Environmental, Genetic and Structural Interactions Affecting Phytophthora spp. in Citrus: Insights from Mixed Modelling and Mediation Analysis to Support Agroecological Practices
Abstract
1. Introduction
- Describe the fundamental relationships between environmental variables (humidity, soil dry weight, colony density) and NPSS, as well as their temporal fluctuations.
- Quantify the combined effects of temporal, environmental, and structural factors using linear mixed models, while examining key interactions and random effects associated with rootstocks.
- Identify the mediation mechanisms between humidity, colony number, and NPSS to better understand indirect relationships and their relative importance.
- Evaluate the genetic and phenotypic variability of the studied traits to determine the relative contributions of environmental and genetic factors.
- Compare the performance of rootstocks in terms of NPSS and NC to identify the most suitable rootstocks for optimal soil management and sustainable agronomic improvement.
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Statistical and Genetic Analysis
2.2.1. Genetic Analysis
2.2.2. Linear Mixed Model
2.2.3. Causal Mediation Analysis
2.2.4. Multivariate Analysis of Variance (MANOVA) of Rootstocks
3. Results
3.1. Genetic and Phenotypic Variability
3.2. Mixed Linear Model
3.3. Causal Mediation Analysis
3.4. Multivariate Analysis of Rootstocks (MANOVA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, X.X. A review and perspective for Citrus breeding in China during the last six decades. Acta Hortic. Sin. 2022, 49, 2063–2074. [Google Scholar] [CrossRef]
- Lv, X.; Zhao, S.; Ning, Z.; Zeng, H.; Shu, Y.; Tao, O.; Xiao, C.; Lu, C.; Liu, Y. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem. Cent. J. 2015, 9, 68. [Google Scholar] [CrossRef]
- D’Amore, T.; Chaari, M.; Falco, G.; De Gregorio, G.; Jaouadi, N.Z.; Ali, D.S.; Sarkar, T.; Smaoui, S. When sustainability meets health and innovation: The case of Citrus by-products for cancer chemoprevention and applications in functional foods. Biocatal. Agric. Biotechnol. 2024, 58, 103163. [Google Scholar] [CrossRef]
- Liu, N.; Yang, W.; Li, X.; Zhao, P.; Liu, Y.; Guo, L.; Huang, L.; Gao, W. Comparison of characterization and antioxidant activity of different Citrus peel pectins. Food Chem. 2022, 386, 132683. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, J.; Zhang, T.; Chen, M.; Li, D.; Liu, R.; Li, X.; Wang, H.; Sun, T. Review of polysaccharides from Citrus medica L. var. sarcodactylis. (Fingered citron): Their extraction, purification, structural characteristics, bioactivity and potential applications. Int. J. Biol. Macromol. 2024, 282, 136640. [Google Scholar] [CrossRef]
- World Bank—World Integrated Trade Solution (WITS). Morocco Exports: Product 080510 (Oranges), All Partners, 2023. Available online: https://wits.worldbank.org/trade/comtrade/en/country/MAR/year/2023/tradeflow/Exports/partner/ALL/product/080510 (accessed on 6 May 2025).
- Vincent, C.; Morillon, R.; Arbona, V.; Gómez-Cadenas, A. Citrus in changing environments. In The Genus Citrus; Woodhead Publishing: Cambridge, UK, 2020; pp. 271–289. [Google Scholar] [CrossRef]
- Mahmoud, L.M.; Killiny, N.; Dutt, M. Identification of CAP genes in finger lime (Citrus australasica) and their role in plant responses to abiotic and biotic stress. Sci. Rep. 2024, 14, 29557. [Google Scholar] [CrossRef]
- Alfaro Morales, J.; Bermejo, A.; Navarro, P.; Quiñones, A.; Salvador, A. Effect of rootstock on Citrus fruit quality: A review. Food Rev. Int. 2023, 39, 2835–2853. [Google Scholar] [CrossRef]
- Castle, W.S. A career perspective on Citrus rootstocks, their development, and commercialization. HortScience 2010, 45, 11–15. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, H.; Kumar, K.; Kaur, R.; Arora, A.; Kaur, N. Oxidative stress dynamics revealed the role of H2O2 in Citrus rootstocks sensitivity to Phytophthora nicotianae. Physiol. Mol. Plant Pathol. 2024, 133, 102348. [Google Scholar] [CrossRef]
- Catalano, G.A.; D’Urso, P.R.; Arcidiacono, C. Predicting potential biomass production by geospatial modelling: The case study of Citrus in a Mediterranean area. Ecol. Inform. 2024, 83, 102848. [Google Scholar] [CrossRef]
- Boudoudou, D.; Douira, A.; Benyahia, H. Evaluation of the Resistance of 10 New Citrus Rootstocks to Root Rot Caused by Phytophthora parasitica. In Sustainable and Green Technologies for Water and Environmental Management; Azrour, M., Mabrouki, J., Guezzaz, A., Eds.; World Sustainability Series; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Boudoudou, D.; El Marrakchi, S.; Talha, A.; Kerroum, B.; Ouazzani Touhami, A.; Douira, A.; Benyahia, H. Effect of Some Derivatives of Pyridazin-3(2H)-Ones on the In Vitro and In Situ Development of Different Pathogenic Fungi on Citrus Fruits. In International Conference on Advanced Intelligent Systems for Sustainable Development; Kacprzyk, J., Ezziyyani, M., Balas, V.E., Eds.; AI2SD 2022, Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Boudoudou, D.; Talha, A.; Anas, F.; Douira, A.; Benyahia, H. Influence of Citrus rootstocks on soil populations of Phytophthora sp. in the Gharb region in Morocco. Int. J. Recent Sci. Res. 2016, 7, 14230–14236. [Google Scholar]
- Boudoudou, D.; Fadli, A.; Talha, A.; Bourachdi, Y.; Douira, A.; Benyahia, H. Effect of seasonal and Citrus rootstocks on inoculum density of Phytophthora sp. in Citrus orchard in a heavy soil of the Gharb region of Morocco. Biolife 2015, 3, 367–377. [Google Scholar] [CrossRef]
- Gaikwad, P.N.; Sharma, V.; Singh, J.; Sidhu, G.S.; Singh, H.; Omar, A.A. Biotechnological advancements in Phytophthora disease diagnosis, interaction and management in Citrus. Sci. Hortic. 2023, 310, 111739. [Google Scholar] [CrossRef]
- Handique, M.; Bora, P.; Ziogas, V.; Srivastava, A.K.; Jagannadham, P.T.K.; Das, A.K. Phytophthora Infection Reorients the Composition of Rhizospheric Microbial Assembly in Khasi Mandarin (Citrus reticulata Blanco). Agronomy 2024, 14, 661. [Google Scholar] [CrossRef]
- Cordeiro, D.; Pizarro, A.; Vélez, M.D.; Guevara, M.Á.; de María, N.; Ramos, P.; Cobo-Simón, I.; Diez-Galán, A.; Benavente, A.; Ferreira, V.; et al. Breeding Alnus species for resistance to Phytophthora disease in the Iberian Peninsula. Front. Plant Sci. 2024, 15, 1499185. [Google Scholar] [CrossRef]
- Donald, C.E.; Olaf, K.R. Phytophthora Diseases Worldwide; APS Press: St. Paul, MN, USA, 1996; pp. 245–256. [Google Scholar]
- Agostini, J.P.; Timmer, L.W.; Castle, W.S.; Mitchell, D.J. Effect of Citrus rootstocks on soil populations of Phytophthora parasitica. Plant Dis. 1991, 75, 296–300. [Google Scholar] [CrossRef]
- Singh, A.; Thakur, A.; Sharma, S.; Gill, P.P.S.; Kalia, A. Bio-inoculants enhance growth, nutrient uptake, and buddability of Citrus plants under protected nursery conditions. Commun. Soil Sci. Plant Anal. 2018, 49, 2571–2586. [Google Scholar] [CrossRef]
- Farih, A.; Jrifi, A.; Maazouzi, B.; Khamass, M. Effect of foliar application of Phosethyl-Al on the dynamics of Phytophthora populations in orchards and on citrus yield. In Proceedings of the Awamia Seminar on Plant Protection, Rabat, Morocco, 14–15 March 1995. [Google Scholar]
- Zifcakova, L. Factors affecting soil microbial processes. In Carbon and Nitrogen Cycling in Soil; Datta, R., Meena, R., Pathan, S., Ceccherini, M., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Singer, S.D.; Laurie, J.D.; Bilichak, A.; Kumar, S.; Singh, J. Genetic variation and unintended risk in the context of old and new breeding techniques. Crit. Rev. Plant Sci. 2021, 40, 68–108. [Google Scholar] [CrossRef]
- Samarina, L.S.; Kulyan, R.V.; Koninskaya, N.G.; Gorshkov, V.M.; Ryndin, A.V.; Hanke, M.V.; Flachowsky, H.; Reim, S. Genetic diversity and phylogenetic relationships among Citrus germplasm in the Western Caucasus assessed with SSR and organelle DNA markers. Sci. Hortic. 2021, 288, 110355. [Google Scholar] [CrossRef]
- Mauro, R.P.; Pérez-Alfocea, F.; Cookson, S.J.; Ollat, N.; Vitale, A. Editorial: Physiological and Molecular Aspects of Plant Rootstock-Scion Interactions. Front. Plant Sci. 2022, 13, 852518. [Google Scholar] [CrossRef]
- Aldrich, D.J.; Taylor, M.; Bester, R.; El-Mohtar, C.A.; Burger, J.T.; Maree, H.J. Applying infectious clones and untargeted metabolite profiling to characterize Citrus tristeza virus-induced stem pitting in Citrus. Sci. Rep. 2024, 14, 28490. [Google Scholar] [CrossRef]
- Hussain, S.B.; Karagiannis, E.; Manzoor, M.; Ziogas, V. From stress to success: Harnessing technological advancements to overcome climate change impacts in citriculture. Crit. Rev. Plant Sci. 2023, 42, 345–363. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Li, Q.; Gu, F.; Zhou, Y.; Xu, T.; Wang, L.; Zuo, Q.; Xiao, L.; Liu, J.; Tian, Y. Changes in the impacts of topographic factors, soil texture, and cropping systems on topsoil chemical properties in the mountainous areas of the subtropical monsoon region from 2007 to 2017: A case study in Hefeng, China. Int. J. Environ. Res. Public Health 2021, 18, 832. [Google Scholar] [CrossRef] [PubMed]
- Timmer, C.P. The agricultural transformation. In Handbook of Development Economics; North Holland: Amsterdam, The Netherlands, 1988; Volume 1, pp. 275–331. [Google Scholar] [CrossRef]
- Timmer, J.M.K.; Van der Horst, H.C.; Robbertsen, T. Transport of lactic acid through reverse osmosis and nanofiltration membranes. J. Membr. Sci. 1993, 85, 205–216. [Google Scholar] [CrossRef]
- Azzi, R.; Tsao, T.F.; Carranza, F.A.; Kenney, E.B. Comparative study of gingival retraction methods. J. Prosthet. Dent. 1983, 50, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Timmer, V.R.; Miller, B.D. Effects of contrasting fertilization and moisture regimes on biomass, nutrients, and water relations of container-grown red pine seedlings. New For. 1991, 5, 335–348. [Google Scholar] [CrossRef]
- Benyahia, H.; Mouloud, H.M.; Jrifi, A.; Lamsettef, Y. Effet de la salinité de l’eau d’irrigation sur la colonisation des racines des porte-greffes d’agrumes par Phytophthora parasitica. Fruit 2004, 59, 101–108. [Google Scholar] [CrossRef]
- Dambier, D.; Benyahia, H.; Pensabene-Bellavia, G.; Kaçar, Y.A.; Froelicher, Y.; Belfalah, Z.; Lhou, B.; Handaji, N.; Printz, B.; Morillon, R.; et al. Somatic hybridization for Citrus rootstock breeding: An effective tool to solve some important issues of the Mediterranean Citrus industry. Plant Cell Rep. 2011, 30, 883–900. [Google Scholar] [CrossRef]
- Dalal, B.; Amina, O.T.; Rachid, B.; Allal, D. Control of Verticilliosis and Grey Rot of Tomatoes Using Phosphite-Based Fungicides: Control of Verticilliosis and Grey Rot of Tomatoes. In Circular Economy Applications in Energy Policy; Mabrouki, J., Ed.; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 23–40. [Google Scholar] [CrossRef]
- Dalal, B.; Amina, O.T.; Rachid, B.; Allal, D. In Vitro and In Vivo Effects of Three Phosphite-Based Fungicides on Botrytis Cinerea and Verticillium Dahliae, Tomato Pathogens. In Circular Economy Applications in Energy Policy; Mabrouki, J., Ed.; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 109–126. [Google Scholar] [CrossRef]
- Stamps, D.J.; Waterhouse, G.M.; Newhook, F.J.; Hall, G.S. Revised Tabular Key to the Species of Phytophthora; CABI Publishing: Wallingford, UK, 1990. [Google Scholar]
- Feichtenberger, E.; Zentmyer, G.A.; Menge, J.A. Identity of Phytophthora isolated from milkweed vine. Phytopathology 1983, 73, 50–55. [Google Scholar]
- Boudoudou, D.; Fadli, A.; El bakkali, M.; Ouazzani Touhami, A.; Douira, A.; Benyahia, H. Effect of Salinity on the Development of Gummosis Caused by Phytophthora Citrophthora on Six Rootstocks Commonly Used in Citrus Orchards. In Technical Innovation and Modeling in the Biological Sciences; Mabrouki, J., Ed.; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 103–116. [Google Scholar] [CrossRef]
- Waterhouse, G.M. Key to the species Phytophthora de Bary. Mycol. Pap. 1963, 92, 22. [Google Scholar]
- Reynolds, C.M.; Wolf, D.C. Effect of soil moisture and air relative humidity on ammonia volatilization from surface-applied urea. Soil Sci. 1987, 143, 144–152. [Google Scholar] [CrossRef]
- Dalal, B.; Allal, D.; Hamid, B. Morphological Characteristics and Identification of Phytophthora Species Causing Gummosis and Root Rot of Citrus in Morocco. In Circular Economy Applications in Energy Policy; Mabrouki, J., Ed.; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 157–174. [Google Scholar] [CrossRef]
- Burton, G.W.; De Vane, E.H. Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agron. J. 1953, 45, 478–481. [Google Scholar] [CrossRef]
- Manjunathagowda, D.C.; Anjanappa, M. Genetic variability studies for yield and yield contributing traits in onion (Allium cepa L.). Vegetos 2021, 34, 174–182. [Google Scholar] [CrossRef]
- Johnson, H.W.; Robinson, H.F.; Comstock, R.E. Estimates of genetic and environmental variability in soybeans. Agron. J. 1955, 47, 314–318. [Google Scholar] [CrossRef]
- Kaur, V.; Gomashe, S.S.; Yadav, S.K.; Singh, D.; Chauhan, S.S.; Kumar, V.; Jat, B.; Tayade, N.R.; Langyan, S.; Kaushik, N.; et al. Leveraging genetic resource diversity and identification of trait-enriched superior genotypes for accelerated improvement in linseed (Linum usitatissimum L.). Sci. Rep. 2024, 14, 20266. [Google Scholar] [CrossRef]
- Afek, U.; Sztejnberg, A. A rapid method for evaluating Citrus seedlings for resistance to foot rot caused by Phytophthora citrophthora. Plant Dis. 1990, 74, 66–68. [Google Scholar] [CrossRef]
- Said, A.A.; MacQueen, A.H.; Shawky, H.; Reynolds, M.; Juenger, T.E.; El-Soda, M. Genome-wide association mapping of genotype-environment interactions affecting yield-related traits of spring wheat grown in three watering regimes. Environ. Exp. Bot. 2022, 194, 104740. [Google Scholar] [CrossRef]
- Yehia, W.M.B.; Zaazaa, E.E.D.I.; El-Hashash, E.F.; El-Enin, M.M.A.; Shaaban, A. Genotype-by-environment interaction analysis for cotton seed yield using various biometrical methods under irrigation regimes in a semi-arid region. Arch. Agron. Soil Sci. 2024, 70, 1–23. [Google Scholar] [CrossRef]
- Husk, B.; Julian, P.; Simon, D.; Tromas, N.; Phan, D.; Painter, K.; Baulch, H.; Sauvé, S. Improving water quality in a hypereutrophic lake and tributary through agricultural nutrient mitigation: A multi-year monitoring analysis. J. Environ. Manag. 2024, 354, 120411. [Google Scholar] [CrossRef]
- Bhatti, A.M.; Usman, H.M.; Iffat, A.; Tatar, M.; Karim, M.M.; Zafar, M.I.; Ali, A.; Shafique, T. Revealing the current scenario and prospective outlook of Citrus gummosis in Pakistan. Düzce Üniversitesi Ziraat Fakültesi Derg. 2024, 2, 46–59. [Google Scholar]
- Vasconcelos, J.C.S.; Lopes, S.A.; Arenas, J.C.C. Flexible regression model for predicting the dissemination of Candidatus Liberibacter asiaticus under variable climatic conditions. Infect. Dis. Model. 2025, 10, 60–74. [Google Scholar] [CrossRef]
- Galaz, A.; Pérez-Donoso, A.G.; Gambardella, M. Leaf Aquaporin Expression in Grafted Plants and the Influence of Genotypes and Scion/Rootstock Combinations on Stomatal Behavior in Grapevines Under Water Deficit. Plants 2024, 13, 3427. [Google Scholar] [CrossRef] [PubMed]
- Jalloh, A.A.; Khamis, F.M.; Yusuf, A.A.; Subramanian, S.; Mutyambai, D.M. Long-term push–pull cropping system shifts soil and maize-root microbiome diversity paving way to resilient farming system. BMC Microbiol. 2024, 24, 92. [Google Scholar] [CrossRef] [PubMed]
- Arjona-López, J.M.; Gmitter, F.G., Jr.; Romero-Rodríguez, E.; Grosser, J.W.; Cantero-Sánchez, J.L.; López-Herrera, C.J.; Arenas-Arenas, F.J. Plant Physiological Assessments on Promising New HLB-Tolerant Citrus Rootstocks after Inoculation with the Phytopathogenic Ascomycete Rosellinia necatrix. Horticulturae 2023, 9, 744. [Google Scholar] [CrossRef]
- Modica, G.; Arcidiacono, F.; Puglisi, I.; Baglieri, A.; La Malfa, S.; Gentile, A.; Arbona, V.; Continella, A. Response to Water Stress of Eight Novel and Widely Spread Citrus Rootstocks. Plants 2025, 14, 773. [Google Scholar] [CrossRef]
- Sheikh, A.T.; Chaudhary, A.K.; Mufti, S.; Davies, S.; Rola-Rubzen, M.F. Soil fertility in mixed crop-livestock farming systems of Punjab, Pakistan: The role of institutional factors and sustainable land management practices. Agric. Syst. 2024, 218, 103964. [Google Scholar] [CrossRef]
- Kaur, Y.; Thind, S.K.; Arora, A. Survival of Phytophthora nicotianae in Citrus rhizosphere. J. Plant Pathol. 2021, 103, 1307–1313. [Google Scholar] [CrossRef]
- Wang, L.; Yi, Q.; Yu, P.; Kumar, S.; Zhang, X.; Wu, C.; Weng, Z.; Xing, M.; Huo, K.; Chen, Y.; et al. Rootstock Selection for Resisting Cucumber Fusarium Wilt in Hainan and Corresponding Transcriptome and Metabolome Analysis. Plants 2025, 14, 359. [Google Scholar] [CrossRef]
- Theron, E.; van Niekerk, J.; van der Waals, J. A review of the use of phosphonates in the management of Phytophthora nicotianae in Citrus in South Africa. Phytoparasitica 2025, 53, 11. [Google Scholar] [CrossRef]
- El-Khlifi, F.; Kriri, K.; El-Bakkali, M.; Chetto, O.; Talha, A.; Benkirane, R.; Benyahia, H. The Serial Mediating Role of Acidity Content and Total Soluble Solids in Linking Peel Thickness to Vitamin C Content in Some Accessions of Citrus limon (L.) Burm. J. Glob. Innov. Agric. Sci. 2024, 12, 293–305. [Google Scholar] [CrossRef]
- Fu, H.; Fu, J.; Zhou, B.; Wu, H.; Liao, D.; Liu, Z. Biochemical mechanisms preventing wilting under grafting: A case study on pumpkin rootstock grafting to wax gourd. Front. Plant Sci. 2024, 15, 1331698. [Google Scholar] [CrossRef] [PubMed]
Code | Rootstocks | Code ICVN |
---|---|---|
3 | Poncirus trifoliata. B6 CZ 24 | ICVN 0110139 |
6 | Mandarin Sunki x P.T. B2 38581 | ICVN 0110204 |
5 | P.T B 6 C Z 13 | ICVN 0110107 |
7 | Citrange Carrizo 28608 | ICVN 0110181 |
11 | Citrumelo 4475 B2 G3 | ICVN 110145 |
16 | Mandarin sunki x P.T. 30591 | ICVN 0110211 |
17 | Mandarin sunki x P.T. 30588 | ICVN 0110208 |
18 | Mandarin cleopatra x P.T. 30584 | ICVN 0110155 |
23 | Gou-Tou SRA 506 | - |
24 | Citrus macrophylla | ICVN 0110058 |
25 | Citrus volkameriana B2 28613 | ICVN 0110025 |
30 | Mandarin Cleopatra X C.C. 30577 | ICVN 0110223 |
34 | Bigaradier P6 R26 A16 | - |
39 | Mandarin sunki x P.T. 330590 | ICVN 0110210 |
41 | Citrumelo 1452 B6 C | ICVN 0110282 |
Number of Propagules per Gram of Dry Soil | Coefficient | Std. Err. | z | p-Value | 95% CI |
---|---|---|---|---|---|
Month | 4.10 | 1.43 | 2.86 | 0.004 | [1.29; 6.92] |
Year | 38.86 | 7.66 | 5.07 | 0.000 | [23.83; 5388] |
Hum × Nc × PSS | 0.70 | 0.007 | 91.80 | 0.000 | [0.69; 0.72] |
Constante | 78.21622 | 15.43885 | −5.07 | 0.000 | [−108.4758; −47.95663] |
Random-Effects Parameters | Estimate | Std. Err. | 95% CI |
---|---|---|---|
Variance of rootstocks | 63.94 | 52.98 | [12.61; 324.34] |
Residual variance | 1418.67 | 125.69 | [1192.52; 1687.70] |
Parameter | |||
Log-vraisemblance | 1367.33 | - | - |
Wald chi2 (3) | 9393.57 | - | p < 0.0001 |
LR test (chibar2(01)) | 2.93 | - | p = 0.0433 |
Number of Propagules per Gram of Dry Soil | Robust | |||||
---|---|---|---|---|---|---|
Coefficient | Std. Err. | Z | p-Value | 95% CI | ||
Natural indirect effect | ||||||
Humidity (H) % | ||||||
4.4 < H ≤ 8.4 vs. 0.5 ≤ H ≤4.4 | 27.17 | 11.44 | 2.37 | p < 0.05 | 4.72 | 49.61 |
8.4 < H ≤ 12.3 vs. 0.5 ≤ H ≤4.4 | 169.85 | 21.04 | 8.07 | p < 0.001 | 128.60 | 211.11 |
12.3 < H ≤ 16.2 vs. 0.5 ≤ H ≤4.4 | 261.77 | 21.68 | 12.07 | p < 0.001 | 219.27 | 304.27 |
16.2 < H ≤ 20.2 vs. 0.5 ≤ H ≤4.4 | 420.91 | 42.65 | 9.87 | p < 0.001 | 337.31 | 504.52 |
20.2 < H ≤ 24.1 vs. 0.5 ≤ H ≤4.4 | 453.39 | 128.10 | 3.54 | p < 0.001 | 202.30 | 704.48 |
Natural direct effect | ||||||
Humidity (%H) | ||||||
4.4 < H ≤ 8.4 vs. 0.5 ≤ H ≤4.4 | 1.57 | 0.32 | 4.80 | p < 0.001 | 0.93 | 2.22 |
8.4 < H ≤ 12.3 vs. 0.5 ≤ H ≤4.4 | 2.65 | 0.72 | 3.68 | p < 0.001 | 1.24 | 4.07 |
12.3 < H ≤ 16.2 vs. 0.5 ≤ H ≤4.4 | 4.54 | 1.09 | 4.15 | p < 0.001 | 2.39 | 6.70 |
16.2 < H ≤ 20.2 vs. 0.5 ≤ H ≤4.4 | 1.69 | 2.08 | 0.81 | 0.417 | −2.39 | 5.78 |
20.2 < H ≤ 24.1 vs. 0.5 ≤ H ≤4.4 | 5.21 | 3.47 | 1.50 | 0.133 | −1.59 | 12.02 |
Total effect | ||||||
Humidity (%H) | ||||||
4.4 < H ≤8.4 vs. 0.5 ≤ H ≤4.4 | 28.74 | 11.26 | 2.55 | p < 0.05 | 6.66 | 50.83 |
8.4 < H ≤12.3 vs. 0.5 ≤ H ≤4.4 | 172.51 | 20.70 | 8.33 | p < 0.001 | 131.92 | 213.10 |
12.3 < H ≤ 16.2 vs. 0.5 ≤ H ≤4.4 | 266.32 | 21.24 | 12.54 | p < 0.001 | 224.69 | 307.95 |
16.2 < H ≤ 20.2 vs. 0.5 ≤ H ≤4.4 | 422.61 | 41.33 | 10.22 | p < 0.001 | 341.60 | 503.62 |
20.2 < H ≤ 24.1 vs. 0.5 ≤ H ≤4.4 | 458.61 | 126.73 | 3.62 | p < 0.001 | 210.21 | 707.00 |
Proportion d’humidity (%) | Proportion mediated (%) | |||||
4.4 < H ≤8.4 vs. 0.5 ≤ H ≤4.4 | 94.5% | |||||
8.4 < H ≤12.3 vs. 0.5 ≤ H ≤4.4 | 98.5% | |||||
12.3 < H ≤ 16.2 vs. 0.5 ≤ H ≤4.4 | 98.3% | |||||
16.2 < H ≤ 20.2 vs. 0.5 ≤ H ≤4.4 | 99.6% | |||||
20.2 < H ≤ 24.1 vs. 0.5 ≤ H ≤4.4 | 98.9% |
Source | Statistic | df1 | Df2 | F | p-Value |
---|---|---|---|---|---|
Wilks’ Lambda | 0.7201 | 14 | 28 | 508 | p < 0.0001 |
Pillai’s Trace | 0.2951 | 28 | 510 | 3.15 | p < 0.0001 |
Lawley-Hotelling | 0.3678 | 28 | 506 | 3.12 | p < 0.0001 |
Roy’s Largest Root | 0.2970 | 14 | 255 | 5.41 | p < 0.0001 |
Rootstock | Adjusted Prediction | T | p-Value | 95% CI | |
---|---|---|---|---|---|
Bigaradier P6 R26 A16 | 100.44 | 1.98 | p < 0.05 | 0.67 | 200.20 |
Number of propagules per gram of dry soil (NPDS) | |||||
Citrange Carrizo 28608 | 276.42 | 5.46 | p < 0.001 | 176.66 | 376.19 |
Citrumelo 1452 B6 C | 238.69 | 4.71 | p < 0.001 | 138.93 | 338.46 |
Citrumelo 4475 B2 G3 | 172.34 | 3.40 | p < 0.01 | 72.57 | 272.10 |
Citrus macrophylla | 151.64 | 2.99 | p < 0.01 | 51.88 | 251.41 |
Citrus volkameriana B2 28613 | 601.52 | 11.87 | p < 0.001 | 501.76 | 701.29 |
Gou-Tou SRA 506 | 232.23 | 4.58 | p < 0.001 | 132.47 | 332.00 |
Mandarin Cleopatre X C.C. 30577 | 216.68 | 4.28 | p < 0.001 | 116.92 | 316.45 |
Mandarin Cleopatre x P.T. 30584 | 291.85 | 5.76 | p < 0.001 | 192.08 | 391.61 |
Mandarin Sunki x P.T. 30588 | 218.69 | 4.32 | p < 0.001 | 118.92 | 318.45 |
Mandarin Sunki x P.T. 30591 | 220.31 | 4.35 | p < 0.001 | 120.54 | 320.08 |
1#Mandarin Sunki x P.T. 330590 | 272.34 | 5.38 | p < 0.001 | 172.57 | 372.11 |
Mandarin Sunki x P.T. B2 38581 | 408.07 | 8.06 | p < 0.001 | 308.31 | 507.84 |
P.T B 6 C Z 13 | 287.88 | 5.68 | p < 0.001 | 188.11 | 387.64 |
Poncirus trifoliata. B6 CZ 24 | 214.20 | 4.23 | p < 0.001 | 114.43 | 313.96 |
Number of colonies (NC) | |||||
Bigaradier P6 R26 A16 | 9.72 | 2.12 | p < 0.05 | 0.70 | 18.73 |
Citrange Carrizo 28608 | 26.16 | 5.71 | p < 0.001 | 17.14 | 35.18 |
Citrumelo 1452 B6 C | 22.38 | 4.89 | p < 0.001 | 13.37 | 31.40 |
Citrumelo 4475 B2 G3 | 16.61 | 3.63 | p < 0.001 | 7.59 | 25.62 |
Citrus macrophylla | 14.22 | 3.11 | p < 0.01 | 5.20 | 23.23 |
Citrus volkameriana B2 28613 | 55.22 | 12.06 | p < 0.001 | 46.20 | 64.23 |
Gou-Tou SRA 506 | 22.05 | 4.82 | p < 0.001 | 13.03 | 31.07 |
Mandarin Cleopatre X C.C. 30577 | 21.27 | 4.65 | p < 0.001 | 12.26 | 30.29 |
Mandarin Cleopatre x P.T. 30584 | 27.22 | 5.95 | p < 0.001 | 18.20 | 36.23 |
Mandarin Sunki x P.T. 30588 | 20.88 | 4.56 | p < 0.001 | 11.87 | 29.90 |
Mandarin Sunki x P.T. 30591 | 21.44 | 4.68 | p < 0.001 | 12.42 | 30.46 |
Mandarin Sunki x P.T. 330590 | 25.38 | 5.54 | p < 0.001 | 16.37 | 34.40 |
Mandarin Sunki x P.T. B2 38581 | 37.61 | 8.21 | p < 0.001 | 28.59 | 46.62 |
P.T B 6 C Z 13 | 26.77 | 5.85 | p < 0.001 | 17.76 | 35.79 |
Poncirus trifoliata. B6 CZ 24 | 20.94 | 4.57 | p < 0.001 | 11.92 | 29.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boudoudou, D.; Mounir, M.; El bakkali, M.; Douira, A.; Benyahia, H. Environmental, Genetic and Structural Interactions Affecting Phytophthora spp. in Citrus: Insights from Mixed Modelling and Mediation Analysis to Support Agroecological Practices. Agronomy 2025, 15, 1631. https://doi.org/10.3390/agronomy15071631
Boudoudou D, Mounir M, El bakkali M, Douira A, Benyahia H. Environmental, Genetic and Structural Interactions Affecting Phytophthora spp. in Citrus: Insights from Mixed Modelling and Mediation Analysis to Support Agroecological Practices. Agronomy. 2025; 15(7):1631. https://doi.org/10.3390/agronomy15071631
Chicago/Turabian StyleBoudoudou, Dalal, Majid Mounir, Mohamed El bakkali, Allal Douira, and Hamid Benyahia. 2025. "Environmental, Genetic and Structural Interactions Affecting Phytophthora spp. in Citrus: Insights from Mixed Modelling and Mediation Analysis to Support Agroecological Practices" Agronomy 15, no. 7: 1631. https://doi.org/10.3390/agronomy15071631
APA StyleBoudoudou, D., Mounir, M., El bakkali, M., Douira, A., & Benyahia, H. (2025). Environmental, Genetic and Structural Interactions Affecting Phytophthora spp. in Citrus: Insights from Mixed Modelling and Mediation Analysis to Support Agroecological Practices. Agronomy, 15(7), 1631. https://doi.org/10.3390/agronomy15071631