Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Source and Processing
2.3. Research Methods
2.3.1. ES Calculation Methods
- (1)
- InVEST model part module algorithm
- (2)
- Forage supply
2.3.2. Ecosystem Service Trade-Off/Synergy Assessment Methodology
2.3.3. Optimal Parameter Geographic Detector
3. Results
3.1. Spatiotemporal Distribution Characteristics of Ecosystem Services
3.2. Spatial Heterogeneity Analysis of Interactions Between Ecosystem Services
3.3. Drivers of Ecosystem Service Trade-Off and Synergy: A Systematic Analysis
3.3.1. Driving Factors and Multicollinearity Test Results
3.3.2. Optimal Discretization Processing
3.3.3. Single-Factor Detection
3.3.4. Interaction Detector
4. Discussion
4.1. Causal Analysis of the Spatial Pattern of Ecosystem Services Driven by Land Use
4.2. Trade-Offs/Synergies of Ecosystem Services
4.3. Drivers of Ecosystem Service Trade-Offs/Synergies
4.4. Insufficient
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.255337 | 0.0000000008 | 0.000000006 | 0.000000003 | 0.0000000010 |
X2 | 0.558735 | 0.0000000003 | 0.000000002 | 0.000000002 | 0.0000000007 |
X3 | 0.698092 | 0.0000000008 | 0.000000006 | 0.000000003 | 0.0000000010 |
X4 | 0.21912 | 0.0000000002 | 0.000000001 | 0.000000001 | 0.0000000007 |
X5 | 0.003794 | 0.0120000000 | 0.046000000 | 0.012000000 | 0.0120000000 |
X6 | 0.151188 | 0.0000000007 | 0.000000006 | 0.000000003 | 0.0000000010 |
X7 | 0.239243 | 0.0000000002 | 0.000000001 | 0.000000001 | 0.0000000007 |
X8 | 0.130318 | 0.000000001 | 0.000000008 | 0.000000003 | 0.0000000010 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.282768 | 0.0000000005 | 0.000000004 | 0.000000003 | 0.0000000008 |
X2 | 0.651438 | 0.0000000005 | 0.000000004 | 0.000000003 | 0.0000000008 |
X3 | 0.745119 | 0.0000000004 | 0.000000003 | 0.000000003 | 0.0000000008 |
X4 | 0.28449 | 0.0000000006 | 0.000000005 | 0.000000003 | 0.0000000008 |
X5 | 0.155435 | 0.0000000001 | 0.0000000008 | 0.0000000008 | 0.0000000007 |
X6 | 0.563206 | 0.0000000008 | 0.000000006 | 0.000000003 | 0.0000000009 |
X7 | 0.149707 | 0.0000000002 | 0.000000001 | 0.000000001 | 0.0000000007 |
X8 | 0.032001 | 0.0000002000 | 0.000001300 | 0.000000200 | 0.0000002000 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.289111 | 0.0000000009 | 0.0000000073 | 0.0000000020 | 0.0000000010 |
X2 | 0.633126 | 0.0000000002 | 0.0000000016 | 0.0000000014 | 0.0000000007 |
X3 | 0.732648 | 0.0000000004 | 0.0000000033 | 0.0000000020 | 0.0000000007 |
X4 | 0.150473 | 0.0000000005 | 0.0000000040 | 0.0000000020 | 0.0000000007 |
X5 | 0.085506 | 0.0000000003 | 0.0000000024 | 0.0000000018 | 0.0000000007 |
X6 | 0.545604 | 0.0000000005 | 0.0000000039 | 0.0000000020 | 0.0000000007 |
X7 | 0.14948 | 0.0000000002 | 0.0000000014 | 0.0000000014 | 0.0000000007 |
X8 | 0.00453 | 0.0286000000 | 0.0089000000 | 0.0210000000 | 0.0286000000 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.354 | 0.0000000002 | 0.0000000016 | 0.0000000012 | 0.0000000005 |
X2 | 0.781 | 0.0000000007 | 0.0000000060 | 0.0000000022 | 0.0000000010 |
X3 | 0.788 | 0.0000000004 | 0.0000000028 | 0.0000000018 | 0.0000000006 |
X4 | 0.249 | 0.0000000001 | 0.0000000007 | 0.0000000007 | 0.0000000005 |
X5 | 0.0626 | 0.0000000001 | 0.0000000010 | 0.0000000009 | 0.0000000005 |
X6 | 0.34 | 0.0000000009 | 0.0000000073 | 0.0000000022 | 0.0000000010 |
X7 | 0.162 | 0.0000000004 | 0.0000000032 | 0.0000000018 | 0.0000000006 |
X8 | 0.0318 | 0.0000000077 | 0.0000000619 | 0.0000000077 | 0.0000000077 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.237 | 0.0000000006 | 0.0000000050 | 0.0000000013 | 0.0000000006 |
X2 | 0.498 | 0.0000000003 | 0.0000000021 | 0.0000000013 | 0.0000000004 |
X3 | 0.67 | 0.0000000003 | 0.0000000025 | 0.0000000013 | 0.0000000004 |
X4 | 0.104 | 0.0000000001 | 0.0000000007 | 0.0000000006 | 0.0000000003 |
X5 | 0.0676 | 0.0000000000 | 0.0000000003 | 0.0000000003 | 0.0000000003 |
X6 | 0.363 | 0.0000000004 | 0.0000000033 | 0.0000000013 | 0.0000000005 |
X7 | 0.188 | 0.0000000001 | 0.0000000010 | 0.0000000008 | 0.0000000003 |
X8 | 0.0332 | 0.0000000003 | 0.0000000026 | 0.0000000013 | 0.0000000004 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.241 | 0.0000000008 | 0.0000000061 | 0.0000000026 | 0.0000000009 |
X2 | 0.385 | 0.0000000003 | 0.0000000022 | 0.0000000022 | 0.0000000009 |
X3 | 0.702 | 0.0000000008 | 0.0000000063 | 0.0000000026 | 0.0000000009 |
X4 | 0.0547 | 0.0000000007 | 0.0000000053 | 0.0000000026 | 0.0000000009 |
X5 | 0.0242 | 0.0000000003 | 0.0000000026 | 0.0000000022 | 0.0000000009 |
X6 | 0.234 | 0.0000000005 | 0.0000000042 | 0.0000000026 | 0.0000000009 |
X7 | 0.117 | 0.0000000003 | 0.0000000024 | 0.0000000022 | 0.0000000009 |
X8 | 0.00488 | 0.00959000000 | 0.0100000000 | 0.0959000000 | 0.0959000000 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.157 | 0.0000000006 | 0.0000000045 | 0.0000000043 | 0.0000000010 |
X2 | 0.653 | 0.0000000006 | 0.0000000046 | 0.0000000043 | 0.0000000010 |
X3 | 0.821 | 0.0000000006 | 0.0000000048 | 0.0000000043 | 0.0000000010 |
X4 | 0.405 | 0.0000000006 | 0.0000000046 | 0.0000000043 | 0.0000000010 |
X5 | 0.00493 | 0.0014600000 | 0.0116800000 | 0.0014600000 | 0.0014600000 |
X6 | 0.283 | 0.0000000009 | 0.0000000069 | 0.0000000043 | 0.0000000011 |
X7 | 0.192 | 0.0000000005 | 0.0000000043 | 0.0000000043 | 0.0000000010 |
X8 | 0.169 | 0.0000000010 | 0.0000000079 | 0.0000000043 | 0.0000000011 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.172786 | 0.0000000009 | 0.0000000075 | 0.0000000031 | 0.0000000009 |
X2 | 0.662325 | 0.0000000006 | 0.0000000049 | 0.0000000031 | 0.0000000009 |
X3 | 0.829611 | 0.0000000008 | 0.0000000063 | 0.0000000031 | 0.0000000009 |
X4 | 0.246525 | 0.0000000001 | 0.0000000008 | 0.0000000008 | 0.0000000005 |
X5 | 0.155554 | 0.0000000001 | 0.0000000010 | 0.0000000009 | 0.0000000005 |
X6 | 0.601983 | 0.0000000007 | 0.0000000054 | 0.0000000031 | 0.0000000009 |
X7 | 0.182385 | 0.0000000003 | 0.0000000023 | 0.0000000018 | 0.0000000008 |
X8 | 0.054149 | 0.0000000006 | 0.0000000051 | 0.0000000031 | 0.0000000009 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.26961 | 0.0000000004 | 0.0000000031 | 0.0000000019 | 0.0000000007 |
X2 | 0.694178 | 0.0000000003 | 0.0000000023 | 0.0000000017 | 0.0000000007 |
X3 | 0.841744 | 0.0000000004 | 0.0000000035 | 0.0000000019 | 0.0000000007 |
X4 | 0.174759 | 0.0000000002 | 0.0000000013 | 0.0000000011 | 0.0000000007 |
X5 | 0.068024 | 0.0000000000 | 0.0000000003 | 0.0000000003 | 0.0000000003 |
X6 | 0.587 | 0.0000000006 | 0.0000000046 | 0.0000000019 | 0.0000000007 |
X7 | 0.237359 | 0.0000000005 | 0.0000000040 | 0.0000000019 | 0.0000000007 |
X8 | 0.032513 | 0.0000000007 | 0.0000000054 | 0.0000000019 | 0.0000000007 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.11504 | 0.0000000004 | 0.0000000028 | 0.0000000025 | 0.0000000008 |
X2 | 0.843782 | 0.0000000006 | 0.0000000046 | 0.0000000026 | 0.0000000008 |
X3 | 0.854586 | 0.0000000007 | 0.0000000056 | 0.0000000026 | 0.0000000008 |
X4 | 0.291416 | 0.0000000006 | 0.0000000051 | 0.0000000026 | 0.0000000008 |
X5 | 0.071992 | 0.0000000004 | 0.0000000034 | 0.0000000025 | 0.0000000008 |
X6 | 0.478987 | 0.0000000005 | 0.0000000041 | 0.0000000026 | 0.0000000008 |
X7 | 0.177309 | 0.0000000002 | 0.0000000017 | 0.0000000017 | 0.0000000008 |
X8 | 0.037881 | 0.0000019800 | 0.0000158400 | 0.0000019800 | 0.0000019800 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.261337 | 0.0000000008 | 0.0000000067 | 0.0000000033 | 0.0000000010 |
X2 | 0.507676 | 0.0000000010 | 0.0000000078 | 0.0000000033 | 0.0000000010 |
X3 | 0.791433 | 0.0000000003 | 0.0000000025 | 0.0000000019 | 0.0000000008 |
X4 | 0.12444 | 0.0000000001 | 0.0000000005 | 0.0000000005 | 0.0000000005 |
X5 | 0.05541 | 0.0000000003 | 0.0000000021 | 0.0000000018 | 0.0000000008 |
X6 | 0.428353 | 0.0000000008 | 0.0000000066 | 0.0000000033 | 0.0000000010 |
X7 | 0.249406 | 0.0000000009 | 0.0000000072 | 0.0000000033 | 0.0000000010 |
X8 | 0.085424 | 0.0000000005 | 0.0000000039 | 0.0000000025 | 0.0000000010 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.247474 | 0.0000000001 | 0.0000000008 | 0.0000000008 | 0.0000000005 |
X2 | 0.43786 | 0.0000000003 | 0.0000000025 | 0.0000000018 | 0.0000000005 |
X3 | 0.813703 | 0.0000000007 | 0.0000000057 | 0.0000000018 | 0.0000000008 |
X4 | 0.07856 | 0.0000000002 | 0.0000000014 | 0.0000000012 | 0.0000000005 |
X5 | 0.018722 | 0.0000000005 | 0.0000000043 | 0.0000000018 | 0.0000000007 |
X6 | 0.294317 | 0.0000000003 | 0.0000000027 | 0.0000000018 | 0.0000000005 |
X7 | 0.23009 | 0.0000000003 | 0.0000000027 | 0.0000000018 | 0.0000000005 |
X8 | 0.020703 | 0.0000013600 | 0.0000108800 | 0.0000013600 | 0.0000013600 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.230746 | 0.0000000006 | 0.0000000050 | 0.0000000028 | 0.0000000009 |
X2 | 0.649604 | 0.0000000004 | 0.0000000035 | 0.0000000026 | 0.0000000009 |
X3 | 0.732363 | 0.0000000009 | 0.0000000069 | 0.0000000028 | 0.0000000010 |
X4 | 0.26204 | 0.0000000001 | 0.0000000007 | 0.0000000007 | 0.0000000007 |
X5 | 0.00837 | 0.0000015300 | 0.0000122400 | 0.0000015300 | 0.0000015300 |
X6 | 0.242315 | 0.0000000006 | 0.0000000044 | 0.0000000028 | 0.0000000009 |
X7 | 0.235632 | 0.0000000003 | 0.0000000025 | 0.0000000022 | 0.0000000009 |
X8 | 0.127143 | 0.0000000007 | 0.0000000054 | 0.0000000028 | 0.0000000009 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.221917 | 0.0000000007 | 0.0000000055 | 0.0000000034 | 0.0000000010 |
X2 | 0.654757 | 0.0000000004 | 0.0000000029 | 0.0000000026 | 0.0000000010 |
X3 | 0.83844 | 0.0000000010 | 0.0000000076 | 0.0000000034 | 0.0000000010 |
X4 | 0.287774 | 0.0000000007 | 0.0000000055 | 0.0000000034 | 0.0000000010 |
X5 | 0.161991 | 0.0000000002 | 0.0000000017 | 0.0000000017 | 0.0000000010 |
X6 | 0.570393 | 0.0000000010 | 0.0000000079 | 0.0000000034 | 0.0000000010 |
X7 | 0.102766 | 0.0000000004 | 0.0000000030 | 0.0000000026 | 0.0000000010 |
X8 | 0.050459 | 0.0000000008 | 0.0000000065 | 0.0000000034 | 0.0000000010 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.287258 | 0.0000000001 | 0.0000000010 | 0.0000000009 | 0.0000000005 |
X2 | 0.617618 | 0.0000000009 | 0.0000000071 | 0.0000000020 | 0.0000000009 |
X3 | 0.878584 | 0.0000000005 | 0.0000000039 | 0.0000000020 | 0.0000000007 |
X4 | 0.17633 | 0.0000000002 | 0.0000000015 | 0.0000000011 | 0.0000000005 |
X5 | 0.068937 | 0.0000000001 | 0.0000000007 | 0.0000000007 | 0.0000000005 |
X6 | 0.593122 | 0.0000000004 | 0.0000000032 | 0.0000000020 | 0.0000000007 |
X7 | 0.230629 | 0.0000000007 | 0.0000000054 | 0.0000000020 | 0.0000000008 |
X8 | 0.03248 | 0.0000000005 | 0.0000000042 | 0.0000000020 | 0.0000000007 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.229926 | 0.0000000005 | 0.0000000042 | 0.0000000021 | 0.0000000008 |
X2 | 0.80944 | 0.0000000002 | 0.0000000014 | 0.0000000012 | 0.0000000005 |
X3 | 0.819367 | 0.0000000004 | 0.0000000030 | 0.0000000019 | 0.0000000007 |
X4 | 0.3062 | 0.0000000001 | 0.0000000010 | 0.0000000010 | 0.0000000005 |
X5 | 0.106828 | 0.0000000007 | 0.0000000054 | 0.0000000021 | 0.0000000009 |
X6 | 0.462005 | 0.0000000009 | 0.0000000073 | 0.0000000021 | 0.0000000010 |
X7 | 0.112248 | 0.0000000002 | 0.0000000016 | 0.0000000012 | 0.0000000005 |
X8 | 0.016716 | 0.0375000000 | 0.0043000000 | 0.0450000000 | 0.0020000000 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.244138 | 0.0000000001 | 0.0000000009 | 0.0000000009 | 0.0000000006 |
X2 | 0.487104 | 0.0000000005 | 0.0000000037 | 0.0000000020 | 0.0000000006 |
X3 | 0.847809 | 0.0000000007 | 0.0000000052 | 0.0000000020 | 0.0000000007 |
X4 | 0.113414 | 0.0000000005 | 0.0000000037 | 0.0000000020 | 0.0000000006 |
X5 | 0.054546 | 0.0000000002 | 0.0000000017 | 0.0000000013 | 0.0000000006 |
X6 | 0.439496 | 0.0000000006 | 0.0000000045 | 0.0000000020 | 0.0000000006 |
X7 | 0.282796 | 0.0000000002 | 0.0000000013 | 0.0000000011 | 0.0000000006 |
X8 | 0.069216 | 0.0000000004 | 0.0000000032 | 0.0000000020 | 0.0000000006 |
Factor | q_Value | p_Value | p_adj_Bonferroni | p_adj_Holm | p_adj_BH |
---|---|---|---|---|---|
X1 | 0.235208 | 0.0000000003 | 0.0000000024 | 0.0000000016 | 0.0000000005 |
X2 | 0.350275 | 0.0000000007 | 0.0000000054 | 0.0000000016 | 0.0000000008 |
X3 | 0.878884 | 0.0000000004 | 0.0000000030 | 0.0000000016 | 0.0000000005 |
X4 | 0.080203 | 0.0000000002 | 0.0000000017 | 0.0000000016 | 0.0000000005 |
X5 | 0.018765 | 0.0000000003 | 0.0000000020 | 0.0000000016 | 0.0000000005 |
X6 | 0.293163 | 0.0000000003 | 0.0000000027 | 0.0000000016 | 0.0000000005 |
X7 | 0.26801 | 0.0000000002 | 0.0000000016 | 0.0000000016 | 0.0000000005 |
X8 | 0.021577 | 0.0000000537 | 0.0000004296 | 0.0000000537 | 0.0000000537 |
Appendix B
Full Name | Abbreviation | Remarks |
Ecosystem service | ES | Abbreviate with the first letter |
Carbon storage | CS | |
Water yield | WY | |
Soil conservation | SC | |
Forage supply | FS | |
Digital elevation model | DEM | |
Gross domestic product | GDP | |
Optimal parameter-based geographical detector | OPGD | |
Fractional vegetation cover | FVC |
References
- People’s Bank of China Hulunbuir Branch Research Team; Wang, X.F.; Cui, L.J. Investigation and Research on the Modernization of Grassland Animal Husbandry in Hulunbuir City. North Financ. 2023, 6, 100–102. [Google Scholar]
- Kuang, W.; Yan, H.; Zhang, S.; Li, X.; Bao, Z.; Ning, J.; Zhang, P.; Fan, B.; Wang, S. Forage-livestock status in farms and ranches of ecological grass-animal husbandry construction and allocation model of grain-warp-feed in Hulunbuir Agricultural Reclamation Group. Chin. Sci. Bull. 2018, 63, 1711–1721. [Google Scholar] [CrossRef]
- Li, J.; Wuren, Q.; Huang, Z.Y. Analysis on characteristic of plant community species composition under different degeneration degree grassland in the meadow steppe of Hulunbuir. Guangdong Agric. Sci. 2013, 40, 139–143. [Google Scholar]
- Xue, C.L.; Chen, X.H.; Xue, L.R.; Zhang, H.Q.; Chen, J.P.; Li, D.D. Modeling the spatially heterogeneous relationships between tradeoffs and synergies among ecosystem services and potential drivers considering geographic scale in Bairin Left Banner. Sci. Total Environ. 2023, 855, 158834. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems Natures Services Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997; pp. 1–25. [Google Scholar]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Robert, V.O.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Pang, C.Y.; Wen, Q.; Ding, J.M.; Wu, X.Y.; Shi, L.N. Ecosystem services and their trade-offs and synergies in the upper reaches of the Yellow River basin. Acta Ecol. Sin. 2024, 44, 5003–5013. [Google Scholar]
- Qiu, J.; Liu, Y.; Yuan, L.; Chen, C.; Huang, Q. Research progress and prospects of the relationship between ESs and human well-being under human-environment system coupling. Prog. Geogr. 2021, 40, 1060–1072. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Su, C.; Forsius, M. Linking ecosystem processes and ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 4–10. [Google Scholar] [CrossRef]
- Dade, M.C.; Mitchell, M.G.; McAlpine, C.A. Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach. Ambio 2019, 48, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.P.; Xu, Y.M.; Dong, S.K.; Li, Z.Y.; Fan, T.F. Analysis of spatial and temporal dynamics and drivers of ecosystem service value on the Qinghai-Tibetan Plateau from 1980 to 2020. Pratacultural Sci. 2024, 1–19. Available online: https://link.cnki.net/urlid/62.1069.S.20250520.1505.004 (accessed on 1 June 2024).
- Fu, B.J.; Yu, D.D. Trade-offs and Integrated Methods of ecosystem services. Resour. Sci. 2016, 38, 1–9. [Google Scholar]
- Xiong, Z.Y.; Xu, X.B.; He, B.S.; Li, J.Y.; Ren, C. Evolution and driving mechanisms of ecosystem service trade-offs/synergies in the Bohai Rim coastal zone. Chin. J. Ecol. 2025, 1–12. Available online: https://link.cnki.net/urlid/21.1148.Q.20250212.1010.004 (accessed on 1 June 2024).
- Huang, Y.T.; Wu, J.Y. Spatial and temporal driving mechanisms of ecosystem service trade-off/synergy in national key urban agglomerations: A case study of the Yangtze River Delta urban agglomeration in China. Ecol. Indic. 2023, 154, 110800. [Google Scholar] [CrossRef]
- Du, H.; Wu, J.; Li, W.; Yu, W.; Yang, M.; Peng, F. Temporal–Spatial Characteristics and Trade-off–Synergy Relationships of Water-Related ecosystem services in the Yangtze River Basin from 2001 to 2021. Sustainability 2024, 16, 3605. [Google Scholar] [CrossRef]
- Zhao, J.; Li, C. Investigating ecosystem service Trade-Offs/Synergies and Their Influencing Factors in the Yangtze River Delta Region, China. Land 2022, 11, 106. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.W.; Feng, X.M.; Yan, H.; Su, M.; Wu, M. Spatiotemporal variation of essential ecosystem services and their trade-off/synergy along with rapid urbanization in the Lower Pearl River Basin, China. Ecol. Indic. 2021, 133, 108439. [Google Scholar] [CrossRef]
- Li, Y.; Luo, H.F. Trade-off/synergistic changes in ecosystem services and geographical detection of its driving factors in typical karst areas in southern China. Ecol. Indic. 2023, 154, 110811. [Google Scholar] [CrossRef]
- Zeng, Z.H.; Hu, Y.G.; Zheng, Y.; Liu, Y. Preliminary Study on the Value of ecosystem services in Different Types in Hulunbuir City. In Proceedings of the Sixth Session of the Chinese Grass Society and International Symposium (International Symposium on Prataculture Science and Technology Innovation), Hohhot, China, July 2004; pp. 101–107. Available online: https://kns.cnki.net/kcms2/article/abstract?v=_RBvYn4HuMBebQRE_FazR0XOCUK3hU95AlTinzVQMr8UAuMF4r5NwqKZRMBoP709Bxbd9HiX9wMybpUxBsWy6HbM-oBMPE72UoxtddE7w5jN-HYmwQ3b0WiMziEMs9e9H3NSB3zaGve0WNkRWKKOLQS4Db-a-lg-Iq-zJiYqJ4c=&uniplatform=NZKPT (accessed on 1 June 2024).
- Fan, K.K.; Li, S.Z.; Chen, J.Q.; Yan, Y.C.; Xin, X.P.; Wang, X. Spatial heterogeneity anslysis of soil respiration in HulunBuir Grassland. Acta Agrestia Sin. 2022, 30, 205–211. [Google Scholar]
- Li, S.J.; Luo, G. Ecological environment analysis of Hulunbuir sandy land and its key areas. Inn. Mong. For. Investig. Des. 2022, 45, 1–4. [Google Scholar]
- Na, R.S. Spatio-Temproal Variation Characteristics of Desertification in Hulunbeier Sandy Land. Master’s Thesis, Inner Mongol Normal University, Hohhot, China, 2017. [Google Scholar]
- Pan, X.Q. Grasslands of Hulunbuir City, China; Jilin Science and Technology Publishing House: Changchun, China, 1992. [Google Scholar]
- Shi, Y.D. Evaluation of the Ecosystem Services of Hulunbeier Grassland; Chinese Academy of Agricultural Science: Beijing, China, 2007. [Google Scholar]
- Tallis, H.T.; Ricketts, T.; Guerry, A.; Angarita, H.; Guannel, G.; Pennington, D.; Arkema, K.; Perelman, A.; Bailey, A.; Guswa, A.; et al. InVEST 2.5.6 User’s Guide; Natural Capital Project Stanford: Palo Alto, CA, USA, 2013. [Google Scholar]
- Fan, J.W.; Shao, Q.; Wang, J.B.; Chen, Z.Q. Spatiotemporal Dynamics of Grazing Pressure in the Grasslands of Sanjiangyuan. Chin. J. Grassl. 2011, 33, 64–72. [Google Scholar]
- Sa, C.L. The Research of Vegetation Carbon Density, Soil Carbon Density and Nitrogen Density of Different Coenotypes in HulunBuir Grassland. Master’s Thesis, Inner Mongolia Normal University, Hohhot, China, 2016. [Google Scholar]
- Yang, X.; Zhou, Z.; Li, J.; Fu, X.; Mu, X.; Li, T. Trade-offs between carbon sequestration, soil retention and water yield in the Guanzhong-Tianshui Economic Region of China. Geogr. Sci. 2016, 26, 1449–1462. [Google Scholar] [CrossRef]
- Zhou, H.K.; Zhao, X.Q.; Zhou, L.; Liu, W.; Li, Y.N.; Tang, Y.H. A study on correlations between vegetation degradation and soil degradation in the Alpine Meadow of the Qinghai-Tibetan Plateau. Acta Agrestia Sin. 2005, 4, 31–40. [Google Scholar]
- Zhou, H.K.; Yao, B.Q.; Yu, L. Degradation Succession and Ecological Restoration of Alpine Grassland in the San-Jiangyuan Area; Science Press: Beijing, China, 2016. [Google Scholar]
- Chao, B.; Zhao, Y.; Wu, H.; Li, Y.; Su, N. Ecosystem services and its response to climate factors in the Mongolian Plateau from 2000 to 2020. Arid. Land. Geogr. 2024, 47, 1577–1586. [Google Scholar]
- Pang, W.L.; Ji, P.H.; Pang, L.D.; Gao, R.H. Spatial and Temporal Evolution of Land Use Pattern and Ecosystem Service Function in Daxinganling Mountains of Inner Mongolia. Bull. Soil Water Conserv. 2024, 44, 340–351+361. [Google Scholar]
- Wang, J.Q.; Xing, Y.Q.; Chang, X.Q.; Yang, H. Analysis of Spatial Distribution of Ecosystem Services and Driving Factors in Northeast China. Environ. Sci. 2024, 45, 5385–5394. [Google Scholar]
- Hu, Y.Z.; Zhang, X.X.; Zhang, X.J.; Yang, R.; Mu, W.; Yu, X.X. Analysis on spatiotemporal variation and influencing factors of water yield in Zoige Plateau from 2000 to 2020. Res. Soil Water Conserv. 2025, 32, 224–233. [Google Scholar]
- Ren, J.; Zhao, X.; Xu, X. Spatial-temporal evolution, trade-offs and synergies of ecosystem services in the middle Yellow River. J. Earth Environ. 2022, 13, 477–490. [Google Scholar]
- Li, J.; Liu, Q.L.; Liu, P.Y. Spatio-temporal changes and driving forces of fraction of vegetation coverage in Hulunbuir (1998-2018). Acta Ecol. Sin. 2022, 42, 220–235. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, X.F.; Liu, Q.F.; Liu, Y.; Ding, Y.; Zhang, Q. Impact of Land Use Intensity on ecosystem services: An Example from the Agro-Pastoral Ecotone of Central Inner Mongolia. Sustainability 2017, 9, 1030. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Han, G.Q.; Zhang, S.W.; Zhao, H.B.; Liu, M.M.; Lin, X.; Wang, S. Effects of Grazing on Plant Diversity and Their Carbon Stocks in Different Types of Grasslands. Environ. Sci. 2024, 45, 5395–5405. [Google Scholar]
- Mashizi, A.K.; Heshmati, G.A.; Mahini, A.R.S.; Escobedo, F.J. Exploring management objectives and ecosystem service trade-offs in a semi-arid rangeland basin in southeast Iran. Ecol. Indic. 2019, 98, 794–803. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhu, J.T.; Shen, R.N.; Wang, L. Research progress on the effects of grazing on grassland ecosystem. Chin. J. Plant Ecol. 2020, 44, 553–564. [Google Scholar] [CrossRef]
- Wang, B.Z.; Bai, J.H.; Sa, L.; Wang, D.Y.; Yang, X.H.; Zhu, Y.J.; Shi, Z.J. Community characteristics at different grazing potential stages of desertified grassland in Hulunbuir. Chin. J. Desert Res. 2025, 45, 205–216. [Google Scholar]
- Liao, J.B.; Mao, D.H.; Deng, M.R. Assessment of typical ecosystem services and trade-offs/synergies in the Dongting Lake Basin. Resour. Environ. Yangtze Basin 2024, 33, 310–321. [Google Scholar]
- Lins, C.M.T.; de Souza, E.R.; Souza, T.E.M.D.; Paulino, M.K.S.S.; Monteiro, D.R.; de Souza, V.S., Jr.; Dourado, P.R.M.; de Andrade Rego, F.E., Jr.; da Silva, Y.J.A.; Schaffer, B. Influence of vegetation cover and rainfall intensity on soil attributes in an area undergoing desertification in Brazil. CATENA 2023, 221, 106751. [Google Scholar] [CrossRef]
- Liu, J.; Wei, L.H.; Zheng, Z.P.; Du, J.L. Vegetation cover change and its response to climate extremes in the Yellow River Basin. Sci. Total Environ. 2023, 905, 167366. [Google Scholar] [CrossRef]
- Liang, Y.; Gan, Z.Z.B.; Zhang, W.N.; Gao, Q.Z.; Danjiu, L.B.; Xirao, Z.M.; Baima, Y.Z. Review of the Impact of Climate Change on China’s Grassland Ecosystems. J. Agric. Sci. Technol. 2014, 16, 1–8. [Google Scholar]
Type | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area/ha | Proportion/% | Area/ha | Proportion/% | Area/ha | Proportion/% | |
Cultivated land | 2,304,756 | 9.14 | 2,340,260 | 9.28 | 2,351,670 | 9.33 |
Forest land | 14,562,486 | 57.78 | 14,860,186 | 58.96 | 14,978,113 | 59.43 |
Grassland | 7,940,193 | 31.50 | 7,605,217 | 30.17 | 7,446,119 | 29.54 |
Water | 306,415 | 1.22 | 257,002 | 1.02 | 274,009 | 1.09 |
Built-up land | 37,553 | 0.15 | 51,481 | 0.20 | 42,106 | 0.17 |
Unused land | 53,373 | 0.21 | 90,630 | 0.36 | 112,759 | 0.45 |
InVEST Model | Calculation Method | Remarks |
---|---|---|
CS | Ctot—total carbon storage Csoil—soil carbon density Cdead—dead organic matter carbon density Cabove—aboveground biomass carbon density Cbelow—belowground biomass carbon density | |
WY | Y(x)—annual water yield (mm) at pixel x AET(x)—annual actual evapotranspiration at pixel x P(x)—annual precipitation (mm) at pixel x PET(x)—potential evapotranspiration of grid x Kclx—plant evapotranspiration coefficient ET0(x)—reference crop evapotranspiration AWC(x)—plant available water content ω—non-physical parameter characterizing soil properties under natural climatic conditions Z—empirical constant | |
SC | RKLS—potential soil erosion amount USLE—actual soil erosion amount SDR—sediment delivery ratio K—soil erodibility factor R—rainfall erosivity factor LS—slope length and steepness factor P—support practice factor C—cover management factor |
Coordination Degree D | 0 < D < 0.1 | 0.1 ≤ D < 0.2 | 0.2 ≤ D < 0.3 | 0.3 ≤ D < 0.4 | 0.4 ≤ D < 0.5 | 0.5 ≤ D < 0.6 | 0.6 ≤ D < 0.7 | 0.7 ≤ D < 0.8 | 0.8 ≤ D < 0.9 | 0.9 ≤ D < 1 |
---|---|---|---|---|---|---|---|---|---|---|
relation | extremely strong trade-off | strong trade-off | relatively strong trade-off | relatively weak trade-off | extremely weak trade-off | extremely weak synergy | relatively weak synergy | relatively strong synergy | strong synergy | extremely strong synergy |
Driving Factors | Tolerance | VIF |
---|---|---|
average temperature | 0.344 | 2.905 |
annual precipitation | 0.215 | 4.647 |
fractional vegetation cover | 0.338 | 2.958 |
digital elevation model | 0.509 | 1.966 |
slope | 0.864 | 1.158 |
land use type | 0.549 | 1.822 |
gross domestic product | 0.769 | 1.300 |
population density | 0.767 | 1.304 |
Explanatory Variable | Detection Force Value | Mean Temperature | Precipitation | FVC | DEM | Slope | Land Use Type | GDP | Population Density |
---|---|---|---|---|---|---|---|---|---|
CS-WY | Year 2000 Year 2010 Year 2020 | 0.255 0.157 0.231 | 0.559 0.653 0.650 | 0.698 0.821 0.732 | 0.219 0.405 0.262 | 0.004 0.005 0.008 | 0.151 0.283 0.242 | 0.239 0.192 0.236 | 0.130 0.169 0.127 |
CS-SC | Year 2000 Year 2010 Year 2020 | 0.283 0.173 0.222 | 0.651 0.662 0.655 | 0.745 0.830 0.838 | 0.284 0.247 0.288 | 0.155 0.156 0.162 | 0.563 0.602 0.570 | 0.150 0.182 0.103 | 0.032 0.054 0.050 |
CS-FS | Year 2000 Year 2010 Year 2020 | 0.289 0.270 0.287 | 0.633 0.694 0.618 | 0.733 0.842 0.879 | 0.150 0.175 0.176 | 0.086 0.068 0.069 | 0.546 0.587 0.593 | 0.149 0.237 0.231 | 0.005 0.033 0.032 |
WY-SC | Year 2000 Year 2010 Year 2020 | 0.354 0.115 0.230 | 0.781 0.844 0.809 | 0.788 0.855 0.819 | 0.249 0.291 0.306 | 0.063 0.072 0.107 | 0.340 0.479 0.462 | 0.162 0.177 0.112 | 0.032 0.038 0.017 |
WY-FS | Year 2000 Year 2010 Year 2020 | 0.237 0.261 0.244 | 0.498 0.508 0.487 | 0.670 0.791 0.848 | 0.104 0.124 0.113 | 0.068 0.055 0.055 | 0.363 0.428 0.439 | 0.188 0.249 0.283 | 0.033 0.085 0.069 |
SC-FS | Year 2000 Year 2010 Year 2020 | 0.241 0.247 0.235 | 0.385 0.438 0.350 | 0.702 0.814 0.879 | 0.055 0.079 0.080 | 0.024 0.019 0.019 | 0.234 0.294 0.293 | 0.117 0.230 0.268 | 0.005 0.021 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Hou, J.; Zhang, Y.; Tai, Y.; Huang, X.; Guo, X. Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China. Agronomy 2025, 15, 1883. https://doi.org/10.3390/agronomy15081883
Wei S, Hou J, Zhang Y, Tai Y, Huang X, Guo X. Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China. Agronomy. 2025; 15(8):1883. https://doi.org/10.3390/agronomy15081883
Chicago/Turabian StyleWei, Shimin, Jian Hou, Yan Zhang, Yang Tai, Xiaohui Huang, and Xiaochen Guo. 2025. "Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China" Agronomy 15, no. 8: 1883. https://doi.org/10.3390/agronomy15081883
APA StyleWei, S., Hou, J., Zhang, Y., Tai, Y., Huang, X., & Guo, X. (2025). Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China. Agronomy, 15(8), 1883. https://doi.org/10.3390/agronomy15081883