Microclimatic Parameters, Soil Quality, and Crop Performance of Lettuce, Pepper, and Chili Pepper as Affected by Modified Growing Conditions in a Photovoltaic Plant: A Case Study in the Puglia Region (Italy)
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description, Experimental Layout, and Growing Conditions
2.2. Measurements
2.2.1. Environmental Data/Microclimatic Variables
2.2.2. Plant Growth and Yield
2.2.3. QBS-ar Index and Soil Microarthropod Biodiversity
- −
- Control: Open-field areas without any panel coverage.
- −
- Area distant PV structure: Inter-row spaces that received partial shading.
- −
- Area close PV structure: Areas directly beneath the photovoltaic panels.
2.2.4. Land Equivalent Ratio (LER) Calculation
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Environmental Data/Microclimatic Variables
3.2. Plant Growth and Yield
3.3. QBS-ar Index and Soil Microarthropod Bioiversity
3.4. LER
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Widmer, J.; Christ, B.; Grenz, J.; Norgrove, L. Agrivoltaics, a promising new tool for electricity and food production: A systematic review. Renew. Sustain. Energy Rev. 2024, 192, 114277. [Google Scholar] [CrossRef]
- Di Domenico, G.; Colantoni, A.; Bianchini, L.; Cecchini, M.; Gallucci, F.; Di Stefano, V. Agrivoltaics systems potentials in Italy: State of the art and SWOT–AHP analysis. Sustainability 2025, 17, 925. [Google Scholar] [CrossRef]
- Fattoruso, G.; Toscano, D.; Venturo, A.; Scognamiglio, A.; Fabricino, M.; Di Francia, G. A Spatial Multicriteria Analysis for a Regional Assessment of Eligible Areas for Sustainable Agrivoltaic Systems in Italy. Sustainability 2024, 16, 911. [Google Scholar] [CrossRef]
- Colucci, F.; Moretti, L.; Grassi, A.; Poggiaroni, G.; Scognamiglio, A. The Italian network for sustainable agrivoltaics. In Proceedings of the AgriVoltaics World Conference, Denver, CO, USA, 11–13 June 2024; Volume 1, pp. 1–8. [Google Scholar]
- Di Francia, G.; Cupo, P. A Cost–Benefit Analysis for Utility-Scale Agrivoltaic Implementation in Italy. Energies 2023, 16, 2991. [Google Scholar] [CrossRef]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39, 35. [Google Scholar] [CrossRef]
- Hassanpour Adeh, E.; Selker, J.S.; Higgins, C.W. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef]
- Santra, P.; Pande, P.C.; Kumar, S.; Mishra, D.; Singh, R. Agri-voltaics or solar farming: The concept of integrating solar PV based electricity generation and crop production in a single land use system. Int. J. Renew. Energy Res. 2017, 7, 694–699. [Google Scholar] [CrossRef]
- Italian Ministry of Ecological Transition. Linee Guida in Materia di Impianti Agrivoltaici; MITE: Rome, Italy, 2022. Available online: https://www.mase.gov.it/portale/documents/d/guest/linee_guida_impianti_agrivoltaici-pdf (accessed on 17 August 2025).
- Fagnano, M.; Fiorentino, N.; Visconti, D.; Baldi, G.M.; Falce, M.; Acutis, M.; Genovese, M.; Di Blasi, M. Effects of a photovoltaic plant on microclimate and crops’ growth in a Mediterranean area. Agronomy 2024, 14, 466. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, A.; Fu, X.; Li, D. Photovoltaics and agriculture nexus: Exploring the influence of agrivoltaics on food production and electricity generation. IEEE J. Photovolt. 2024, 14, 705–719. [Google Scholar] [CrossRef]
- Bim, J.; Valentová, M. Agrivoltaics System as an Integral Part of Modern Farming. In Proceedings of the 9th International Conference on Energy and Environment Research ICEER 2022, Porto, Portugal, 12–16 September 2022; Caetano, N.S., Felgueiras, M.C., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Sarr, A.; Soro, Y.M.; Tossa, A.K.; Diop, L. Agrivoltaic, a synergistic co-location of agricultural and energy production in perpetual mutation: A comprehensive review. Processes 2023, 11, 948. [Google Scholar] [CrossRef]
- Parisi, V.; Menta, C.; Gardi, C.; Jacomini, C.; Mozzanica, E. Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agric. Ecosyst. Environ. 2005, 105, 323–333. [Google Scholar] [CrossRef]
- Menta, C.; Conti, F.D.; Pinto, S.; Bodini, A. Soil biological quality index (QBS-ar): 15 years of application at global scale. Ecol. Indic. 2018, 85, 773–780. [Google Scholar] [CrossRef]
- Ellena, M.; Padulano, R.; Mercogliano, P. Influence of climate change on irrigation demand: Insights from one of the most agricultural regions in Italy (Puglia). Nat. Hazards 2025, 121, 10043–10058. [Google Scholar] [CrossRef]
- Ali, S.A.; Vivaldi, G.A.; Tallou, A.; Lopriore, G.; Stellacci, A.M.; Montesano, F.F.; Mazzeo, A.; Ferrara, G.; Gadaleta, A.; Camposeo, S. Sustainability potential of marginal areas for food, feed, and non-food production in the Puglia Region, southern Italy: Part II, a review. Agronomy 2024, 14, 472. [Google Scholar] [CrossRef]
- Signore, A.; Di Giovine, F.; Morgese, A.; Sonnante, G.; Santamaria, P. An integrated management of vegetable agro-biodiversity: A case study in the Puglia Region (Italy) on the artichoke landrace ‘Carciofo di Lucera’. Horticulturae 2022, 8, 238. [Google Scholar] [CrossRef]
- Cammerino, A.R.B.; Ingaramo, M.; Piacquadio, L.; Monteleone, M. How Much Longer Can We Tolerate Further Loss of Farmland Without Proper Planning? The Agrivoltaic Case in the Apulia Region (Italy). Agronomy 2025, 15, 1177. [Google Scholar] [CrossRef]
- Zito, F.; Giannoccaro, N.I.; Serio, R.; Strazzella, S. Analysis and development of an IoT system for an agrivoltaics plant. Technologies 2024, 12, 106. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrig. Drain. Pap. 1998, 300, D05109. [Google Scholar]
- Leone, D.; Mirabile, M.; Altieri, G.M.; Zimone, A.; Torrisi, B.; Tarasco, E.; Clausi, M. Assessment of soil quality in wetlands in Eastern Sicily. Ecol. Indic. 2023, 153, 110428. [Google Scholar] [CrossRef]
- PVsyst SA. PVsyst Photovoltaic System Simulation Software, version 7.4; PVsyst SA: Geneva, Switzerland, 2024; Available online: https://www.pvsyst.com (accessed on 17 August 2025).
- Pascaris, A.S.; Schelly, C.; Pearce, J.M. A first investigation of agriculture sector perspectives on the opportunities and barriers for agrivoltaics. Agronomy 2020, 10, 1885. [Google Scholar] [CrossRef]
- Prakash, V.; Lunagaria, M.M.; Trivedi, A.P.; Upadhyaya, A.; Kumar, R.; Das, A.; Gupta, A.K.; Kumar, Y. Shading and PAR under different density agrivoltaic systems, their simulation and effect on wheat productivity. Eur. J. Agron. 2023, 149, 126922. [Google Scholar] [CrossRef]
- Reasoner, M.; Ghosh, A. Agrivoltaic engineering and layout optimization approaches in the transition to renewable energy technologies: A review. Challenges 2022, 13, 43. [Google Scholar] [CrossRef]
- Zainali, S.; Lu, S.M.; Stridh, B.; Avelin, A.; Amaducci, S.; Colauzzi, M.; Campana, P.E. Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts. Appl. Energy 2023, 339, 120981. [Google Scholar] [CrossRef]
- Marrou, H.; Dufour, L.; Wery, J. How does a shelter of solar panels influence water flows in a soil–crop system? Eur. J. Agron. 2013, 50, 38–51. [Google Scholar] [CrossRef]
- Wallace, J.S. Increasing agricultural water use efficiency to meet future food production. Agric. Ecosyst. Environ. 2000, 82, 105–119. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Ramos-Fuentes, I.A.; Elamri, Y.; Cheviron, B.; Dejean, C.; Belaud, G.; Fumey, D. Effects of shade and deficit irrigation on maize growth and development in fixed and dynamic AgriVoltaic systems. Agric. Water Manag. 2023, 280, 108187. [Google Scholar] [CrossRef]
- Amaducci, S.; Yin, X.; Colauzzi, M. Agrivoltaic systems to optimise land use for electric energy production. Appl. Energy 2018, 220, 545–561. [Google Scholar] [CrossRef]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wery, J. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Joukhadar, I.; Estrada, M.; Velasco-Cruz, C.; Coon, D.; Lavrova, O.; Thompson, M.; Guzman, I.; Walker, S. Impact of agrivoltaic shade on Beet Curly Top Virus and yield in chile pepper (Capsicum annuum). HortScience 2025, 60, 841–851. [Google Scholar] [CrossRef]
- Asa’a, S.; Reher, T.; Rongé, J.; Diels, J.; Poortmans, J.; Radhakrishnan, H.S.; van der Heide, A.; Van de Poel, B.; Daenen, M. A multidisciplinary view on agrivoltaics: Future of energy and agriculture. Renew. Sustain. Energy Rev. 2025, 200, 114515. [Google Scholar] [CrossRef]
- Hernández, V.; Di Blasi, M.; Genovese, M.; Andrés, R.; Cos, J.; Contreras, F.; Guevara, A.; Hellín, P.; Flores, P. Agrivoltaic in a Semi-Aride Climate: Co-Existence of Agricultural Activities in Utility-Scale Plants of EGP for Multiple and Sustainable Land Use: A Case Study of Pepper, Aloe Vera and Thyme. In Proceedings of the AgriVoltaics Conference Proceedings, Turin, Italy, 14–16 June 2022; Volume 1. [Google Scholar]
- Marrou, H.; Wery, J.; Dufour, L.; Dupraz, C. Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. Eur. J. Agron. 2013, 44, 54–66. [Google Scholar] [CrossRef]
- Zheng, J.; Meng, S.; Zhang, X.; Zhao, H.; Ning, X.; Chen, F.; Abaker Omer, A.A.; Ingenhoff, J.; Liu, W. Increasing the comprehensive economic benefits of farmland with even-lighting agrivoltaic systems. PLoS ONE 2021, 16, e0254482. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.H.; Jeong, Y.; Kim, D.; Seo, B.H.; Seo, Y.J.; Kim, T.; Choi, W. Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment. Appl. Energy 2023, 341, 121130. [Google Scholar] [CrossRef]
Daily Mean T (°C) | Daily Mean RH (%) | Daily Mean Wind Speed (m·s−1) | Cumulated ET0 (mm) | |
---|---|---|---|---|
Lettuce growing cycle | ||||
Control | 14.8 | 70.7 | ||
PV conditions | 15.1 | 70.9 | ||
Pepper growing cycle | ||||
Control | 32.0 | 48.3 | 2.4 | 480 |
Area close PV structure | 30.4 | 52.3 | 2.2 | 345 |
Area distant PV structure | 30.4 | 52.6 | 1.6 | 449 |
Chili pepper growing cycle | ||||
Control | 29.6 | 56.7 | 2.3 | 597 |
Area close PV structure | 27.4 | 64.9 | 1.8 | 397 |
Area distant PV structure | 27.8 | 67.3 | 1.6 | 541 |
Plant Height (cm) | Shoot Fresh Weight (g plant−1) | Fruit Fresh Weight (g plant−1) | SPAD | |
---|---|---|---|---|
Lettuce | ||||
Control | 30.5 a | 727.1 a | 30.1 | |
Area close PV structure | 25.1 b | 404.2 b | 31.9 | |
Area distant PV structure | 26.6 b | 518.6 b | 30.3 | |
Significance | *** | *** | ns | |
Pepper | ||||
Date | ||||
1 August 2024 | 39.1 | 209.1 | 121.4 | 48 |
27 August 2024 | 61.2 | 372.7 | 242.2 | 49 |
Treatment | ||||
Control | 52.6 a | 374 a | 248.6 a | 51 a |
Area close PV structure | 56.8 a | 295 ab | 174.2 ab | 45 b |
Area distant PV structure | 41.1 b | 204 b | 122.7 b | 50 a |
Significance | ||||
Date | *** | *** | *** | ns |
Treatment | *** | *** | *** | ** |
Treatment × Date | *** | ns | ns | ns |
Chili pepper | ||||
Date | ||||
2 September 2024 | 53.4 | 778.4 | 401.5 | 55 |
11 October 2024 | 55.4 | 862.6 | 409.0 | 53 |
Treatment | ||||
Control | 63.6 a | 1514.8 a | 913.8 a | 49.9 b |
Area close PV structure | 54.7 b | 510.7 b | 195.7 b | 50.6 b |
Area distant PV structure | 45.4 c | 472.8 b | 131.9 b | 60.7 a |
Significance | ||||
Date | ns | ns | ns | ns |
Treatment | *** | *** | *** | *** |
Treatment × Date | ns | ns | ns | ns |
QBS_R1 | QBS_R2 | QBS_R3 | Mean QBS-ar | QBS-Max (R1 + R2 + R3) | Total Individuals | |
---|---|---|---|---|---|---|
Pepper growing cycle | ||||||
Control | 45 | 60 | 67 | 57.3 | 97 | 28 |
Area close PV structure | 46 | 96 | 65 | 69 | 122 | 48 |
Area distant PV structure | 60 | 70 | 82 | 70.7 | 102 | 34 |
Chili pepper growing cycle | ||||||
Control | 46 | 45 | 45 | 45.3 | 56 | 25 |
Area close PV structure | 51 | 75 | 30 | 52 | 145 | 30 |
Area distant PV structure | 39 | 75 | 50 | 54.7 | 126 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tucci, V.; Montesano, F.F.; Altieri, G.M.; Bari, G.; Tarasco, E.; Zito, F.; Strazzella, S.; Stellacci, A.M. Microclimatic Parameters, Soil Quality, and Crop Performance of Lettuce, Pepper, and Chili Pepper as Affected by Modified Growing Conditions in a Photovoltaic Plant: A Case Study in the Puglia Region (Italy). Agronomy 2025, 15, 2035. https://doi.org/10.3390/agronomy15092035
Tucci V, Montesano FF, Altieri GM, Bari G, Tarasco E, Zito F, Strazzella S, Stellacci AM. Microclimatic Parameters, Soil Quality, and Crop Performance of Lettuce, Pepper, and Chili Pepper as Affected by Modified Growing Conditions in a Photovoltaic Plant: A Case Study in the Puglia Region (Italy). Agronomy. 2025; 15(9):2035. https://doi.org/10.3390/agronomy15092035
Chicago/Turabian StyleTucci, Vincenzo, Francesco Fabiano Montesano, Giambattista Maria Altieri, Giuseppe Bari, Eustachio Tarasco, Francesco Zito, Sergio Strazzella, and Anna Maria Stellacci. 2025. "Microclimatic Parameters, Soil Quality, and Crop Performance of Lettuce, Pepper, and Chili Pepper as Affected by Modified Growing Conditions in a Photovoltaic Plant: A Case Study in the Puglia Region (Italy)" Agronomy 15, no. 9: 2035. https://doi.org/10.3390/agronomy15092035
APA StyleTucci, V., Montesano, F. F., Altieri, G. M., Bari, G., Tarasco, E., Zito, F., Strazzella, S., & Stellacci, A. M. (2025). Microclimatic Parameters, Soil Quality, and Crop Performance of Lettuce, Pepper, and Chili Pepper as Affected by Modified Growing Conditions in a Photovoltaic Plant: A Case Study in the Puglia Region (Italy). Agronomy, 15(9), 2035. https://doi.org/10.3390/agronomy15092035