Biocontrol and Growth-Promoting Potential of Antagonistic Strain YL84 Against Verticillium dahliae
Abstract
1. Introduction
2. Materials and Methods
2.1. Media and Test Strains
2.2. In Vitro Efficacy Assessment of Strain YL84 Against V. dahliae
2.2.1. In Vitro Inhibitory Effect of Strain YL84 on V. dahliae
2.2.2. Inhibitory Effect of Sterilized Fermentation Filtrate of Strain YL84 on Conidial Germination of V. dahliae
2.2.3. Inhibitory Effect of Sterilized Fermentation Filtrate of Strain YL84 on Mycelial Growth of V. dahliae
2.2.4. Inhibitory Effect of Sterilized Fermentation Filtrate of Strain YL84 on Verticillium Wilt in Cotton
2.3. Inhibitory Mechanism of Sterilized Fermentation Filtrate from Strain YL84 Against V. dahliae
2.3.1. Effects of Sterilized Fermentation Filtrate from Strain YL84 on Mycelial Morphology of V. dahliae
2.3.2. Effects of Sterilized Fermentation Filtrate from Strain YL84 on the Cell Membrane Permeability of Mycelia in V. dahliae
2.3.3. Effects of Sterilized Fermentation Filtrate from Strain YL84 on Cell Wall-Degrading Enzymes of V. dahliae
2.4. Growth-Promoting Effects of Sterilized Fermentation Filtrate from Strain YL84 on Cotton Plants
2.5. Statistical Analysis
3. Results
3.1. In Vitro Inhibitory Effects of Strain YL84 on V. dahliae
3.2. Inhibitory Effect of Sterilized Fermentation Filtrate from Strain YL84 on the Germination of Conidia in V. dahliae
3.3. Inhibitory Effect of Sterilized Fermentation Filtrate from Strain YL84 on Mycelial Growth of V. dahliae
3.4. Efficacy of Sterilized Fermentation Filtrate from Strain YL84 in Controlling Verticillium Wilt in Cotton
3.5. Effects of Sterilized Fermentation Filtrate from Strain YL84 on the Mycelial Morphology of V. dahliae
3.6. Effects of Sterilized Fermentation Filtrate from Strain YL84 on Cell Permeability of V. dahliae
3.7. Effects of Sterilized Fermentation Filtrate from Strain YL84 on Cell Wall-Degrading Enzymes in V. dahliae
3.8. Growth-Promoting Effects of YL84 Sterilized Fermentation Filtrate on Cotton Seedlings
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Q.; Bai, S.; Zhang, T.; Duan, C.; Zhao, J.; Xue, Q.; Li, Y. Effects of seed-coating preparations of living Streptomyces globisporus on plant growth promotion and disease control against Verticillium wilt in cotton. Sustainability 2021, 13, 6001. [Google Scholar] [CrossRef]
- Yang, J.J.; Ning, K.W.; Wang, M.J.; Tang, B.H.; Cai, J.L.; Liu, A.P.; Xie, X.D. Evaluation method of drought resistance of upland cotton during germination period and screening of high-quality germplasm resources in Shihezi reclamation area. Curr. Biotechnol. 2025, 15, 486–494. [Google Scholar] [CrossRef]
- Wang, Y.H.; Deng, M.X.; Wu, Y.X.; Guo, S.M.; Wang, S.C.; Li, P.C.; Zhang, Z.G.; Pan, Z.L.; Li, X.; Li, J.H.; et al. The impact of extreme temperatures on cotton yield under the background of climate warming: A case study of Xinjiang. Chin. J. Eco Agric. 2025, in press.
- Deketelaere, S.; Tyvaert, L.; França, S.C.; Höfte, M. Desirable traits of a good biocontrol agent against Verticillium wilt. Front. Microbiol. 2017, 8, 1186. [Google Scholar] [CrossRef]
- Klosterman, S.J.; Atallah, Z.K.; Vallad, G.E.; Subbarao, K.V. Diversity, pathogenicity, and management of Verticillium species. Annu. Rev. Phytopathol. 2009, 47, 39–62. [Google Scholar] [CrossRef]
- Inderbitzin, P.; Subbarao, K.V. Verticillium systematics and evolution: How confusion impedes Verticillium wilt management and how to resolve it. Phytopathology 2014, 104, 564–574. [Google Scholar] [CrossRef]
- Shaheen, M.; Ali, M.Y.; Muhammad, T.; Qayyum, M.A.; Atta, S.; Bashir, S.; Bashir, M.A.; Hashim, S.; Hashem, M.; Alamri, S. New promising high yielding cotton Bt-Variety RH-647 adapted for specific agro-climatic zone. Saudi J. Biol. Sci. 2021, 28, 4329–4333. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Yang, L.; Li, W.; Xu, D.; Yang, N.; Li, G.; Wan, P. Diversity and biocontrol potential of culturable endophytic fungi in cotton. Front. Microbiol. 2021, 12, 698930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Rong, W.; Yang, J.; Li, Z.; Wu, L.; Zhang, G.; Ma, Z. Histochemical analyses reveal that stronger intrinsic defenses in Gossypium barbadense than in G. hirsutum are associated with resistance to Verticillium dahliae. Mol. Plant Microbe Interact. 2017, 30, 984–996. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, N.; Zhao, L.; Zhu, H.; Tang, C. Transcriptome analysis reveals the defense mechanism of cotton against Verticillium dahliae in the presence of the biocontrol fungus Chaetomium globosum CEF-082. BMC Plant Biol. 2020, 20, 89. [Google Scholar] [CrossRef]
- Kong, W.L.; Ni, H.; Wang, W.Y.; Wu, X.Q. Antifungal effects of volatile organic compounds produced by Trichoderma koningiopsis T2 against Verticillium dahliae. Front. Microbiol. 2022, 13, 1013468. [Google Scholar] [CrossRef]
- Iqbal, O.; Syed, R.N.; Rajput, N.A.; Wang, Y.; Lodhi, A.M.; Khan, R.; Jibril, S.M.; Atiq, M.; Li, C. Antagonistic activity of two Bacillus strains against Fusarium oxysporum f. sp. capsici (FOC-1) causing Fusarium wilt and growth promotion activity of chili plant. Front. Microbiol. 2024, 15, 1388439. [Google Scholar] [CrossRef]
- Baron, N.C.; Rigobelo, E.C. Endophytic fungi: A tool for plant growth promotion and sustainable agriculture. Mycology 2022, 13, 39–55. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef]
- Ta, Y.; Fu, S.; Liu, H.; Zhang, C.; He, M.; Yu, H.; Ren, Y.; Han, Y.; Hu, W.; Yan, Z. Evaluation of Bacillus velezensis F9 for Cucumber Growth Promotion and Suppression of Fusarium wilt Disease. Microorganisms 2024, 12, 1882. [Google Scholar] [CrossRef]
- Hashem, A.; Tabassum, B.; Abd_Allah, E.F. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Lei, S.; Zhang, H.; Liu, Z.; Yang, J.; Niu, Q. Effect of volatile compounds produced by the cotton endophytic bacterial strain Bacillus SP. T6 against Verticillium wilt. BMC Microbiol. 2023, 23, 8. [Google Scholar] [CrossRef]
- Song, J.; Wang, D.; Han, D.; Zhang, D.D.; Li, R.; Kong, Z.Q.; Dai, X.F.; Subbarao, K.V.; Chen, J.Y. Characterization of the endophytic Bacillus subtilis KRS015 strain for its biocontrol efficacy against Verticillium dahliae. Phytopathology 2024, 114, 61–72. [Google Scholar] [CrossRef]
- Gao, C.; Wang, B.; Ma, G.C.; Zeng, H. Green fluorescent protein-tagged Bacillus axarquiensis TUBP1 reduced cotton Verticillium wilt incidence by altering soil rhizosphere microbial communities. Curr. Microbiol. 2021, 78, 3562–3576. [Google Scholar] [CrossRef]
- Chen, N.; Chen, J.; Min, Q.R.; An, D.R.; Wen, J.M.; Yang, Z.; Wang, Y. Identification and Antifungal Mechanism of Biocontrol Bacteria against Tobacco Brown Spot. Acta Agric. Boreali-Occident. Sin. 2023, 32, 1268–1278. [Google Scholar] [CrossRef]
- Tian, L.; Chen, N.; Cao, S.; Chen, J.; Ai, S.L.; Yang, Z.; Wang, P.P.; Wang, Y. Identification of the biological control bacterium XNB-02 and its action mechanism in prevention of the tobacco brown spot. J. Plant Prot. 2024, 51, 804–816. [Google Scholar] [CrossRef]
- Wei, P.; Gao, M.; Zhou, S.; Liu, G.; Wang, P.; Liu, C.; Yang, F.; Fu, H. Antifungal activity of Bacillus velezensis X3-2 against plant pathogens and biocontrol effect on potato late blight. Agriculture 2024, 14, 2224. [Google Scholar] [CrossRef]
- Lan, Q.; Liu, Y.; Mu, R.; Wang, X.; Zhou, Q.; Islam, R.; Su, X.; Tian, Y. Biological control effect of antagonistic bacteria on potato black scurf disease caused by Rhizoctonia solani. Agronomy 2024, 14, 351. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.; Bi, Y.; Wang, T.; Dong, Y.; Yang, Q.; Zhang, T. 2-Phenylethyl isothiocyanate exerts antifungal activity against Alternaria alternata by affecting membrane integrity and mycotoxin production. Toxins 2020, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, C.; Song, X.; Li, J.; Zhang, P.; Sun, F.; Geng, Z.; Liu, X. Isolation and identification of antagonistic Bacillus amyloliquefaciens HSE-12 and its effects on peanut growth and rhizosphere microbial community. Front. Microbiol. 2023, 14, 1274346. [Google Scholar] [CrossRef]
- Zhang, G.; Meng, Z.; Ge, H.; Yuan, J.; Qiang, S.; Jiang, P.A.; Ma, D. Investigating Verticillium wilt occurrence in cotton and its risk management by the direct return of cotton plants infected with Verticillium dahliae to the field. Front. Plant Sci. 2023, 14, 1220921. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Shi, M.; Dou, X.; Pan, W.; Ma, D.; Luo, M.; Fu, B. Cystobacter fuscus HM-E: A novel biocontrol agent against cotton Verticillium wilt. Front. Microbiol. 2025, 16, 1555523. [Google Scholar] [CrossRef]
- Zhou, J.; Xie, Y.; Liao, Y.; Li, X.; Li, Y.; Li, S.; Ma, X.; Lei, S.; Lin, F.; Jiang, W.; et al. Characterization of a Bacillus velezensis strain isolated from Bolbostemmatis Rhizoma displaying strong antagonistic activities against a variety of rice pathogens. Front. Microbiol. 2022, 13, 983781. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shi, L.; Wang, D.; Li, L.; Loake, G.J.; Yang, X.; Jiang, J. White rot disease protection and growth promotion of garlic (Allium sativum) by endophytic bacteria. Plant Pathol. 2019, 68, 1543–1554. [Google Scholar] [CrossRef]
- Sheng, Y.; Li, X.; Yang, H.; Chu, M.; Niu, X.; Wang, N.; Bao, H.; Zhan, F.; Yang, R.; Lou, K.; et al. Culture optimization of endophytic and rhizosphere bacteria and exploration of antifungal substances. Appl. Biochem. Microbiol. 2025, 61, 372–384. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Zhao, S.; Xiang, B.; Yao, Z. Lipopeptide production by Bacillus atrophaeus strain B44 and its biocontrol efficacy against cotton rhizoctoniosis. Biotechnol. Lett. 2021, 43, 1183–1193. [Google Scholar] [CrossRef]
- Su, X.X.; Wan, T.T.; Gao, Y.D.; Zhang, S.H.; Chen, X.; Huang, L.Q.; Wang, W. Action mechanism of the potential biocontrol agent Brevibacillus laterosporus SN19-1 against Xanthomonas oryzae PV. oryzae causing rice bacterial leaf blight. Arch. Microbiol. 2024, 206, 40. [Google Scholar] [CrossRef]
- Sun, M.; Ye, S.; Xu, Z.; Wan, L.; Zhao, Y. Endophytic Bacillus altitudinis Q7 from Ginkgo biloba inhibits the growth of Alternaria alternata in vitro and its inhibition mode of action. Biotechnol. Biotechnol. Equip. 2021, 35, 880–894. [Google Scholar] [CrossRef]
- Bidochka, M.J.; Burke, S.; Ng, L. Extracellular hydrolytic enzymes in the fungal genus Verticillium: Adaptations for pathogenesis. Can. J. Microbiol. 1999, 45, 856–864. [Google Scholar] [CrossRef]
- Cooper, R.M.; Wood, R. Induction of synthesis of extracellular cell-wall degrading enzymes in vascular wilt fungi. Nature 1973, 246, 309–311. [Google Scholar] [CrossRef]
- Cooper, R.M.; Wood, R. Cell wall degrading enzymes of vascular wilt fungi. III. Possible involvement of endo-pectin lyase in Verticillium wilt of tomato. Physiol. Plant Pathol. 1980, 16, 285–300. [Google Scholar] [CrossRef]
- Carder, J.; Hignett, R.; Swinburne, T. Relationship between the virulence of hop isolates of Verticillium albo-atrum and their in vitro secretion of cell-wall degrading enzymes. Physiol. Mol. Plant Pathol. 1987, 31, 441–452. [Google Scholar] [CrossRef]
- Novo, M.; Pomar, F.; Gayoso, C.; Merino, F. Cellulase activity in isolates of Verticillium dahliae differing in aggressiveness. Plant Dis. 2006, 90, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, D.B.; Frikha-Gargouri, O.; Tounsi, S. Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biol. Control 2018, 124, 61–67. [Google Scholar] [CrossRef]
- Lapidot, D.; Dror, R.; Vered, E.; Mishli, O.; Levy, D.; Helman, Y. Disease protection and growth promotion of potatoes (Solanum tuberosum L.) by Paenibacillus dendritiformis. Plant Pathol. 2015, 64, 545–551. [Google Scholar] [CrossRef]
- Awla, H.K.; Kadir, J.; Othman, R.; Rashid, T.S.; Hamid, S.; Wong, M.Y. Plant growth-promoting abilities and biocontrol efficacy of Streptomyces sp. UPMRS4 against Pyricularia oryzae. Biol. Control 2017, 112, 55–63. [Google Scholar] [CrossRef]
- Shahid, I.; Han, J.; Hanooq, S.; Malik, K.A.; Borchers, C.H.; Mehnaz, S. Profiling of metabolites of Bacillus spp. and their application in sustainable plant growth promotion and biocontrol. Front. Sustain. Food Syst. 2021, 5, 605195. [Google Scholar] [CrossRef]
Treatment | Disease Index | Control Efficacy (%) |
---|---|---|
100 μg/mL sterilized fermentation filtrate | 52.84 ± 1.95 d | 39.54 ± 2.25 c |
150 μg/mL sterilized fermentation filtrate | 41.23 ± 2.13 c | 53.01 ± 2.82 b |
250 μg/mL sterilized fermentation filtrate | 29.14 ± 2.12 b | 66.69 ± 2.17 a |
CK | 87.41 ± 1.21 a | — |
Concentration | Plant Height/cm | Root Length/cm | Fresh Weight/g | Dry Weight/g |
---|---|---|---|---|
CK | 10.91 ± 1.99 c | 12.75 ± 2.54 b | 1.31 ± 0.12 b | 0.12 ± 0.02 b |
100 μg/mL | 11.93 ± 0.32 bc | 14.96 ± 1.18 ab | 1.53 ± 0.07 a | 0.15 ± 0.03 ab |
150 μg/mL | 13.61 ± 0.49 ab | 16.91 ± 1.92 a | 1.64 ± 0.06 a | 0.18 ± 0.03 ab |
250 μg/mL | 14.6 ± 0.48 a | 16.52 ± 0.58 a | 1.68 ± 0.07 a | 0.19 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Xue, Q.; Yu, J.; Zhang, Z.; Wang, Z.; Wang, L.; Feng, H. Biocontrol and Growth-Promoting Potential of Antagonistic Strain YL84 Against Verticillium dahliae. Agronomy 2025, 15, 1997. https://doi.org/10.3390/agronomy15081997
Tang Y, Xue Q, Yu J, Zhang Z, Wang Z, Wang L, Feng H. Biocontrol and Growth-Promoting Potential of Antagonistic Strain YL84 Against Verticillium dahliae. Agronomy. 2025; 15(8):1997. https://doi.org/10.3390/agronomy15081997
Chicago/Turabian StyleTang, Yuxin, Qinyuan Xue, Jiahui Yu, Zhen Zhang, Zhe Wang, Lan Wang, and Hongzu Feng. 2025. "Biocontrol and Growth-Promoting Potential of Antagonistic Strain YL84 Against Verticillium dahliae" Agronomy 15, no. 8: 1997. https://doi.org/10.3390/agronomy15081997
APA StyleTang, Y., Xue, Q., Yu, J., Zhang, Z., Wang, Z., Wang, L., & Feng, H. (2025). Biocontrol and Growth-Promoting Potential of Antagonistic Strain YL84 Against Verticillium dahliae. Agronomy, 15(8), 1997. https://doi.org/10.3390/agronomy15081997