Intensification of Pea (Pisum sativum L.) Production in Organic Farming: Effects of Biological Treatments on Plant Growth, Seed Yield, and Protein Content
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Weather Conditions
2.2. Mycoparasitic Fungus and Lactic Acid Bacteria
2.3. Preparation of Spore Suspension and Seed Coating
2.4. Experimental Design and Foliar Treatments
2.5. Plant Measurements and Quality Evaluations
2.6. Statistical Analysis
3. Results
3.1. Effects of Seed Treatment on Emergence, Growth Parameters, and Cholorophyll Content
3.2. Effects of Treatments on Yield Components, Seed Yield, and Protein Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, R.; Hasanain, M.; Babu, S.; Nath, C.P.; Ansari, M.A.; Kumar, A.; Sofi, M.U.D.; Kumar, S.; Kumar, S. Organic Pulse Production: Exploring opportunities and overcoming challenges. J. Food Legumes 2024, 37, 144–162. [Google Scholar] [CrossRef]
- Didora, V.; Romanchuk, L.; Kliuchevych, M.; Vyshnivskyi, P.; Matviichuk, N. Varietal features of elements of organic soybean cultivation technology. Sci. Horiz. 2022, 25, 60–68. [Google Scholar] [CrossRef]
- Voisin, A.-S.; Guéguen, J.; Huyghe, C.; Jeuffroy, M.-H.; Magrini, M.-B.; Meynard, J.-M.; Mougel, C.; Pellerin, S.; Pelzer, E. Legumes for feed, food, biomaterials and bioenergy in europe: A Review. Agron. Sustain. Dev. 2014, 34, 361–380. [Google Scholar] [CrossRef]
- Khakbazan, M.; Liu, K.; Bandara, M.; Huang, J.; Gan, Y. Pulse-included diverse crop rotations improved the systems economic profitability: Evidenced in two 4-year cycles of rotation experiments. Agron. Sustain. Dev. 2022, 42, 103. [Google Scholar] [CrossRef]
- Ročenka. Ekologické zemědělství v ČR; Ministerstvo Zemědělství: Prague, Czech Republic, 2023; ISBN 978-80-7434-788-7. Available online: https://mze.gov.cz/public/portal/mze/publikace/publikace-zemedelstvi/ekologicke-zemedelstvi/rocenka-2023-ez (accessed on 26 May 2025).
- Dhillon, L.K.; Lindsay, D.; Yang, T.; Zakeri, H.; Tar’an, B.; Knight, J.D.; Warkentin, T.D. Biological nitrogen fixation potential of pea lines derived from crosses with nodulation mutants. Field Crops Res. 2022, 289, 108731. [Google Scholar] [CrossRef]
- Powers, S.E.; Thavarajah, D. Checking Agriculture’s Pulse: Field pea (Pisum sativum L.), sustainability, and phosphorus use efficiency. Front. Plant Sci. 2019, 10, 1489. [Google Scholar] [CrossRef] [PubMed]
- Gollner, G.; Starz, W.; Friedel, J.K. Crop performance, biological n fixation and pre-crop effect of pea ideotypes in an organic farming system. Nutr. Cycl. Agroecosyst. 2019, 115, 391–405. [Google Scholar] [CrossRef]
- Kadžiulienė, Ž.; Toleikienė, M.; Razbadauskienė, K.; Šarūnaitė, L.; Deveikytė, I.; Supronienė, S.; Semaškienė, R.; Arlauskienė, A. Selection of new field pea varieties for the organic and conventional farming systems in the nemoral climatic zone. Agriculture 2025, 15, 687. [Google Scholar] [CrossRef]
- Watson, C.A.; Reckling, M.; Preissel, S.; Bachinger, J.; Bergkvist, G.; Kuhlman, T.; Lindström, K.; Nemecek, T.; Topp, C.F.E.; Vanhatalo, A.; et al. Grain legume production and use in european agricultural systems. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2017; Volume 144, pp. 235–303. ISBN 978-0-12-812419-2. [Google Scholar]
- Ayaz, M.; Li, C.-H.; Ali, Q.; Zhao, W.; Chi, Y.-K.; Shafiq, M.; Ali, F.; Yu, X.-Y.; Yu, Q.; Zhao, J.-T.; et al. Bacterial and fungal biocontrol agents for plant disease protection: Journey from lab to field, current status, challenges, and global perspectives. Molecules 2023, 28, 6735. [Google Scholar] [CrossRef] [PubMed]
- Raman, J.; Kim, J.-S.; Choi, K.R.; Eun, H.; Yang, D.; Ko, Y.-J.; Kim, S.-J. Application of lactic acid bacteria (lab) in sustainable agriculture: Advantages and limitations. Int. J. Mol. Sci. 2022, 23, 7784. [Google Scholar] [CrossRef] [PubMed]
- Yusnawan, E.; Uge, E.; Inayati, A.; Baliadi, Y. Biological control of damping-off and plant growth promotion in soybean using Trichoderma virens. IOP Conf. Ser. Earth Environ. Sci. 2024, 1312, 012038. [Google Scholar] [CrossRef]
- Whipps, J.M.; Lumsden, R.D. Commercial use of fungi as plant disease biological control agents: Status and prospects. In Fungi as Biocontrol Agents: Progress, Problems and Potential; CABI Books: Oxfordshire, UK, 2001; pp. 9–22. ISBN 978-0-85199-356-0. [Google Scholar]
- Mastouri, F.; Björkman, T.; Harman, G. Seed treatment with Trichoderma Harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 2010, 100, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Van Wees, S.C.; Van Der Ent, S.; Pieterse, C.M. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 2008, 11, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Karan, D.; Parwez, A.; Kumar, S.; Sangle, U.R. Effect of Trichoderma harzianum strains and IRRI BMP on growth, nodulation, yield and economics of lentil under lowland rainfed ecology of bihar. J. AgriSearch 2017, 4, 202–205. [Google Scholar] [CrossRef]
- Strejckova, M.; Bohata, A.; Olsan, P.; Havelka, Z.; Kříž, P.; Beran, P.; Bartos, P.; Curn, V.; Spatenka, P. Enhancement of the yield of crops by plasma and using of entomopathogenic and mycoparasitic fungi: From laboratory to large-field experiments. J. Biomater. Tissue Eng. 2018, 8, 829–836. [Google Scholar] [CrossRef]
- Sharma, K.; Singh, U.; Sharma, P.; Kumar, A.; Sharma, L. Seed treatments for sustainable agriculture—A review. J. Appl. Nat. Sci. 2015, 7, 521–539. [Google Scholar] [CrossRef]
- Mazzola, M. Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 2002, 81, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Kale, N.; Ashwini, M.; Jahagirdar, S.; Shirnalli, G. Potentials of lactic acid bacteria in enhancing nodulation of Bradyrhizobium daqingense and yield in soybean. Legume Res. Int. J. 2022, 45, 507–513. [Google Scholar] [CrossRef]
- Abhyankar, P.S.; Gunjal, A.B.; Kapadnis, B.P.; Ambade, S.V. Potential of lactic acid bacteria in plant growth promotion. Bhartiya Krishi Anusandhan Patrika 2022, 36, 326–329. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus lactobacillus: Description of 23 novel genera, emended description of the genus lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Kavková, M.; Bazalová, O.; Cihlář, J.; Bohatá, A.; Lencová, J.; Konvalina, P. Characterisation of wild strains of lactic acid bacteria isolated from legumes and their biocontrol potential against Fusarium spp. Agronomy 2023, 13, 2911. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, X.; Fu, H.; Wang, X.; Guo, X.; Wang, M. Lactiplantibacillus Plantarum: A comprehensive review of its antifungal and anti-mycotoxic effects. Trends Food Sci. Technol. 2023, 136, 224–238. [Google Scholar] [CrossRef]
- Willsey, T.; Patey, J.; Vucurevich, C.; Chatterton, S.; Carcamo, H. Evaluation of foliar and seed treatments for integrated management of root rot and pea leaf weevil in field pea and faba bean. Crop Prot. 2021, 143, 105538. [Google Scholar] [CrossRef]
- Xue, A.G.; Guo, W.; Chen, Y.; Siddiqui, I.; Marchand, G.; Liu, J.; Ren, C. Effect of seed treatment with novel strains of Trichoderma spp. on establishment and yield of spring wheat. Crop Prot. 2017, 96, 97–102. [Google Scholar] [CrossRef]
- El-Sharkawy, H.H.A.; Abbas, M.S.; Soliman, A.S.; Ibrahim, S.A.; El-Nady, I.A.I. Synergistic effect of growth-promoting microorganisms on bio-control of Fusarium Oxysporum f. sp. Pisi, growth, yield, physiological and anatomical characteristics of pea plants. Pestic. Biochem. Physiol. 2021, 178, 104939. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.F.; Zulperi, D.; Saidi, N.B.; Vadamalai, G. A consortium of pseudomonas aeruginosa and Trichoderma harzianum for improving growth and induced biochemical changes in Fusarium wilt infected bananas. Trop. Life Sci. Res. 2021, 32, 23–45. [Google Scholar] [CrossRef] [PubMed]
- Feller, V.C.; Bleiholder, H.; Buhr, L.; Hack, H.; Hess, M.; Klose, R.; Meier, U.; Stauss, R.; Van Den Boom, T.; Weber, E. Phanologische Entwicklungsstadien von Gemusepflanzen I. Zwiebel-, Wurzel-, Knollen-und Blattgemuse. Nachrichtenblatt Dtsch. Pflanzenschutzdienstes 1995, 47, 193–205. [Google Scholar]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; Van Den Boom, T.; et al. The BBCH system to coding the phenological growth stages of plants—History and publications. J. Cultiv. Plants 2009, 61, 41–52. [Google Scholar] [CrossRef]
- Abbasiliasi, S.; Tan, J.S.; Tengku Ibrahim, T.A.; Bashokouh, F.; Ramakrishnan, N.R.; Mustafa, S.; Ariff, A.B. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review. RSC Adv. 2017, 7, 29395–29420. [Google Scholar] [CrossRef]
- Kavková, M.; Cihlář, J.; Dráb, V.; Bazalová, O.; Dlouhá, Z. The interactions among isolates of Lactiplantibacillus plantarum and dairy yeast contaminants: Towards biocontrol applications. Fermentation 2021, 8, 14. [Google Scholar] [CrossRef]
- Assessing Nodulation & Nitrogen Fixation. Nodulation and Nitrogen Fixation Field Assessment Guide. Saskatchewan Pulse Growers. 2023. Available online: https://saskpulse.com/resources/assessing-nodulation-nitrogen-fixation/ (accessed on 26 May 2025).
- Tafesse, E.G.; Warkentin, T.D.; Bueckert, R.A. Canopy architecture and leaf type as traits of heat resistance in pea. Field Crops Res. 2019, 241, 107561. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Tran Le, B.T. Use of lactic acid bacteria in peanut seed treatment. J. Technol. Innov. 2020, 1, 20–22. [Google Scholar] [CrossRef]
- Murindangabo, Y.T.; Kopecký, M.; Perná, K.; Nguyen, T.G.; Konvalina, P.; Kavková, M. Prominent use of lactic acid bacteria in soil-plant systems. Appl. Soil Ecol. 2023, 189, 104955. [Google Scholar] [CrossRef]
- Lahmamsi, H.; Ananou, S.; Lahlali, R.; Tahiri, A. Lactic acid bacteria as an eco-friendly approach in plant production: Current state and prospects. Folia Microbiol. 2024, 69, 465–489. [Google Scholar] [CrossRef] [PubMed]
- Yusnawan, E.; Inayati, A.; Baliadi, Y. Effect of soybean seed treatment with Trichoderma virens on its growth and total phenolic content. AIP Conf. Proc. 2019, 2120, 020003. [Google Scholar] [CrossRef]
- Ali, A.; Haider, M.S.; Ashfaq, M. Effect of culture filtrates of Trichoderma spp. on seed germination and seedling growth in chickpea—An in-vitro study. Pak. J. Phytopathol. 2014, 26, 1–5. [Google Scholar]
- Hamed, H.; Moustafa, Y.; Abdel-Aziz, S.; Elkhateeb, Y. In Vivo efficacy of lactic acid bacteria in biological control against Fusarium oxysporum for protection of tomato plant. Life Sci. J. 2011, 8, 462–468. [Google Scholar]
- Gwiazdowski, R.; Kubiak, K.; Juś, K.; Marchwińska, K.; Gwiazdowska, D. The biocontrol of plant pathogenic fungi by selected lactic acid bacteria: From laboratory to field study. Agriculture 2023, 14, 61. [Google Scholar] [CrossRef]
- Frezarin, E.T.; Santos, C.H.B.; Sales, L.R.; dos Santos, R.M.; de Carvalho, L.A.L.; Rigobelo, E.C. Promotion of peanut (Arachis hypogaea L.) growth by plant growth-promoting microorganisms. Microbiol. Res. 2023, 14, 316–332. [Google Scholar] [CrossRef]
- Nieto-Jacobo, M.F.; Steyaert, J.M.; Salazar-Badillo, F.B.; Nguyen, D.V.; Rostás, M.; Braithwaite, M.; De Souza, J.T.; Jimenez-Bremont, J.F.; Ohkura, M.; Stewart, A.; et al. Environmental growth conditions of trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front. Plant Sci. 2017, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.E.; Barea, J.-M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil. 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Qostal, S.; Kribel, S.; Chliyeh, M.; Mouden, N.; Selmaoui, K.; Touhami, A.O.; Serghat, S.; Benkirane, R.; Douira, A. Biostimulant effect of Trichoderma on the development of wheat and barley plants and its survival aptitudes on the roots. Plant Arch. 2020, 20, 7829–7834. [Google Scholar]
- Rudresh, D.L.; Shivaprakash, M.K.; Prasad, R.D. Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl. Soil Ecol. 2005, 28, 139–146. [Google Scholar] [CrossRef]
- Ketta, H.; Elkhateeb, N.; Saleh, M.; Kamel, S. Efficiency assessment of combinations between Rhizobium leguminosarum and Trichoderma spp. for controlling of pea (Pisum sativum Ll.) damping-off disease. Egypt. J. Phytopathol. 2021, 49, 1–14. [Google Scholar] [CrossRef]
- Abd-El-Khair, H.; Haggag, K.H.; El-Nasr, H.S. Field application of Trichoderma harzianum and Bacillus subtilis combined with Rhizobium for controlling Fusarium root rot in faba bean in organic farming. Middle East J. Appl. Sci. 2018, 8, 865–873. [Google Scholar]
- Walter, S.; Zehring, J.; Mink, K.; Quendt, U.; Zocher, K.; Rohn, S. Protein content of peas (Pisum sativum) and beans (Vicia faba)—Influence of cultivation conditions. J. Food Compos. Anal. 2021, 105, 104257. [Google Scholar] [CrossRef]
- Helmy, K.G.; Abu-Hussien, S.H. Root rot management in common bean (Phaseolus vulgaris L.) through integrated biocontrol strategies using metabolites from Trichoderma harzianum, serratia marcescens, and vermicompost tea. Microb. Ecol. 2024, 87, 94. [Google Scholar] [CrossRef] [PubMed]
- Uzun, A.; Bilgili, U.; Sincik, M.; Filya, I.; Acikgoz, E. Yield and quality of forage type pea lines of contrasting leaf types. Eur. J. Agron. 2005, 22, 85–94. [Google Scholar] [CrossRef]
- Gullap, M.K.; Erkovan, H.I.; Haliloglu, K.; Koc, A. Is Plant Growth Promoting Rhizobacteria an Alternative to Mineral Phosphorus Fertilizer in Pea Seed Production? Scientific Papers. Series A. Agronomy LX; University of Agronomic Sciences and Veterinary Medicine: Bucharest, Romania, 2017; pp. 264–269. [Google Scholar]
- Guilioni, L.; Wéry, J.; Lecoeur, J. High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. Funct. Plant Biol. 2003, 30, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Gali, K.K.; Tar’an, B.; Warkentin, T.D.; Bueckert, R.A. Pea phenology: Crop potential in a warming environment. Crop Sci. 2017, 57, 1540–1551. [Google Scholar] [CrossRef]
- Moot, D.J.; McNeil, D.L. Yield components, harvest index and plant type in relation to yield differences in field pea genotypes. Euphytica 1995, 86, 31–40. [Google Scholar] [CrossRef]
- Sadras, V.O.; Lake, L.; Leonforte, A.; McMurray, L.S.; Paull, J.G. Screening field pea for adaptation to water and heat stress: Associations between yield, crop growth rate and seed abortion. Field Crops Res. 2013, 150, 63–73. [Google Scholar] [CrossRef]
Activity | Growth Stage | 2023 | 2024 |
---|---|---|---|
Plots seeded | BBCH 0 | 23 March | 27 March |
Emergence | BBCH 09 | 24 April | 13 April |
Plant sample collection 1 | BBCH 13–15 | 11 May | 23 April |
Plant sample collection 2 | BBCH 14–16 | 18 May | 30 April |
Plant sample collection 3 | BBCH 15–17 | 25 May | 7 May |
Foliar application | BBCH 61–62 | 20 June | 14 June |
Plot harvest | BBCH 99 | 28 July | 26 July |
Day of mature (days) | - | 127 | 121 |
Treatment Name | Timing | Abbreviation | |
---|---|---|---|
1 | Control | Control | |
2 | Lactic Acid Bacteria (L. plantarum) | Seed treatment | LABse |
3 | Mycoparasitic Fungus (T. virens) | Seed treatment | MPFse |
4 | Lactic Acid Bacteria (L. plantarum) | Foliar application | LABfo |
5 | Mycoparasitic Fungus (T. virens) | Foliar application | MPFfo |
6 | Lactic Acid Bacteria (L. plantarum) | Seed treatment + Foliar application | LABse × fo |
7 | Mycoparasitic Fungus (T. virens) | Seed treatment + Foliar application | MPFse × fo |
8 | Lactic Acid Bacteria (L. plantarum) + Mycoparasitic Fungus (T. virens) | Seed treatment + Foliar application (combination) | LABse × MPFfo |
9 | Mycoparasitic Fungus (T. virens) + Lactic Acid Bacteria (L. plantarum) | Seed treatment + Foliar application (combination) | MPFse × LABfo |
Variation | Field Emergence (%) | Shoot Length (cm) | Root Length (cm) | Dry Shoot Weight (g) | Dry Root Weight (g) | Root Nodules (No. Plant−1) | Nodule Position | Plant Vigour |
---|---|---|---|---|---|---|---|---|
Season | ||||||||
2023 | 66.19 | 19.80 a | 13.35 a | 0.42 a | 0.096 a | 38.95 a | 2.22 a | 4.84 |
2024 | 67.82 | 12.06 b | 10.70 b | 0.18 b | 0.053 b | 19.64 b | 2.01 b | 4.84 |
p-Value | ns | *** | *** | *** | *** | *** | ** | ns |
Treatment | ||||||||
Control | 64.64 | 15.30 b | 11.86 | 0.29 | 0.070 b | 27.24 b | 1.99 b | 4.79 |
LABse | 69.95 | 16.19 a | 12.13 | 0.30 | 0.077 a | 31.59 a | 2.14 ab | 4.84 |
MPFse | 66.43 | 16.31 a | 12.09 | 0.30 | 0.076 a | 29.06 b | 2.22 a | 4.88 |
p-Value | ns | *** | ns | ns | ** | *** | * | ns |
Variation | Shoot Length (cm) | Root Length (cm) | Dry Shoot Weight (g) | Dry Root Weight (g) | Root Nodules (No. Plant−1) | Crown Nodules (No. Plant−1) | Lateral Nodules (No. Plant−1) |
---|---|---|---|---|---|---|---|
SL | 1.000 | 0.856 | 0.977 | 0.913 | 0.960 | 0.780 | 0.879 |
RL | 1.000 | 0.789 | 0.881 | 0.885 | 0.731 | 0.804 | |
DS | 1.000 | 0.891 | 0.934 | 0.753 | 0.861 | ||
DR | 1.000 | 0.941 | 0.881 | 0.770 | |||
RN | 1.000 | 0.840 | 0.894 | ||||
CN | 1.000 | 0.509 | |||||
LN | 1.000 |
Variation | Plant Height (cm) | Node Number (No. Plant−1) | Pod Number Branch−1 (No.) | Pods Plant−1 (No.) | Pod Weight (g Plant−1) | Pod Setting Ratio (%) |
---|---|---|---|---|---|---|
Season | ||||||
2023 | 85.55 | 18.09 b | 1.74 | 5.82 b | 8.42 a | 60.61 b |
2024 | 88.41 | 19.31 a | 1.69 | 8.47 a | 7.47 b | 82.88 a |
Treatment | ||||||
Control | 83.23 | 18.07 | 1.68 | 6.42 | 7.04 ab | 63.35 b |
LABse | 87.45 | 18.90 | 1.77 | 7.50 | 6.86 ab | 82.23 a |
MPFse | 89.25 | 19.03 | 1.70 | 7.77 | 8.55 ab | 80.30 ab |
LABfo | 84.46 | 18.70 | 1.69 | 6.70 | 6.70 b | 65.61 ab |
MPFfo | 87.71 | 18.80 | 1.69 | 7.77 | 8.00 ab | 71.78 ab |
LABse × fo | 89.25 | 19.20 | 1.78 | 7.73 | 8.32 ab | 76.64 ab |
MPFse × fo | 88.65 | 18.43 | 1.78 | 6.70 | 8.81 ab | 66.55 ab |
LABse × MPFfo | 86.59 | 18.57 | 1.73 | 6.53 | 8.16 ab | 63.58 ab |
MPFse × LABfo | 86.23 | 18.60 | 1.61 | 7.20 | 9.07 a | 75.71 ab |
Season | ns | *** | ns | *** | ** | *** |
Treatment | ns | ns | ns | ns | ** | ** |
Season × Treatment | ns | ns | ns | ns | ns | ns |
Variation | Seeds Pod−1 (No.) | Seed Number (No. Plant−1) | Seed Weight (g Plant−1) | TKW (g) | Seed Yield (t ha−1) | HW (kg hL−1) | Protein Content (%) |
---|---|---|---|---|---|---|---|
Season | |||||||
2023 | 3.50 | 19.65 b | 4.34 b | 211.07 a | 1.93 | 79.53 a | 20.96 b |
2024 | 3.37 | 28.16 a | 5.70 a | 198.94 b | 2.13 | 74.11 b | 22.01 a |
Treatment | |||||||
Control | 3.27 ab | 18.77 b | 4.31 ab | 201.34 | 2.07 | 76.58 | 21.24 |
LABse | 3.03 b | 22.53 ab | 3.95 b | 202.10 | 2.03 | 76.57 | 21.55 |
MPFse | 3.56 ab | 27.07 a | 5.45 ab | 204.83 | 2.27 | 76.87 | 21.46 |
LABfo | 3.15 ab | 20.30 ab | 4.14 ab | 204.43 | 1.51 | 76.83 | 21.56 |
MPFfo | 3.34 ab | 26.20 ab | 5.05 ab | 195.01 | 1.73 | 77.02 | 21.33 |
LABse × fo | 3.44 ab | 26.50 ab | 5.51 ab | 209.33 | 2.41 | 76.65 | 21.53 |
MPFse × fo | 3.59 ab | 23.80 ab | 5.86 a | 210.04 | 1.97 | 76.98 | 21.54 |
LABse × MPFfo | 3.65 ab | 23.00 ab | 4.97 ab | 205.16 | 2.04 | 76.77 | 21.54 |
MPFse × LABfo | 3.89 a | 27.00 a | 5.95 a | 212.79 | 2.26 | 77.08 | 21.61 |
Season | ns | *** | *** | ** | ns | *** | *** |
Treatment | * | ** | ** | ns | ns | ns | ns |
Season × Treatment | ns | ns | ns | ns | ns | ns | ns |
Variation | Plant Height (cm) | Node Number (No. plant−1) | Pods Plant−1 (No.) | Pod Setting Ratio (%) | Pod Weight (g plant−1) | Seeds Pod−1 (No.) | Seed Number (No. plant−1) | Seed Weight (g plant−1) | TKW (g) | Seed Yield (t ha−1) | Protein Content (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
PH | 1 | 0.729 | 0.705 | 0.607 | 0.603 | 0.268 | 0.794 | 0.580 | 0.208 | 0.440 | 0.346 |
NN | 1 | 0.863 | 0.752 | 0.162 | −0.085 | 0.659 | 0.156 | 0.049 | 0.271 | 0.411 | |
PP | 1 | 0.853 | 0.236 | −0.072 | 0.758 | 0.229 | −0.152 | 0.284 | 0.091 | ||
PSR | 1 | 0.181 | −0.052 | 0.627 | 0.136 | 0.086 | 0.488 | 0.292 | |||
PW | 1 | 0.910 | 0.794 | 0.982 | 0.571 | 0.556 | 0.306 | ||||
SP | 1 | 0.583 | 0.875 | 0.636 | 0.499 | 0.320 | |||||
SN | 1 | 0.765 | 0.279 | 0.503 | 0.319 | ||||||
SW | 1 | 0.614 | 0.520 | 0.293 | |||||||
TKW | 1 | 0.522 | 0.137 | ||||||||
SY | 1 | 0.711 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.G.; Konvalina, P.; Capouchová, I.; Dvořák, P.; Perná, K.; Kopecký, M.; Hoang, T.N.; Lencová, J.; Bohatá, A.; Kavková, M.; et al. Intensification of Pea (Pisum sativum L.) Production in Organic Farming: Effects of Biological Treatments on Plant Growth, Seed Yield, and Protein Content. Agronomy 2025, 15, 1792. https://doi.org/10.3390/agronomy15081792
Nguyen TG, Konvalina P, Capouchová I, Dvořák P, Perná K, Kopecký M, Hoang TN, Lencová J, Bohatá A, Kavková M, et al. Intensification of Pea (Pisum sativum L.) Production in Organic Farming: Effects of Biological Treatments on Plant Growth, Seed Yield, and Protein Content. Agronomy. 2025; 15(8):1792. https://doi.org/10.3390/agronomy15081792
Chicago/Turabian StyleNguyen, Thi Giang, Petr Konvalina, Ivana Capouchová, Petr Dvořák, Kristýna Perná, Marek Kopecký, Trong Nghia Hoang, Jana Lencová, Andrea Bohatá, Miloslava Kavková, and et al. 2025. "Intensification of Pea (Pisum sativum L.) Production in Organic Farming: Effects of Biological Treatments on Plant Growth, Seed Yield, and Protein Content" Agronomy 15, no. 8: 1792. https://doi.org/10.3390/agronomy15081792
APA StyleNguyen, T. G., Konvalina, P., Capouchová, I., Dvořák, P., Perná, K., Kopecký, M., Hoang, T. N., Lencová, J., Bohatá, A., Kavková, M., Murindangabo, Y. T., Kabelka, D., & Tran, D. K. (2025). Intensification of Pea (Pisum sativum L.) Production in Organic Farming: Effects of Biological Treatments on Plant Growth, Seed Yield, and Protein Content. Agronomy, 15(8), 1792. https://doi.org/10.3390/agronomy15081792