Resistance Mechanisms to Glyphosate in Lamarckia aurea (L.) Moench Found in Southern Spain
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials
2.3. Dose–Response Curves
2.4. Glyphosate Retention
2.5. 14C-Glyphosate Uptake and Translocation
2.6. Glyphosate Metabolism
2.7. EPSPS Activity
2.8. Statistical Analysis
3. Results
3.1. Dose–Response Curves
3.2. Spray Retention
3.3. EPSPS Activity
3.4. 14C-Glyphosate Uptake and Translocation
3.5. Glyphosate Metabolism
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franz, J.E.; Sikorski, J.A.; Mao, M.K. Glyphosate: A Unique Global Herbicide; ACS Monograph 189; American Chemical Society: Washington, DC, USA, 1997; p. 653. [Google Scholar]
- Singh, V.; Zhou, S.; Ganie, Z.; Chauhan, B.S.; Jabran, K.; Mahajan, G. Rice production in the Americas. In Rice Production Worldwide; Springer: Cham, Switzerland, 2017; p. 168. [Google Scholar]
- Sammons, R.D.; Gaines, T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014, 70, 1367–1377. [Google Scholar] [CrossRef]
- Gaines, T.A.; Duke, S.O.; Morran, S.; Rigon, C.A.; Tranel, P.J.; Küpper, A.; Dayan, F.E. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 2020, 295, 10307–10330. [Google Scholar] [CrossRef]
- Ge, X.; d’Avignon, D.A.; Ackerman, J.J.; Sammons, R.D. Rapid vacuolar sequestration: The horseweed glyphosate resistance mechanism. Pest Manag. Sci. 2010, 66, 345–348. [Google Scholar] [CrossRef]
- González-Torralva, F.; Cruz-Hipólito, H.; Bastida, F.; Mülleder, N.; Smeda, R.J.; De Prado, R. Differential susceptibility to glyphosate among the Conyza weed species in Spain. J. Agric. Food Chem. 2010, 58, 4361–4366. [Google Scholar] [CrossRef]
- Pan, L.; Yu, Q.; Han, H.; Mao, L.; Nyporko, A.; Fan, L.; Powles, S. Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona. Plant Physiol. 2019, 181, 1519–1534. [Google Scholar] [CrossRef]
- Gherekhloo, J.; Fernández-Moreno, P.T.; Alcántara-De La Cruz, R.; Sánchez-González, E.; Cruz-Hipolito, H.E.; Domínguez-Valenzuela, J.A.; De Prado, R. Pro-106-Ser mutation and EPSPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica). Sci. Rep. 2017, 7, 6772. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: www.weedscience.org (accessed on 7 May 2025).
- Islam, M.M.; Gill, B.S.; Malone, J.M.; Preston, C.; Jugulam, M. Cytogenetic characterization of EPSPS gene amplification in glyphosate-resistant Hordeum glaucum and Bromus diandrus from Australia. Plant J. 2024, 120, 2553–2562. [Google Scholar] [CrossRef]
- He, S.; Tian, J.; Ouyang, Y.; Liao, Y.; Yu, Q.; Bai, L.; Pan, L. Glyphosate resistance in Eleusine indica: Involvement of CYP71AK44 in addition to EPSPS gene overexpression. J. Agric. Food Chem. 2024, 72, 23758–23765. [Google Scholar] [CrossRef]
- Chen, W.; Liao, Y.; Bai, D.; Yu, Q.; Bai, L.; Pan, L. First case of glyphosate resistance in Polypogon fugax: Possible involvement of P450-based mechanisms. Pest Manag. Sci. 2025, 81, 3349–3357. [Google Scholar] [CrossRef]
- Sudhakar, S.; Norsworthy, J.K.; Avent, T.; González-Torralva, F.; McElroy, S.; Butts, T.R. Confirmation of glyphosate resistance in annual bluegrass (Poa annua) via EPSPS duplication in a soybean and rice rotation. Weed Sci. 2025, 73, e9. [Google Scholar] [CrossRef]
- Kudsk, P.; Mathiassen, S.K. Pesticide regulation in the European Union and the glyphosate controversy. Weed Sci. 2020, 68, 214–222. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Ward, S.M.; Shaw, D.R.; Llewellyn, R.S.; Nichols, R.L.; Webster, T.M.; Bradley, K.W.; Frisvold, G.; Powles, S.B.; Burgos, N.R.; et al. Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Sci. 2012, 60, 31–62. [Google Scholar] [CrossRef]
- Vázquez-García, J.G.; Torra, J.; Palma-Bautista, C.; Bastida, F.; Alcántara-de la Cruz, R.; Portugal, J.M.; Jorrin-Novo, J.V.; De Prado, R. Different non-target site mechanisms endow different glyphosate susceptibility in Avena species from Spain. Agronomy 2023, 13, 763. [Google Scholar] [CrossRef]
- Yanniccari, M.; Vázquez-García, J.G.; Gomez-Lobato, M.E.; Rojano-Delgado, A.M.; Alves, P.L.C.A.; De Prado, R. First case of glyphosate resistance in Bromus catharticus Vahl.: Examination of endowing resistance mechanisms. Front. Plant Sci. 2021, 12, 617945. [Google Scholar] [CrossRef]
- Vázquez-García, J.G.; Palma-Bautista, C.; Rojano-Delgado, A.M.; De Prado, R.; Menéndez, J. The first case of glyphosate resistance in johnsongrass (Sorghum halepense L. Pers.) in Europe. Plants 2020, 9, 313. [Google Scholar] [CrossRef]
- Palma-Bautista, C.; Torra, J.; García, M.J.; Bracamonte, E.; Rojano-Delgado, A.M.; Alcántara-de la Cruz, R.; De Prado, R. Reduced absorption and impaired translocation endows glyphosate resistance in Amaranthus palmeri harvested in glyphosate-resistant soybean from Argentina. J. Agric. Food Chem. 2019, 67, 1052–1060. [Google Scholar] [CrossRef]
- Vázquez-García, J.G.; Alcántara-de la Cruz, R.; Rojano-Delgado, A.M.; Palma-Bautista, C.; de Portugal Vasconcelos, J.M.; De Prado, R. Multiple herbicide resistance evolution: The case of Eleusine indica in Brazil. J. Agric. Food Chem. 2021, 69, 1197–1205. [Google Scholar] [CrossRef]
- Cruz-Hipolito, H.; Rojano-Delgado, A.; Domínguez-Valenzuela, J.A.; Heredia, A.; de Castro, M.D.L.; De Prado, R. Glyphosate tolerance by Clitoria ternatea and Neonotonia wightii plants involves differential absorption and translocation of the herbicide. Plant Soil 2011, 347, 221–230. [Google Scholar] [CrossRef]
- Rojano-Delgado, A.M.; Ruiz-Jiménez, J.; de Castro, M.D.L.; De Prado, R. Determination of glyphosate and its metabolites in plant material by reversed-polarity CE with indirect absorptiometric detection. Electrophoresis 2010, 31, 1423–1430. [Google Scholar] [CrossRef]
- Rojano-Delgado, A.M.; Cruz-Hipolito, H.; De Prado, R.; Luque de Castro, M.D.; Franco, A.R. Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants. Phytochemistry 2012, 73, 34–41. [Google Scholar] [CrossRef]
- Dayan, F.E.; Owens, D.K.; Corniani, N.; Silva, F.M.L.; Watson, S.B.; Howell, J.; Shaner, D.L. Biochemical markers and enzyme assays for herbicide mode of action and resistance studies. Weed Sci. 2015, 63, 23–63. [Google Scholar] [CrossRef]
- Bracamonte, E.R.; Fernández-Moreno, P.T.; Bastida, F.; Osuna, M.D.; Alcántara-de la Cruz, R.; Cruz-Hipólito, H.E.; De Prado, R. Identifying Chloris species from Cuban citrus orchards and determining their glyphosate-resistance status. Front. Plant Sci. 2017, 8, 1977. [Google Scholar] [CrossRef]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef]
- Amaro-Blanco, I.; Fernández-Moreno, P.T.; Osuna-Ruiz, M.D.; Bastida, F.; De Prado, R. Mechanisms of glyphosate resistance and response to alternative herbicide-based management in populations of the three Conyza species introduced in southern Spain. Pest Manag. Sci. 2018, 74, 1925–1937. [Google Scholar] [CrossRef]
- Riechers, D.E.; Soltani, N.; Chauhan, B.S.; Concepcion, J.C.T.; Geddes, C.M.; Jugulam, M.; Kaundun, S.S.; Preston, C.; Wuerffel, R.J.; Sikkema, P.H. Herbicide resistance is complex: A global review of cross-resistance in weeds within herbicide groups. Weed Sci. 2024, 72, 465–486. [Google Scholar] [CrossRef]
- Haug, E.J.; Howell, A.W.; Sperry, B.P.; Mudge, C.R.; Richardson, R.J.; Getsinger, K.D. Simulated herbicide spray retention of commonly managed invasive emergent aquatic macrophytes. Weed Technol. 2023, 37, 243–250. [Google Scholar] [CrossRef]
- da Silva Santos, R.T.; Vechia, J.F.D.; Dos Santos, C.A.M.; Almeida, D.P.; da Costa Ferreira, M. Relationship of contact angle of spray solution on leaf surfaces with weed control. Sci. Rep. 2021, 11, 9886. [Google Scholar] [CrossRef]
- Trezzi, M.M.; Alcántara-de la Cruz, R.; Rojano-Delgado, A.M.; Alcántara, E.; Pagnoncelli, F.D.B.; Viecelli, M.; Diesel, F.; Pacheco, V.; De Prado, R. Influence of temperature on the retention, absorption and translocation of fomesafen and imazamox in Euphorbia heterophylla. Pestic. Biochem. Physiol. 2021, 173, 104794. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Wang, Y.; Zheng, Z.; Zhang, C.; Wu, T.; Wu, Y.; Gao, Y.; Du, F. Improved method to characterize leaf surfaces, guide adjuvant selection, and improve glyphosate efficacy. J. Agric. Food Chem. 2023, 71, 1348–1359. [Google Scholar] [CrossRef]
- Feng, P.C.; Tran, M.; Chiu, T.; Sammons, R.D.; Heck, G.R.; CaJacob, C.A. Investigations into glyphosate-resistant horseweed (Conyza canadensis): Retention, uptake, translocation, and metabolism. Weed Sci. 2004, 52, 498–505. [Google Scholar] [CrossRef]
- Vázquez-García, J.G.; Castro, P.; Cruz-Hipólito, H.E.; Millan, T.; Palma-Bautista, C.; De Prado, R. Glyphosate resistance confirmation and field management of red brome (Bromus rubens L.) in perennial crops grown in southern Spain. Agronomy 2021, 11, 535. [Google Scholar] [CrossRef]
- Domínguez-Valenzuela, J.A.; Alcántara-de la Cruz, R.; Palma-Bautista, C.; Vázquez-García, J.G.; Cruz-Hipolito, H.E.; De Prado, R. Non-target site mechanisms endow resistance to glyphosate in Saltmarsh Aster (Aster squamatus). Plants 2021, 10, 1970. [Google Scholar] [CrossRef]
- Palma-Bautista, C.; Vázquez-García, J.G.; López-Valencia, G.; Domínguez-Valenzuela, J.A.; Barro, F.; De Prado, R. Reduced glyphosate movement and mutation of the EPSPS gene (Pro106Ser) endow resistance in Conyza canadensis harvested in Mexico. J. Agric. Food Chem. 2023, 71, 4477–4487. [Google Scholar] [CrossRef]
- Palma-Bautista, C.; Belluccini, P.; Vázquez-García, J.G.; Alcántara-de la Cruz, R.; Barro, F.; Portugal, J.M.; De Prado, R. Target-site and non-target-site resistance mechanisms confer multiple resistance to glyphosate and 2,4-D in Carduus acanthoides. Pestic. Biochem. Physiol. 2023, 191, 105371. [Google Scholar] [CrossRef]
- Yanniccari, M.; Palma-Bautista, C.; Vázquez-García, J.G.; Gigón, R.; Mallory-Smith, C.A.; De Prado, R. Constitutive overexpression of EPSPS by gene duplication is involved in glyphosate resistance in Salsola tragus. Pest Manag. Sci. 2023, 79, 1062–1068. [Google Scholar] [CrossRef]
- Kleinman, Z.; Rubin, B. Non-target-site glyphosate resistance in Conyza bonariensis is based on modified subcellular distribution of the herbicide. Pest Manag. Sci. 2017, 73, 246–253. [Google Scholar] [CrossRef]
- Shaner, D.L. Role of translocation as a mechanism of resistance to glyphosate. Weed Sci. 2009, 57, 118–123. [Google Scholar] [CrossRef]
- Palma-Bautista, C.; Tataridas, A.; Kanatas, P.; Travlos, I.S.; Bastida, F.; Domínguez-Valenzuela, J.A.; De Prado, R. Can control of glyphosate susceptible and resistant Conyza sumatrensis populations be dependent on the herbicide formulation or adjuvants? Agronomy 2020, 10, 1599. [Google Scholar] [CrossRef]
- Délye, C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013, 69, 176–187. [Google Scholar] [CrossRef]
- Yu, Q.; Powles, S. Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant Physiol. 2014, 166, 1106–1118. [Google Scholar] [CrossRef]
- Zhou, F.Y.; Han, H.; Han, Y.J.; Nyporko, A.; Yu, Q.; Beckie, H.J.; Powles, S.B. Aldo-keto reductase may contribute to glyphosate resistance in Lolium rigidum. Pest Manag. Sci. 2023, 79, 1528–1537. [Google Scholar] [CrossRef]
- Malone, J.; Cook, A.; Wu, H.; Hashem, A.; Preston, C. Management of Glyphosate Resistant Weeds in Non-Agricultural Areas. In Proceedings of the 18th Australasian Weeds Conference (2012), Albert Park, Melbourne, Australia, 8–11 October 2012; Eldershaw, V., Ed.; Weed Society of Victoria Inc.: Melbourne, VIC, Australia, 2012; pp. 184–186. [Google Scholar]
- Washington State Department of Transportation Integrated Roadside Vegetation Management Plans. Available online: https://wsdot.wa.gov/construction-planning/protecting-environment/maintaining-vegetation-along-our-highways/integrated-roadside-vegetation-management-plans (accessed on 16 July 2025).
- The Pennsylvania State University Roadside Vegetation Management Research–2024 Report. Available online: https://plantscience.psu.edu/research/projects/vegetation-management/annual-reports (accessed on 16 July 2025).
- Varah, A.; Ahodo, K.; Childs, D.Z.; Comont, D.; Crook, L.; Freckleton, R.P.; Goodsell, R.; Hicks, H.L.; Hull, R.; Neve, P.; et al. Acting pre-emptively reduces the long-term costs of managing herbicide resistance. Sci. Rep. 2024, 14, 6201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Valenzuela, J.A.; Gherekhloo, J.; Palma-Bautista, C.; Hassanpour-bourkheili, S.; Plaza, G.; Rojano-Delgado, A.M.; De Prado, R. Resistance Mechanisms to Glyphosate in Lamarckia aurea (L.) Moench Found in Southern Spain. Agronomy 2025, 15, 1804. https://doi.org/10.3390/agronomy15081804
Domínguez-Valenzuela JA, Gherekhloo J, Palma-Bautista C, Hassanpour-bourkheili S, Plaza G, Rojano-Delgado AM, De Prado R. Resistance Mechanisms to Glyphosate in Lamarckia aurea (L.) Moench Found in Southern Spain. Agronomy. 2025; 15(8):1804. https://doi.org/10.3390/agronomy15081804
Chicago/Turabian StyleDomínguez-Valenzuela, José Alfredo, Javid Gherekhloo, Candelario Palma-Bautista, Saeid Hassanpour-bourkheili, Guido Plaza, Antonia M. Rojano-Delgado, and Rafael De Prado. 2025. "Resistance Mechanisms to Glyphosate in Lamarckia aurea (L.) Moench Found in Southern Spain" Agronomy 15, no. 8: 1804. https://doi.org/10.3390/agronomy15081804
APA StyleDomínguez-Valenzuela, J. A., Gherekhloo, J., Palma-Bautista, C., Hassanpour-bourkheili, S., Plaza, G., Rojano-Delgado, A. M., & De Prado, R. (2025). Resistance Mechanisms to Glyphosate in Lamarckia aurea (L.) Moench Found in Southern Spain. Agronomy, 15(8), 1804. https://doi.org/10.3390/agronomy15081804