An SSR-Base Linkage Map Reveals QTLs for Floral-Related Traits in Nightlily (Hemerocallis citrina)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Collection of Phenotypic Data and Statistical Analysis
2.3. DNA Extraction
2.4. Development of SSR Markers
2.5. Collinearity Analysis
2.6. Genetic Map Construction and QTL Mapping
2.7. Candidate Gene Prediction
3. Results
3.1. Phenotypic Variation of Floral Traits in ‘Liuyuehua’ × ‘Datong Huanghua’ F1 Population
3.2. Genetic Linkage Map Construction
3.3. Collinearity Analysis of the Intraspecific Hybridization Genetic Linkage Maps and H. citrina Genome
3.4. QTL Analysis
3.5. Candidate Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SSR | Simple Repeat Sequence |
SN | Scape number |
BN | Three-letter acronym |
SL | Linear dichroism |
SD | Scape diameter |
BL | Bud length |
BD | Bud diameter |
FWOB | Fresh flower bud weight |
DWOB | Dry flower bud weight |
BLUP | Best Liner Unbiased Prediction |
PCR | Polymerase Chain Reaction |
QTL | Quantitative trait locus |
MLE | Maximum Likelihood Estimation |
ICIM | Composite Interval Mapping |
LG | Linkage group |
Chr | Chromosomes |
References
- Liu, J.X.; Zhong, X.H.; Jiang, Y.Y.; Yu, L.Y.; Huang, X.Q.; Dong, Z.; Yang, S.Y.; He, W.; Zeng, J.G.; Qing, Z.X. Systematic identification metabolites of Hemerocallis citrina borani by high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry combined with a screening method. J. Pharm. Biomed. Anal. 2020, 186, 113314. [Google Scholar] [CrossRef] [PubMed]
- Qing, Z.X.; Liu, J.H.; Yi, X.X.; Liu, X.B.; Hu, G.A.; Lao, J.; He, W.; Yang, Z.H.; Zou, X.Y.; Sun, M.S.; et al. The chromosome-level Hemerocallis citrina Borani genome provides new insights into the rutin biosynthesis and the lack of colchicine. Hortic. Res. 2021, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xu, S.; Hu, H.; Pan, J.; Li, P.; Shen, W. Endogenous hydrogen sulfide homeostasis is responsible for the alleviation of senescence of postharvest daylily flower via increasing antioxidant capacity and maintained energy status. J. Food Chem. 2017, 65, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Chen, T.; Ren, H.Z. Rhizome weight and number of sectioning per rhizome determine plantlet growth and propagation rate of Hemerocallis citrina Baroni in cutting propagation. Agron. J. 2022, 11, 2777. [Google Scholar] [CrossRef]
- Li, S.; Ji, F.; Hou, F.; Shi, Q.; Xing, G.; Chen, H.; Weng, Y.; Kang, X. Morphological, palynological and molecular assessment of Hemerocallis core collection. Sci. Hortic. 2021, 285, 110181. [Google Scholar] [CrossRef]
- Li, Z.; Tan, F.; Zhao, Y.; Zhang, D.; Hong, J.; Wu, S. Screening and evaluation of superior germplasm based on yield and quality characteristics of Hemerocallis citrina. J. Trop. Subtrop. Bot. 2024, 32, 82–92. [Google Scholar]
- Rodriguez-Enriquez, M.J.; Grant-Downton, R.T. A new day dawning: Hemerocallis (daylily) as a future model organism. AoB Plants 2013, 5, pls055. [Google Scholar] [CrossRef] [PubMed]
- Valder, P. The Garden Plants of China; Timber Press: Portland, OR, USA, 1999. [Google Scholar]
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Ma, T.C.; Sun, Y.; Wang, L.D.; Wang, J.Y.; Wu, B.; Yan, T.X.; Jia, Y. An Investigation of the Anti-Depressive Properties of Phenylpropanoids and Flavonoids in Hemerocallis citrina Baroni. Molecules 2022, 27, 5809. [Google Scholar] [CrossRef]
- Hao, Z.L.; Liang, L.; Liu, H.; Yan, Y.; Zhang, Y.Y. Exploring the Extraction Methods of Phenolic Compounds in Daylily (Hemerocallis citrina Baroni) and Its Antioxidant Activity. Molecules 2022, 27, 2964. [Google Scholar] [CrossRef]
- Lin, Y.L.; Lu, C.K.; Huang, Y.J.; Chen, H.J. Antioxidative caffeoylquinic acids and flavonoids from Hemerocallis fulva flowers. J. Agric. Food Chem. 2011, 59, 8789–8795. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Yang, F.F.; Liu, C.Y.; Liu, X.M.; Pan, R.L.; Chang, Q.; Zhang, Z.S.; Liao, Y.H. Effects of phenolic of daylily flowers on corticosterone-and glutamate-treated PC12 cells. BMC Complement. Altern. Med. 2017, 17, 69. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Xie, M.S.; Huang, Y.; Deng, Q.B.; He, Z.M.; Peng, Q.H. Drying-induced metabolic changes in daylily: A comprehensive analysis of VOC profiles and antidepressant compounds. J. Food Compos. Anal. 2025, 137, 106849. [Google Scholar] [CrossRef]
- Cichewicz, R.H.; Zhang, Y.J.; Seeram, N.P.; Nair, M.G. Inhibition of human tumor cell proliferation by novel anthraquinones from daylilies. Life Sci. 2004, 74, 1791–1799. [Google Scholar] [CrossRef]
- Qin, X.Y.; Zhang, L.; Wen, Y.B.; Li, J.M.; Zhang, Y.L. Advanced in research on nutritional activitiees of important functional components of Hemerocallis citrona Baroni. Food Res. Dev. J. 2022, 43, e17802. [Google Scholar]
- Hou, F.F.; Liang, X.F.; Chen, R.; Ji, X.; Li, H.T.; Jing, M.Y.; Gao, Y.; Liu, Y.T.; Li, S.; Xing, G.M. Construction of Genetic Linkage Maps Using SSR Markers and Identification of Flower Bud-related QTLs in Nightlily. Agronomy 2025, 15, 534. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, J.; Nan, J.F.; Hou, X.J.; Tian, C.Z.; Zhao, X.Y.; Qin, Y.; Yu, J.S.; Su, J.; Liu, Y.T.; et al. A GBS-based interspecific and high-density genetic map of Hemerocallis reveals QTLs for horticulturally important traits in daylily and night lily. Hortic. Plant J. 2025. [CrossRef]
- Varshney, R.K.; Bertioli, D.J.; Moretzsohn, M.C.; Vadez, V.; Krishnamurthy, L.; Aruna, R.; Nigam, S.N.; Moss, B.J.; Seetha, K.; Ravi, K.; et al. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor. Appl. Genet. 2009, 118, 729–739. [Google Scholar] [CrossRef]
- Dudley, J.W. Molecular markers in plant improvement: Manipulation of genes affecting quantitative traits. Crop Sci. 1993, 33, 660–668. [Google Scholar] [CrossRef]
- Paterson, A.H. Making genetic maps. In Genome Mapping in Plants; Paterson, A.H., Ed.; Academic Press: San Diego, CA, USA, 1996; pp. 23–39. [Google Scholar]
- Collard, B.C.Y.; Mackill, D. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R Soc. Biol. Sci. 2008, 363, 557–572. [Google Scholar] [CrossRef]
- Mascher, M.; Schreiber, M.; Scholz, U.; Graner, A.; Reif, J.C.; Stein, N. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 2019, 51, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.L.; Niu, E.L.; Shi, A.N.; Mou, B.Q. Genetic diversity analysis of olive germplasm (Olea europaea L.) with genotyping-by-sequencing technology. Front. Genet. 2019, 10, 755. [Google Scholar] [CrossRef]
- Mažeikiene, I.; Šikšnianiene, J.B.; Baniulis, D.; Gelvonauskiene, D.; Frercks, B.; Starkus, A.; Žebrauskiene, A.; Stanys, V. SSR analysis based on molecular characterisation of apple germplasm in Lithuania. Zemdirbyste 2019, 106, 159–166. [Google Scholar] [CrossRef]
- Chen, C.X.; Okie, W.R. Genetic relationship and parentages of historical peaches revealed by microsatellite markers. Tree Genet. Genomes 2021, 17, 35. [Google Scholar] [CrossRef]
- Emami-Tabatabaei, S.S.; Small, E.; Assadi, M.; Dehshiri, M.M.; Mehregan, I. Genetic variation among Iranian Medicago polymorpha L. populations based on SSR markers. Genet. Resour. Crop Evol. 2021, 68, 1411–1424. [Google Scholar] [CrossRef]
- Hamm, T.P.; Boggess, S.L.; Kandel, J.S.; Staton, M.E.; Huff, M.L.; Hadziabdic, D.; Shoemaker, D.; Adamczyk, J.J., Jr.; Nowicki, M.; Trigiano, R.N. Development and Characterization of 20 Genomic SSR Markers for Ornamental Cultivars of Weigela. Plants 2022, 11, 1444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.W.; Ye, Y.Y.; Zhu, G.F.; Xu, Y.C.; Tan, J.J.; Liu, J.M. Diversity, classification, and EST-SSR-based association analysis of Caladium ornamental traits. Physiol. Plant 2023, 175, e13841. [Google Scholar] [CrossRef]
- Song, L.Q.; Wang, R.H.; Yang, X.J.; Zhang, A.M.; Liu, D.C. Molecular Markers and Their Applications in Marker-Assisted Selection (MAS) in Bread Wheat (Triticum aestivum L.). Agriculture 2023, 13, 642. [Google Scholar] [CrossRef]
- Chengxing, Z.; Zhicheng, J.; Yusha, M.; Jun, Y.; Xinsun, Y.; Huan, Z.; Ning, Z.; Shaozhen, H.; Shaopei, G.; Hong, Z.; et al. Construction of a high-density SSR genetic linkage map and identification of QTL for storageroot yield and dry-matter content in sweetpotato. Crop J. 2023, 11, 963–967. [Google Scholar]
- Hu, S.Y. The species of Hemerocallis. Am. Hortic. Mag. 1968, 47, 86.11. [Google Scholar]
- Yin, D.M.; Huang, M.R.; Zhu, L.H. Using dominant markers and F1 pedigree to construct genetic linkage map in forest trees. Prog. Progress. Bioeng. 1996, 16, 12–16. [Google Scholar]
- Grattapaglia, D.; Sederoff, R. Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-testcross strategy and RAPD markers. Theor. Appl. Genet. 1995, 90, 933–947. [Google Scholar] [CrossRef]
- Tomkins, J.; Wood, T.; Barnes, L.; Westman, A.; Wing, R.A. Evaluation of genetic variation in daylily (Hemerocallis spp.) using AFLP markers. Theor. Appl. Genet. 2001, 102, 489–496. [Google Scholar] [CrossRef]
- Yue, Y.; Wei, A.; Jian, H.Z.; Yan, L.L.; Yun, F.F.; Jin, H.C.; You, L.C.; Xiang, Q.Z. Constructing the wolfberry (Lycium spp.) genetic linkage map using AFLP and SSR markers. J. Integr. Agric. 2022, 21, 131–138. [Google Scholar]
- Bali, S.; Mamgain, A.; Raina, S.N.; Raina, S.N.; Yadava, S.K.; Bhat, V.; Das, S.; Pradan, A.K.; Goel, S. Construction of a genetic linkage map and mapping of drought tolerance trait in Indian beveragial tea. Mol. Breed. 2015, 35, 5. [Google Scholar] [CrossRef]
- Huaiyong, L.; Zhijun, X.; Zhendong, L.; Xinping, L.; Jianwei, L.; Xiaoping, R.; Li, H.; Xiaojing, Z.; Yuning, C.; Jingyin, Y.; et al. Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theor. Appl. Genet. 2017, 130, 1635–1648. [Google Scholar]
- Doerge, R.W. Mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet. 2002, 3, 43–52. [Google Scholar] [CrossRef]
- Mason, R.E.; Hays, D.B.; Mondal, S.; Ibrahim, A.M.; Basnet, B.R. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica 2013, 194, 243–259. [Google Scholar] [CrossRef]
- Yu, M.; Mao, S.L.; Hou, D.B.; Chen, G.Y.; Pu, Z.E.; Li, W.; Lan, X.J.; Jiang, Q.T.; Liu, Y.X.; Deng, M.; et al. Analysis of contributors to grain yield in wheat at the individual quantitative trait locus level. Plant Breed. 2018, 137, 35–49. [Google Scholar] [CrossRef]
- Juliana, P.; Poland, J.; Huerta-Espino, J.; Shrestha, S.; Crossa, J.; Crespo-Herrera, L.; Toledo, F.H.; Govindan, V.; Mondal, S.; Kumar, Y.U.; et al. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat. Genet. 2019, 51, 1530–1539. [Google Scholar] [CrossRef]
- Li, L.; Mao, G.; Wang, J.Y.; Chang, X.P.; Reynolds, M.; Jing, R.L. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell Environ. 2019, 42, 2540–2553. [Google Scholar] [CrossRef]
- Li, L.; Peng, Z.; Mao, X.G.; Wang, J.Y.; Chang, X.P.; Reynolds, M.; Jing, R.L. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Ann. Bot. 2019, 124, 993–1006. [Google Scholar] [CrossRef]
- Yang, Y.; Dhakal, S.; Chu, C.G.; Wang, S.C.; Xue, Q.W.; Rudd, J.C.; Ibrahim, A.M.H.; Jessup, K.; Baker, J.; Fuentealba, M.P.; et al. Genome wide identification of QTL associated with yield and yield components in two popular wheat cultivars TAM 111 and TAM 112. PLoS ONE 2020, 15, e0237293. [Google Scholar] [CrossRef]
- Diniel, G.; Alessio, C.; Hugo, N.; Chris-Carolin, S. Prediction of Complex Traits: Robust Alternatives to Best Linear Unbiased Prediction. Front. Genet. 2018, 9, 195. [Google Scholar]
- Marvellous, Z. Genotype and Environmental Effects on Sugarcane Flowering in South Africa. Sugar Tech 2022, 24, 430–437. [Google Scholar]
- Zhang, J.; Yang, J.J.; Fu, S.Z.; Ren, J.; Zhang, X.F.; Zhao, H.; Yang, K.; Wen, C.L. Comparison of DUS testing and SNP fingerprinting for variety identification in cucumber. Hortic. Plant J. 2022, 8, 575–582. [Google Scholar] [CrossRef]
- Du, L.M.; Zhang, C.; Liu, Q.; Zhang, X.Y.; Yue, B.S. Krait: An ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics 2018, 34, 681–683. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11 Molecular evolutionary genetics analysis version 11. Mol. Biol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Li, H.H.; Ribaut, J.M.; Li, Z.L.; Wang, J.K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental population. Theor. Appl. Genet. 2007, 175, 361–374. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Meng, W.; Wu, W.C.; Wang, J.K. GACD: Integrated software for genetic analysis in clonal F1 and double cross populations. J. Hered. 2016, 106, 741–744. [Google Scholar] [CrossRef] [PubMed]
- Würschum, T. Mapping QTL for agronomic traits in breeding populations. Theor. Appl. Genet. 2012, 125, 201–210. [Google Scholar] [CrossRef]
- Terakami, S.; Nishio, S.; Kato, H.; Takada, N.; Takeuchi, Y.; Saito, T.; Yamamoto, T. Fine mapping of the gene controlling the easy-peeling pellicle trait and development of an efficient marker-assisted selection system in Japanese chestnut (Castanea crenata Sieb. et Zucc.). Tree Genet. Genomes 2023, 19, 2. [Google Scholar] [CrossRef]
- Lu, C.R.; Zou, C.S.; Zhang, Y.P.; Yu, D.Q.; Cheng, H.L.; Jiang, P.F.; Yang, W.C.; Wang, Q.L.; Feng, X.X.; Prosper, M.A. Development of chromosome-specific markers with high polymorphism for allotetraploid cotton based on genome-wide characterization of simple sequence repeats in diploid cottons (Gossypium arboreum L. And Gossypium raimondii Ulbrich). BMC Genom. 2015, 16, 55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tang, C.J.; Zhao, Q.; Li, J.; Yang, L.F.; Qie, L.F.; Fan, X.K.; Li, L.; Zhang, N.; Zhao, M.C. Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in foxtail millet Setaria italica (L.) P. Beauv.]. BMC Genom. 2014, 15, 78. [Google Scholar] [CrossRef]
- Hir, Y.P.; Yuan, S.X.; Giglou, M.T.; Jun, M. QTLs position of some important ornamental traits in recently development OO lily population. Physiol. Mol. Biol. Plants 2019, 25, 1419–1434. [Google Scholar]
- McCallum, S.; Graham, J.; Jorgensen, L.; Rowland, L.J.; Bassil, N.V.; Hancock, J.F.; Wheeler, E.J.; Vining, K.; Poland, J.A.; Olmstead, J.W. Construction of a SNP and SSR linkage map in autotetraploid blueberry using genotyping by sequencing. Mol. Breed. 2016, 36, 41. [Google Scholar] [CrossRef]
- Anderson, J.A.; Churchill, G.A.; Autrique, J.E.; Tanksley, S.D.; Sorrells, M.E. Optimizing parental selection for genetic linkage maps. Genome 1993, 36, 181–186. [Google Scholar] [CrossRef]
- Wang, H.Y.; Smith, K.P.; Combs, E.; Blake, T.; Horsley, R.D.; Muehlbauer, G.J. Effect of population size and unbalanced data sets on QTL detection using genome-wide association mapping in barley breeding germplasm. Theor. Appl. Genet. 2012, 124, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Vision, T.J.; Brown, D.G.; Shmoys, D.B.; Durrett, R.T.; Tanksley, S.D. Selective mapping: A strategy for optimizing the construction of high-density linkage maps. Genetics 2000, 155, 407. [Google Scholar] [CrossRef]
- Lescot, M.; Rombauts, S.; Zhang, J.; Mate, C.; Jansson, S.; Rouze, O.; Boerjan, W. Annotation of a 95kb populus deltoides genomic sequence reveals a disease resistance gene cluster and novel class-I and class-II transposable elements. Theor. Appl. Genet. 2004, 109, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Woolbright, S.A.; DiFazio, S.P.; Yin, T.; Martinsen, G.D.; Zhang, X.; Allan, G.J.; Whitham, T.G.; Keim, P. A dense linkage map of hybrid cottonwood (Populus fremontii × P. Angustifolia) contributes to long-term ecological research and comparison mapping in a model forest tree. Heredity 2008, 100, 59–70. [Google Scholar] [CrossRef]
- DE Keyser, E.; Shu, Q.Y.; Van Bockstaele, E.; De Riek, J. Multipoint-likelihood maximization mapping on 4 segregating populations to achieve an integrated framework map for QTL analysis in pot azalea (Rhododendron simsii hybrids). BMC Mol. Biol. 2010, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Brradshaw, H.D.; Steeler, R.F. Molecular genetics of growth and development in populus. II. Segregation distortion due to geneticload. Theor. Appl. Genet. 1994, 89, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.B.; Tang, H.; Huang, Y.Q.; Zheng, Y.L.; Jian, S. Genetic analysis of segregation distortion of molecular markers in maize F2 population. Acta Genet. Sin. 2003, 30, 913–918. [Google Scholar]
- Chen, Y.J.; Xiong, Y.J.; Hong, H.L.; Li, G.; Gao, J.; Guo, Q.Y.; Sun, R.J.; Ren, H.L.; Zhang, F.; Wang, J.; et al. Genetic dissection of and genomic selection for seed weight, pod length, and pod width in soybean. Crop J. 2023, 11, 832–841. [Google Scholar] [CrossRef]
- Lin, Y.; Zhu, Y.; Cui, Y.; Qian, H.G.; Yuan, Q.L.; Chen, R.; Lin, Y.; Chen, J.M.; Zhou, X.S.; Shi, C.L.; et al. Identification of natural allelic variation in TTL1 controlling thermotolerance and grain size by a rice super pan-genome. J. Integr. Plant Biol. 2023, 65, 2541–2551. [Google Scholar] [CrossRef]
- Jin, M.L.; Liu, H.J.; Liu, X.G.; Guo, T.T.; Guo, J.; Yin, Y.J.; Ji, Y.; Li, Z.X.; Zhang, J.H.; Wang, X.Q. Complex genetic architecture underlying the plasticity of maize agronomictraits. Plant Commun. 2023, 4, 100473. [Google Scholar] [CrossRef]
- Liu, Z.H.; Zhao, P.; Lai, X.J.; Wang, X.M.; Ji, W.Q.; Xu, S.B. The selection and application of peduncle length QTL QPL_6D.1 in modern wheat (Triticum aestivum L.) breeding. Theor. Appl. Genet. 2023, 136, 32. [Google Scholar] [CrossRef]
- Licausi, F.; Ohme-Takagi, M.; Perata, P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytol. 2013, 199, 639–649. [Google Scholar] [CrossRef]
- Pei, S.; Sun, Y.F.; Ma, X.F.; Zhu, Z.C.; Wei, L.H.; Liu, X.Z.; Wang, C.N.; Liu, Z.; Luan, F.S.; Liu, H.Y.; et al. QTL analysis and candidate gene prediction for melon petal size. Sci. Hortic. 2025, 341, 113987. [Google Scholar] [CrossRef]
- Dubois, M.; Van den Broeck, L.; Inzé, D. The pivotal role of ethylene in plant growth. Trends Plant Sci. 2018, 23, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.S.; Yang, L.H.; Xiao, X.Y.; Jiang, J.F.; Guan, Z.Y.; Fang, W.M.; Chen, F.D.; Chen, S.M. PIN and PILS family genes analyses in Chrysanthemum seticuspe reveal their potential functions in flower bud development and drought stress. Int. J. Biol. Macromol. 2022, 220, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Barbez, E.; Kubes, M.; Rolcík, J.; Béziat, C.; Pencík, A.; Wang, B.J.; Rosquete, M.R.; Zhu, J.S.; Dobrev, P.I.; Lee, Y.; et al. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 2012, 485, 119–122. [Google Scholar] [CrossRef]
- Xu, X.H.; Feng, G.Y.; Li, P.; Yu, S.; Hao, F.X.; Nie, G.; Huang, L.K.; Zhang, X.Q. Genome-wide association analysis reveals the function of DgSAUR71 in plant height improvement. BMC Plant Biol. 2025, 25, 240. [Google Scholar] [CrossRef]
- Su, B.H.; Wu, H.T.; Guo, Y.; Gao, H.W.; Wei, Z.Y.; Zhao, Y.Y.; Qiu, L.J. GmIAA27 Encodes an AUX/IAA Protein Involved in Dwarfing and Multi-Branching in Soybean. Int. J. Mol. Sci. 2022, 23, 8643. [Google Scholar] [CrossRef]
- Gu, C.; Guo, Z.H.; Hao, P.P.; Wang, G.M.; Jin, Z.M.; Zhang, S.L. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Bot. Stud. 2017, 58, 6. [Google Scholar] [CrossRef]
YEAR | 2022 | 2023 | 2024 | BLUP | Broad Sense Heritability | ||||
---|---|---|---|---|---|---|---|---|---|
Trait | MEAN ± SD | CV 1 (%) | MEAN ± SD | CV 1 (%) | MEAN ± SD | CV 1 (%) | MEAN ± SD | CV 1 (%) | |
SN | 15.43 ± 6.93 | 44.93 | 1.44 ± 0.92 | 63.99 | 6.20 ± 3.5 | 56.47 | 15.41 ± 6.96 | 45.13 | 0.6294 |
BN | 20.28 ± 7.30 | 36.01 | 15.27 ± 8.95 | 58.62 | 36.87 ± 12.50 | 33.91 | 24.16 ± 7.65 | 31.67 | 0.9588 |
SL (cm) | 71.45 ± 13.65 | 19.10 | 58.95 ± 13.42 | 22.76 | 99.53 ± 16.1 | 16.17 | 76.02 ± 12.22 | 16.07 | 0.9299 |
SD (mm) | 4.39 ± 0.63 | 14.36 | 3.73 ± 0.69 | 18.46 | 5.03 ± 0.78 | 15.56 | 4.45 ± 0.99 | 22.21 | 0.9856 |
BL (mm) | 115.01 ± 12.21 | 10.62 | 120.55 ± 11.51 | 9.55 | 119.65 ± 11.83 | 9.88 | 118.24 ± 10.58 | 8.9 | 0.8554 |
BD (mm) | 9.05 ± 0.97 | 10.69 | 9.88 ± 1.29 | 13.03 | 9.59 ± 1.14 | 11.92 | 9.43 ± 0.86 | 9.2 | 0.8066 |
FWOB (g) | 2.63 ± 0.48 | 18.38 | 3.22 ± 0.58 | 17.98 | 3.32 ± 0.65 | 19.68 | 3.04 ± 0.50 | 16.53 | 0.1912 |
DWOB (g) | 0.33 ± 0.05 | 16.18 | 0.39 ± 0.06 | 15.24 | 0.42 ± 0.07 | 16 | 0.38 ± 0.049 | 13.03 | 0.2167 |
Segregation Type 1 | Progeny Segregation Ratio | Number and Proportion |
---|---|---|
nn × np 2 | nn:np = 1:1 | 30 (12.29%) |
lm × ll 3 | lm:ll = 1:1 | 35 (14.34%) |
hk × hk 4 | hh;hk;kk = 1:2:1 | 26 (10.66%) |
ef × eg 5 | ee:ef:eg:fg = 1:1:1:1 | 153 (62.7%) |
ab × cd 6 | ac:ad:bc:bd = 1:1:1:1 | 0 |
Total | 244 |
LG | LG1 | LG2 | LG3 | LG4 | LG5 | LG6 | LG7 | LG8 | LG9 | LG10 | LG11 |
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.923 ** | 0.865 * | 0.994 ** | 0.749 * | 0.925 ** | 0.906 ** | 0.793 ** | 0.366 | 0.995 ** | 0.903 ** | 0.876 ** |
Number of markers | 13 | 11 | 15 | 13 | 22 | 14 | 17 | 13 | 16 | 19 | 16 |
Total map distance | 204.19 | 148.56 | 137.97 | 100.18 | 142.98 | 238.45 | 159.67 | 87.10 | 125.68 | 152.29 | 108.34 |
Average map distance | 15.71 | 13.51 | 9.20 | 7.71 | 6.50 | 17.03 | 9.39 | 6.70 | 7.86 | 8.02 | 6.77 |
Trait | QTL Loci | QTL Model | LG | LOD 1 | LOD 2 | PVE (%) 3 | Peak Range (cM) | Left Marker and Position | Right Marker and Position |
---|---|---|---|---|---|---|---|---|---|
BN | qBN6.1 | ICIM | 6 | 3.77 | 5.65 | 7.21 | 30.16 | 146.544 | 176.70 |
SL | qSL5.1 | ICIM | 5 | 4.44 | 6.56 | 19.39 | 21.38 | 55.98 | 77.36 |
SL | qSL8.1 | ICIM | 8 | 4.44 | 4.74 | 13.39 | 13.42 | 73.81 | 87.23 |
SL | qSL10.1 | ICIM | 10 | 4.44 | 4.76 | 13.66 | 10.91 | 81.75 | 92.66 |
BL | qBL8.1 | ICIM | 8 | 4.37 | 7.41 | 24.29 | 2.38 | 2.64 | 5.02 |
BD | qBD3.1 | ICIM | 3 | 4.65 | 4.66 | 10.09 | 6.96 | 66.85 | 73.82 |
BD | qBD8.1 | ICIM | 8 | 4.65 | 6.87 | 14.93 | 1.46 | 5.02 | 6.84 |
DWOB | qDWOB3.1 | ICIM | 3 | 4.71 | 6.82 | 8.68 | 13.94 | 17.65 | 31.59 |
DWOB | qDWOB4.1 | ICIM | 4 | 4.71 | 5.15 | 13.59 | 4.55 | 95.60 | 100.15 |
DWOB | qDWOB5.1 | ICIM | 5 | 4.71 | 6.53 | 8.96 | 10.56 | 13.14 | 23.7 |
GeneID | NR_Annotation |
---|---|
HHC034511 | ethylene-responsive transcription factor ERF071 (Dendrobium catenatum) |
HHC034516 | protein PIN-LIKES 3-like isoform X1 (Asparagus officinalis) |
HHC022110 | auxin-responsive protein SAUR71 (Elaeis guineensis) |
HHC022036 | auxin-responsive protein IAA30 (Elaeis guineensis) |
HHC022210 | AP2-like ethylene-responsive transcription factor ANT (Asparagus officinalis) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Liang, Z.; Zhao, X.; Shi, L.; Liu, Y.; Gao, Y.; Cheng, X.; Xing, G.; Li, S. An SSR-Base Linkage Map Reveals QTLs for Floral-Related Traits in Nightlily (Hemerocallis citrina). Agronomy 2025, 15, 1599. https://doi.org/10.3390/agronomy15071599
Su Y, Liang Z, Zhao X, Shi L, Liu Y, Gao Y, Cheng X, Xing G, Li S. An SSR-Base Linkage Map Reveals QTLs for Floral-Related Traits in Nightlily (Hemerocallis citrina). Agronomy. 2025; 15(7):1599. https://doi.org/10.3390/agronomy15071599
Chicago/Turabian StyleSu, Yuting, Zhonghao Liang, Xinyu Zhao, Lijing Shi, Yang Liu, Yang Gao, Xiaojing Cheng, Guoming Xing, and Sen Li. 2025. "An SSR-Base Linkage Map Reveals QTLs for Floral-Related Traits in Nightlily (Hemerocallis citrina)" Agronomy 15, no. 7: 1599. https://doi.org/10.3390/agronomy15071599
APA StyleSu, Y., Liang, Z., Zhao, X., Shi, L., Liu, Y., Gao, Y., Cheng, X., Xing, G., & Li, S. (2025). An SSR-Base Linkage Map Reveals QTLs for Floral-Related Traits in Nightlily (Hemerocallis citrina). Agronomy, 15(7), 1599. https://doi.org/10.3390/agronomy15071599