agronomy. 2025; 15(9):2038. https://doi.org/10.3390/agronomy15092038
Chicago/Turabian StyleChang, Yu, Chenglong Zhang, Ju Huang, Hong Chang, Chaozi Wang, and Zailin Huo. 2025. "Machine Learning for Reference Crop Evapotranspiration Modeling: A State-of-the-Art Review and Future Directions" Agronomy 15, no. 9: 2038. https://doi.org/10.3390/agronomy15092038
APA StyleChang, Y., Zhang, C., Huang, J., Chang, H., Wang, C., & Huo, Z. (2025). Machine Learning for Reference Crop Evapotranspiration Modeling: A State-of-the-Art Review and Future Directions. Agronomy, 15(9), 2038. https://doi.org/10.3390/agronomy15092038