Agronomy and Environmental Sustainability of the Four Major Global Vegetable Oil Crops: Oil Palm, Soybean, Rapeseed, and Sunflower
Abstract
1. Introduction
2. Methodologies and Caveats
2.1. Use of LCA (Life Cycle Analysis/Assessment) Data
2.2. Use of LUC (Land Use Conversion) Data
3. Oil Palm
4. Soybean
5. Rapeseed/Canola
6. Sunflower
7. Environmental Comparisons Between the Major Vegetable Oil Crops
8. Conclusions, Limitations, and Policy Options
8.1. Conclusions
- The three major annual crops, soybean, rapeseed, and sunflower, produce compositionally similar vegetable oils dominated by C16 and C18 fatty acids and together supply about 52% of the world’s supply of vegetable oil on an extensive land footprint totaling 203 Mha.
- In contrast, the perennial oil palm crop supplies 40% of the world’s supply of vegetable oil on a more modest land footprint of a mere 23 Mha, making it almost ninefold more efficient in terms of oil production per land unit.
- As a perennial crop, oil palm has many environmental advantages over annual crops, including its already-high but greatly improvable oil yields, its capacity for carbon sequestration comparable with some forests, its lower vulnerability to currently predicted climate effects, and its future capacity for considerably increased sustainable production without expansion into sensitive natural habitats.
- A major issue in comparing the different crops analyzed here is the lack of systematic LCA and LUC datasets generated using similar methodologies. This means that the comparisons in this study are not as fully quantitative as would be wished, although the dichotomy between perennial and annual crops is still clear.
- Global requirements for vegetable oils will continue to grow over the coming decades, although supplies might become increasingly constrained due to factors such as climate change and poor land use.
- This might require a re-examination of the current focus on comparatively low-yielding, climate-sensitive annual oil crops alongside a more effective and imaginative use of improved and updated versions of high-yielding, land-sparing oil palm cropping systems.
8.2. Limitations of the Study
8.3. Policy Options
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations and Units
C | carbon |
EU | European Union |
EUDR | European Union Deforestation Regulation |
GHG | greenhouse gas |
Gt giga (billion) metric tons | |
ha | hectare |
m | meters |
LCA | Life Cycle Analysis/Assessment |
LUC | Land Use Conversion |
Mha | million hectares |
Mt million metric tons | |
USD | USD in 2024 prices |
RED | Renewable Energy Directive |
SDGs | Sustainable Development Goals |
t | Metric tons |
y | year |
References
- Marquer, L.; Otto, T.; Arous, E.B.; Stoetzel, E.; Campmas, E.; Zazzo, A.; Tombret, O. The first use of olives in Africa around 100,000 years ago. Nat. Plants 2022, 8, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.J. People Plants and Genes, the Story of Crops and Humanity; Oxford University Press: Oxford, UK, 2008; Available online: https://global.oup.com/academic/product/people-plants-and-genes-9780199207145?cc=gb&lang=en& (accessed on 10 May 2025).
- FAOSTAT. FAO Statistical Database. 2025. Available online: https://openknowledge.fao.org/bitstreams/f8c73abe-d26d-4d47-9272-c9b464cc0fc1/download (accessed on 10 May 2025).
- Meijaard, E.; Azhar, B.; Persio, M.; Shiel, D. Exploring the Future of Vegetable Oils. Oil Crop Implications—Fats, Forests, Forecasts, and Futures; IUCN & SNSB: Gland, Switzerland, 2024; Available online: https://portals.iucn.org/library/node/51451 (accessed on 10 May 2025).
- Micha, R.; Khatibzadeh, S.; Shi, P.; Fahimi, S.; Lim, S.; Andrews, K.G.; Engell, R.E.; Powles, J.; Ezzati, M.; Mozaffarian, D. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. BMJ 2014, 348, g2272. [Google Scholar] [CrossRef] [PubMed]
- Tabe-Ojong, M.P.; Alamsyah, Z.; Sibhatu, K.T. Oil palm expansion, food security and diets: Comparative evidence from Cameroon and Indonesia. J. Clean. Prod. 2023, 418, 138085. [Google Scholar] [CrossRef]
- Sanders, T. (Ed.) The role of fats in the human diet. In Functional Dietary Lipids: Food Formulation, Consumer Issues and Innovation for Health; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–28. [Google Scholar] [CrossRef]
- IUCN. Vegetable Oils and Biodiversity. Issues Brief. 2024. Available online: https://iucn.org/resources/issues-brief/vegetable-oils-and-biodiversity#:~:text=Oil%20crops%20–%20plant%20seeds%20and,area%20dedicated%20to%20agricultural%20crops (accessed on 10 May 2025).
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Ritchie, H. Not the End of the World, 2024, Penguin. Available online: https://www.penguin.co.uk/books/453652/not-the-end-of-the-world-by-ritchie-hannah/9781529931242 (accessed on 10 May 2025).
- Syahid, L.N.; Luo, X.; Zhao, R.; Lee, J.S.H. Climate drives variation in remotely sensed palm oil yield in Indonesia and Malaysia. Environ. Res. Lett. 2025, 20, 044016. [Google Scholar] [CrossRef]
- UN. Sustainable Development Goals. 2022. Available online: https://sdgs.un.org/goals (accessed on 10 May 2025).
- Murphy, D.J. Sustainable Vegetable Oils. In Functional Dietary Lipids: Food Formulation, Consumer Issues and Innovation for Health; Sanders, T., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 31–47. [Google Scholar] [CrossRef]
- Martinez-Nuñez, C.; Velado-Alonso, E.; Avelino, J.; Rey, P.J.; ten Hoopen, G.M.; Pe’er, G.; Zou, Y.; Liu, Y.; Antwi-Agyei, P.; Rusch, A.; et al. Tailored policies for perennial woody crops are crucial to advance sustainable development. Nat. Sustain. 2024, 8, 133–141. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef]
- Murphy, D.J. Global-scale carbon sequestration and climate change mitigation: The untapped roles of perennial crops. Crops 2025, in press.
- Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, J. Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Cox, T.S.; Glover, J.D.; Van Tassel, D.L.; Cox, C.M.; DeHaan, L.R. Prospects for Developing Perennial Grain Crops. BioScience 2006, 56, 649–659. [Google Scholar] [CrossRef]
- Dawson, D. How Intensive Agriculture and Olive Cultivation Impact Soil Health. Olive Oil Times. 2022. Available online: https://www.oliveoiltimes.com/world/intensive-agriculture-olive-cultivation-impact-soil-health/113478 (accessed on 10 May 2025).
- Kantar, M.B.; Tyl, C.E.; Dorn, K.M.; Zhang, X.; Jungers, J.M.; Kaser, J.M.; Schendel, R.R. Perennial Grain and Oilseed Crops. Ann. Rev. Plant Biol. 2016, 67, 703–729. [Google Scholar] [CrossRef] [PubMed]
- Kreitzman, M.; Toensmeier, E.; Chan, K.M.A.; Smukler, S.; Ramankutty, N. Perennial Staple Crops: Yields, Distribution, and Nutrition in the Global Food System. Front. Sustain. Food Syst. 2020, 4, 588988. [Google Scholar] [CrossRef]
- Chapman, E.A. Perennials as Future Grain Crops: Opportunities and Challenges. Front. Plant Sci. 2022, 13, 898769. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, T.A.; Nurrochmat, D.R.; Hero, Y.; Park, M.S.; Boer, R.; Satria, A. Evaluating the feasibility of oil palm agroforestry in Harapan Rainforest, Jambi, Indonesia. For. Soc. 2021, 5, 458–477. [Google Scholar] [CrossRef]
- Rival, A.M.; Ancrenaz, I.; Lackman, S.; Burhan, C.; Zemp, M.; Firdaus, M.; Djama, M. Innovative planting designs for oil palm-based agroforestry. Agroforest Syst. 2025, 99, 27. [Google Scholar] [CrossRef]
- Meijaard, E.; Azhar, B.; Persio, M.; Sheil, D. Oil Palm Plantations in the Context of Biodiversity Conservation. In Encyclopedia of Biodiversity, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Murphy, D.J. Carbon Sequestration by Tropical Trees and Crops: A Case Study of Oil Palm. Agriculture 2024, 14, 1133. [Google Scholar] [CrossRef]
- Murphy, D.J. Biological carbon sequestration: From deep history to the present day. Earth 2024, 5, 195–213. [Google Scholar] [CrossRef]
- Salk Institute. Harnessing Plants Initiative. 2025. Available online: https://www.salk.edu/harnessing-plants-initiative/research/ (accessed on 10 May 2025).
- Lal, R.; Smith, P.; Jungkunst, H.F.; Mitsch, W.J.; Lehmann, J.; Nair, P.K.R.; Ravindranath, N.H. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 2018, 73, 145A–152A. Available online: https://www.tandfonline.com/doi/abs/10.2489/jswc.73.6.145A (accessed on 10 May 2025). [CrossRef]
- Mo, L.; Zohner, C.M.; Reich, P.B.; Liang, J.; de Miguel, S.; Nabuurs, G.J.; Renner, S.S.; van den Hoogen, J.; Araza, A.; Herold, M.; et al. Integrated global assessment of the natural forest carbon potential. Nature 2023, 624, 92–107. [Google Scholar] [CrossRef]
- Sha, Z.; Bai, Y.; Li, R.; Lan, H.; Zhang, X.; Li, J.; Liu, X.; Chang, S.; Xie, Y. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Commun. Earth Environ. 2022, 3, 8. [Google Scholar] [CrossRef]
- Choksi, P.; Lalai, D.; Menon, A.; Joglekar, A.; Roy, A.; Ramprasad, V.; Gudasalamani, R. How do trees outside forests contribute to human wellbeing? A systematic review from South Asia. Environ. Res. Lett. 2025, 20, 034040. [Google Scholar] [CrossRef]
- Chiaramonte, D.; Recchia, L. Is life cycle assessment (LCA) a suitable method for quantitative CO2 saving estimations? the impact of field input on the LCA results for a pure vegetable oil chain. Biomass Bioenergy 2010, 34, 787–797. [Google Scholar] [CrossRef]
- Notarnicola, B. (Ed.) Life Cycle Assessment in the Agri-Food Sector. Case Studies; Methodological Issues and Best Practices; Springer: Berlin/Heidelberg, Germany, 2015; Available online: https://link.springer.com/book/10.1007/978-3-319-11940-3 (accessed on 10 May 2025).
- Schmidt, J.H. Life Assessment of Rapeseed Oil and Palm Oil. Part 3: Life Cycle Inventory of Rapeseed Oil and Palm oil. Ph.D. Thesis, Department of Development and Planning, Aalborg University, Aalborg, Denmark, 2007. Available online: https://homes.plan.aau.dk/jannick/publications/thesis_part3.pdf (accessed on 10 May 2025).
- Henson, I.; Ruiz, R.R.; Romero, H.M. The greenhouse gas balance of the oil palm industry in Colombia: A preliminary analysis. II. Greenhouse gas emissions and the carbon budget. Agron. Colomb. 2012, 30, 370–378. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99652012000300008 (accessed on 10 May 2025).
- Quezada, J.C.; Etter, A.; Ghazoul, J.; Buttler, A.; Guillaume, T. Carbon neutral expansion of oil palm plantations in the Neotropics. Sci. Adv. 2019, 5, eaaw4418. [Google Scholar] [CrossRef]
- Solidaridad. Barometer on Sustainable Palm Oil Production and Trade in Colombia 2022. 2023. Available online: https://solidaridadlatam.org/wp-content/uploads/2023/11/FINALBarometerPalmOil_2023_EN.pdf (accessed on 10 May 2025).
- Xin, Y.; Sun, L.; Hansen, M.C. Oil palm reconciliation in Indonesia: Balancing rising demand and environmental conservation towards 2050. J. Clean. Prod. 2022, 380, 135087. [Google Scholar] [CrossRef]
- Hanafiah, K.M. Impact of Malaysian palm oil on sustainable development goals: Co-benefits and trade-offs across mitigation strategies. Sustain. Sci. 2021, 10, 1007. [Google Scholar] [CrossRef]
- Goh, N. EU, Malaysia, Indonesia Create Task Force Over Deforestation Rule. Nikkei Asia. 2023. Available online: https://asia.nikkei.com/Editor-s-Picks/Interview/EU-Malaysia-Indonesia-create-task-force-over-deforestation-rule (accessed on 10 May 2025).
- Safitri, L.; Galdos, M.V.; Comber, A.; Challinor, A. Potential for low-emissions oil palm production in Indonesia: Insights from spatiotemporal dynamics. Environ. Res. Lett. 2024, 19, 054045. Available online: https://repository.rothamsted.ac.uk/item/99042/potential-for-low-emissions-oil-palm-production-in-indonesia-insights-from-spatiotemporal-dynamics (accessed on 10 May 2025). [CrossRef]
- Joint Research Centre. The Amazon Region in 2022 and 2023: Deforestation, Forest Degradation and the Risk of Growing Soy Production. EU Science Hub. 2024. Available online: https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/amazon-region-2022-and-2023-deforestation-forest-degradation-and-risk-growing-soy-production-2024-02-28_en (accessed on 10 May 2025).
- Tan, Q.T.; Rajakal, J.P.; Lim, C.H.; Hassim, M.H.; Ng, D.S.K. Toward Carbon Neutrality: Systematic Approach to Decarbonize Palm Oil Value Chain. Ind. Eng. Chem. Res. 2024, 63, 1903–1925. Available online: https://pubs.acs.org/doi/10.1021/acs.iecr.3c02405 (accessed on 10 May 2025). [CrossRef]
- Koh, L.P.; Wilcove, D.S. Is oil palm agriculture really destroying tropical biodiversity? Conserv. Lett. 2008, 1, 60–64. [Google Scholar] [CrossRef]
- Khasanah, N.; van Noordwijk, M.; Slingerland, M.; Sofiyudin, M.; Stomph, D.; Migeon, A.F.; Hairiah, K. Oil Palm Agroforestry Can Achieve Economic and Environmental Gains as Indicated by Multifunctional Land Equivalent Ratios. Front. Sustain. Food Syst. 2020, 3, 122. [Google Scholar] [CrossRef]
- Feintrenie, L.; Navarrete, C.J.; Espinoza, L.C.L. Oil palm in Mexico and in the Americas. Cah. Agric. 2025, 34, 11. [Google Scholar] [CrossRef]
- Lamade, E.; Bouillet, J.P. Carbon storage and global change: The role of oil palm. Oilseeds Fats Crops Lipids 2005, 12, 154–160. Available online: https://www.ocl-journal.org/articles/ocl/abs/2005/02/ocl2005122p154/ocl2005122p154.html (accessed on 10 May 2025). [CrossRef]
- Henson, I.E. Comparative Ecophysiology of Oil Palm and Tropical Rainforest. In Oil Palm and the Environment: A Malaysian Perspective; Singh, G., Ed.; Prinsip Taktik Sdn Bhd: Kuala Lumpur, Malaysia, 1999; pp. 9–39. [Google Scholar]
- Uning, R.; Latif, M.T.; Othman, M.; Juneng, L.; Mohd Hanif, N.; Nadzir, M.S.M.; Abdul Maulud, K.N.; Jaafar, W.S.W.M.; Said, N.F.S.; Ahamad, F.; et al. A Review of Southeast Asian Oil Palm and Its CO2 Fluxes. Sustainability 2020, 12, 5077. [Google Scholar] [CrossRef]
- Brindis-Santos, A.I.; Lopez, D.J.; Mata-Zayas, E.E.; Palma, D.J. Impacts of oil palm cultivation on soil organic carbon stocks in Mexico: Evidence from plantations in Tabasco State. Cah. Agric. 2021, 30, 47. [Google Scholar] [CrossRef]
- Borchard, N.; Bulusu, M.; Meyer, N.; Rodionov, A.; Herawati, H.; Blagodatsky, S.; Cadisch, G. Deep soil carbon storage in tree- dominated land use systems in tropical lowlands of Kalimantan. Geoderma 2019, 354, 113864. Available online: https://www.cifor-icraf.org/knowledge/publication/7354/ (accessed on 10 May 2025). [CrossRef]
- Goodrick, I.; Nelson, P.N.; Banabas, M.; Wursster, C.M.; Bird, M.I. Soil carbon balance following conversion of grassland to oil palm. GCB Bioenergy 2015, 7, 263–272. [Google Scholar] [CrossRef]
- Button, E.S.; Pett-Ridge, P.; Murphy, D.V.; Kuzyakov, Y.; Chadwick, D.R.; Jones, D.L. Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil. Biol. Biochem. 2022, 170, 108697. [Google Scholar] [CrossRef]
- Wijedasa, L.S.; Jauhiainen, J.; Kononen, M.; Lampela, M.; Vasander, H.; Leblanc, M.C.; Evers, S.; Smith, T.E.L. Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences. Glob. Change Biol. 2016, 23, 977–982. [Google Scholar] [CrossRef]
- Parish, F.; Lew, S.; Archibald, L. Southeast Asia: Progress for Peatlands; Heinrich Böll Stiftung: Brussels, Belgium, 2023; Available online: https://eu.boell.org/en/2023/09/11/southeast-asia-progress-peatlands (accessed on 10 May 2025).
- Novita, N.; Asyhari, A.; Ritonga, R.P.; Gangga, A.; Anshari, G.Z.; Jupesta, J.; Bowen, J.C.; Lestari, N.S.; Kauffman, J.B.; Hoyt, A.M.; et al. Strong climate mitigation potential of rewetting oil palm plantations on tropical peatlands. Sci. Total Environ. 2024, 952, 175829. [Google Scholar] [CrossRef]
- Nusantara Atlas. Industrial Palm Oil Deforestation in Indonesia Slows Slightly in 2024, The Tree Map, 2025. February. Available online: https://nusantara-atlas.org/industrial-palm-oil-deforestation-in-indonesia-slows-slightly-in-2024/ (accessed on 10 May 2025).
- Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 2018, 564, 249–253. [Google Scholar] [CrossRef]
- Woodham, C.R.; Aryawan, A.A.K.; Luke, S.H.; Manning, P.; Caliman, J.P.; Naim, M.; Turner, E.C.; Slade, E.M. Effects of replanting and retention of mature oil palm riparian buffers on ecosystem functioning in oil palm plantations. Front. For. Glob. Change 2019, 2, 29. [Google Scholar] [CrossRef]
- Luke, S.H.; Advento, A.D.; Aryawan, A.A.K.; Adhy, D.N.; Ashton-Butt, A.; Barclay, H.; Dewi, J.P.; Drewer, J.; Dumbrell, A.J.; Edi; et al. Managing oil palm plantations more sustainably: Large-scale experiments within the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme. Front. For. Glob. Change 2020, 2, 75. [Google Scholar] [CrossRef]
- Masure, A.; Martin, P.; Lacan, X.; Rafflegeau, S. Promoting oil palm-based agroforestry systems: An asset for the sustainability of the sector. Cah. Agric. 2023, 32, 16. [Google Scholar] [CrossRef]
- Zemp, D.C.; Guerrero-Ramirez, N.; Brambach, F.; Darras, K.; Grass, I.; Potapov, A.; Kreft, H. Tree islands enhance biodiversity and functioning in oil palm landscapes. Nature 2023, 618, 316–321. [Google Scholar] [CrossRef]
- Murphy, D.J.; Goggin, K.A.; Patterson, R. Oil palm crops in the 2020s and beyond: Challenges and solutions. CABI J. Agric. Biosci. 2021, 2, 39. Available online: https://cabiagbio.biomedcentral.com/articles/10.1186/s43170-021-00058-3 (accessed on 10 May 2025).
- Shehu, S. Malaysian response on challenges facing the global economy of palm oil. Indones. J. Multidisc. Sci. 2025, 4, 4. Available online: https://ijoms.internationaljournallabs.com/index.php/ijoms/article/view/991 (accessed on 10 May 2025). [CrossRef]
- Viglione, J. The Invention of Nitrogen Fertilisers Has Been Called “the Most Important Invention of the 20th Century”. The Extra Nutrients Added to Crops Has Allowed the World’s Population to Boom—From 1.6 Billion People in 1900 to Nearly 7.8 Billion Today. Carbon Brief. 2022. Available online: https://www.carbonbrief.org/qa-what-does-the-worlds-reliance-on-fertilisers-mean-for-climate-change/ (accessed on 10 May 2025).
- Chain Action Research. Cerrado Deforestation Disrupts Water Systems, Poses Business Risks for Soy Producers. 2018. Available online: https://chainreactionresearch.com/report/cerrado-deforestation-disrupts-water-systems-poses-business-risks-for-soy-producers/ (accessed on 10 May 2025).
- World Business Council for Sustainable Development (WBCSD). Roadmap to Nature Positive: Foundations for the Agri-Food System. Row Crop Commodities Subsector; World Business Council for Sustainable Development: Geneva, Switzerland, 2023; p. 86. Available online: https://www.wbcsd.org/resources/roadmap-to-nature-positive-foundations-for-the-agri-food-system-row-crop-commodities-subsector/ (accessed on 10 May 2025).
- Qian, B.; Jing, Q.; Belanger, G.; Shang, J.; Hiffman, T.; Liu, J.; Hoogenboom, G. Simulated Canola Yield Responses to Climate Change and Adaptation in Canada. Agron. J. 2018, 110, 133–146. [Google Scholar] [CrossRef]
- Paterson, R.R.M. Oil palm survival under climate change in Malaysia with future basal stem rot assessments. For. Pathol. 2020, 50, e12641. [Google Scholar] [CrossRef]
- Paterson, R.R.M. Longitudinal trends of future climate change and oil palm growth: Empirical evidence for tropical Africa. Environ. Sci. Pollut. Res. 2021, 28, 21193–21203. [Google Scholar] [CrossRef]
- Hergoualc’h, C.; Gonzales, M.L.; Malaga, N.; Martius, C. Conversion of degraded forests to oil palm plantations in the Peruvian Amazonia: Shifts in soil and ecosystem-level greenhouse gas fluxes. Agric. Ecosysyt. Environ. 2025, 386, 109603. [Google Scholar] [CrossRef]
- De Barros, P.H.B.; Dias, F.G.; Quintanilha, J.A.; Grohmann, C.H. Mapping oil palm expansion in the Eastern Amazon using optical and radar imagery. Remote Sens. Appl. Soc. Environ. 2025, 38, 101506. [Google Scholar] [CrossRef]
- Descals, A.; Sheil, D.; Wich, S.; Ozigis, M.; Meijaard, E. Extensive Unreported Non-Plantation Oil Palm in Africa. Preprints 2025, 2025021589. [Google Scholar] [CrossRef]
- Albrecht, A.; Kandji, S.T. Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 2003, 99, 15–27. [Google Scholar] [CrossRef]
- Dhyani, S.K.; Ram, A.; Newaj, R.; Handa, A.K.; Dev, I. Agroforestry for Carbon Sequestration in Tropical India. In Carbon Management in Tropical and Sub-Tropical Terrestrial Systems; Ghosh, P., Mahanta, S.K., Mandal, D., Mandal, B., Ramakrishnan, S., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Kumar, B.M.; Nair, P.K.R. Carbon Sequestration Potential of Agroforestry Systems: Opportunities and Challenges. In Advances in Agroforestry; Springer: Singapore, 2011; Volume 8, Available online: https://library.uniteddiversity.coop/Permaculture/Agroforestry/Carbon_Sequestration_Potential_of_Agroforestry_Systems-Opportunities_and_Challenges.pdf (accessed on 10 May 2025).
- Ghale, B.; Mitra, E.; Sodhi, H.S.; Verma, A.K.; Kumar, S. Carbon Sequestration Potential of Agroforestry Systems and Its Potential in Climate Change Mitigation. Water Air Soil Pollut. 2022, 233, 228. [Google Scholar] [CrossRef]
- Messier, C.; Bauhus, J.; Sousa-Silva, R.; Auge, H.; Baeten, L.; Barsoum, N.; Zemp, D.C. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. 2022, 15, e12829. Available online: https://nora.nerc.ac.uk/id/eprint/531657/1/N531657JA.pdf (accessed on 10 May 2025). [CrossRef]
- Hendrawan, D.; Musshoff, O. Risky for the income, useful for the environment: Predicting farmers’ intention to adopt oil palm agroforestry using an extended theory of planned behaviour. J. Clean. Prod. 2024, 475, 143692. [Google Scholar] [CrossRef]
- Perez Braga, D.P.; Miccolis, A.; Ramos, H.M.; Cuhna, L.F.; de Sousa, L.V.F.; Marques, H.R. Implications of smallholder livelihoods for scaling oil palm agroforestry in Brazilian Eastern Amazon. World Dev. Sustain. 2024, 4, 100128. Available online: https://www.cifor-icraf.org/knowledge/publication/18628/ (accessed on 10 May 2025). [CrossRef]
- Rafflegeau, S.; Allinne, C.; Barkaoui, K.; Deheuvels, O.; Jagoret, J.; Garcia, L.; Gosme, M.; Lauri, P.E.; Merot, A.; Metay, A.; et al. Ecosystem services functional motif: A new concept to analyse and design agroforestry systems. In Proceedings of the 4th World Congress on Agroforestry, Montpellier, France, 20–22 May 2019; Available online: https://hal.inrae.fr/hal-02736928 (accessed on 10 May 2025).
- Koussihouèdé, H.; Aholoukpè, H.; Adjibodou, J.; Hinkati, H.; Dunos, B.; Chapius-Lardy, L.; Barthes, B.G. Comparative analysis of nutritional status and growth of immature oil palm in various intercropping systems in southern Benin. Exp. Agric. 2020, 56, 371–386. [Google Scholar] [CrossRef]
- Ahirwal, J.; Sahoo, U.K.; Thangjam, U.; Thong, P. Oil Palm Agroforestry Enhances Crop Yield and Ecosystem Carbon Stock in Northeast India: Implications for UN Sustainable Development Goals. Sustain. Prod. Consum. 2022, 30, 478–487. [Google Scholar] [CrossRef]
- Deines, C. The Global Environmental Consequences of Palm Oil Production: The Role of Industrial Polyculture in Sustainable Solutions, Western Carolina University. 2024. Available online: https://affiliate.wcu.edu/rasc/wp-content/uploads/sites/298/2025/03/Deines.pdf (accessed on 10 May 2025).
- Frianto, D.; Sutrisno, E.; Wahyudi, A.; Novriyanti, E.; Adinugroho, W.C.; Yunianto, A.S.; Kurniawan, H.; Khotimah, H.; Windyoningrum, A.; Dharmawan, I.W.S.; et al. Carbon stock dynamics of forest to oil palm plantation conversion for ecosystem rehabilitation planning. Glob. J. Environ. Sci. Mgt. 2024, 10, 1593–1614. [Google Scholar] [CrossRef]
- Henson, I.E. Notes on oil palm productivity. IV. Carbon dioxide gradients and fluxes and evapotranspiration, above and below the canopy. J. Oil Palm Res. 1999, 11, 33–40. [Google Scholar]
- Murphy, D.J. Oil palm: Future prospects for yield and quality improvements. Lipid Technol. 2009, 21, 257–260. [Google Scholar] [CrossRef]
- USDA. Malaysia: Stagnating Palm Oil Yields Impede Growth. Commodity Intelligence Report. 2012. Available online: https://ipad.fas.usda.gov/highlights/2012/12/Malaysia/ (accessed on 10 May 2025).
- Chandran, M.R. Future viability and sustainability of plantation crops. Malay. Oil Sci. Technol. 2019, 28, 56–60. [Google Scholar]
- Pilorgé, E. Sunflower in the global vegetable oil system: Situation, specificities and perspectives. OCL 2020, 27, 34. [Google Scholar] [CrossRef]
- Our World in Data. Oil Yields by Crop Type, World, 2022. 2022. Available online: https://ourworldindata.org/grapher/oil-yield-by-crop (accessed on 10 May 2025).
- Tinker, P.B. The future research requirements for the oil palm plantation. In Plantation Tree Crops in the New Millennium: The Way Ahead; Pushparajah, E., Ed.; Incorporated Society of Planters: Kuala Lumpur, Malaysia, 2000; Volume 1, pp. 3–40. [Google Scholar]
- Pushparajah, E. Strategic directions for the sustainability of the oil palm industry (summing-up address). Plant 2001, 77, 389–404. [Google Scholar]
- Jalani, B.S. Elevating the national oil palm productivity: General perspectives. In Seminar on Elevating the National Oil Palm Productivity; MPOB: Bangi, Malaysia, 2002; 17p. [Google Scholar]
- Lee, J.T.C. Oil Palm: Inconvenient Truth, Brewing Crises, Borneo Post 2025. 23 February 2025. Available online: https://www.theborneopost.com/2025/02/23/oil-palm-inconvenient-truth-brewing-crises/ (accessed on 10 May 2025).
- Woittiez, L.S.; van Wijk, M.T.; Slingerland, M.; van Noordwijk, M.; Giller, K.E. Yield gaps in oil palm: A quantitative review of contributing factors. Eur. J. Agron. 2017, 83, 57–77. [Google Scholar] [CrossRef]
- Monzon, J.P.; Lim, Y.L.; Tenorio, F.A.; Farrasati, R.; Pradiko, I.; Sugianto, H.; Donough, C.R.; Edreira, J.I.R.; Rahutomo, S.; Agus, F.; et al. Agronomy explains large yield gaps in smallholder oil palm fields. Agric. Syst. 2023, 210, 103689. [Google Scholar] [CrossRef]
- Salim, S. United Plantations Sees Palm Oil Prices Ranging Between RM3,850 and RM4,250 in 2024, The Edge. 2024, March. Available online: https://theedgemalaysia.com/node/703551#:~:text=Its%20Malaysian%20estates%20reached%20an,from%205.1%20tonnes%20per%20hectare) (accessed on 10 May 2025).
- SD Guthrie. Sime Darby Plantation Launches Super-Charged Seeds. Press Release 8 November 2023. 2023. Available online: https://www.sdguthrie.com/sime-darby-plantation-launches-super-charged-seeds/ (accessed on 10 May 2025).
- Shankar, A.C. Sime Darby Plantation Plans to Fully Use Genome Select Seeds for Oil Palm Replanting from 2023. The Edge. 21 July 2021. Available online: https://theedgemalaysia.com/article/sime-darby-plantation-plans-fully-use-genomeselect-seeds-oil-palm-replanting-2023 (accessed on 10 May 2025).
- Zubaidah, R.; Said, Z.S.A.M.S. Exploiting Gibberellin in Oil Palm Height Control: Strategies and Way Forward. Trans. Malays. Soc. Plant Physiol. 2022, 29, 208–213. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20230153985 (accessed on 10 May 2025).
- Murphy, D.J. Plant Breeding and Biotechnology: Societal Context and the Future of Agriculture; Cambridge University Press: Cambridge, UK, 2007; Available online: http://www.seedquest.com/forum/m/MurphyDenis/plantbreeding/default.htm (accessed on 10 May 2025).
- Escallón-Barrios, M.; Castillo-Gomez, D.; Leal, J.; Montenegro, C.; Medaglia, A.L. Improving harvesting operations in an oil palm plantation. Ann. Oper. Res. 2020, 314, 411–449. [Google Scholar] [CrossRef]
- Lee, J.S.H.; Ghazoul, J.; Obidzinski, K.; Koh, P. Oil palm smallholder yields and incomes constrained by harvesting practices and type of smallholder management in Indonesia. Agron. Sustain. Dev. 2014, 34, 501–513. [Google Scholar] [CrossRef]
- Mohanaraj, S.; Donough, C.R. Harvesting practices for maximum yield in oil palm: Results from a re-assessment at IJM plantations. Sabah. Oil Palm Bull. 2016, 72, 32–37. Available online: http://opb.mpob.gov.my/index.php/2020/03/29/harvesting-practices-for-maximum-yield-in-oil-palm-results-from-a-re-assessment-at-ijm-plantations-sabah/ (accessed on 10 May 2025).
- Isaac, J. Industrial revolution 4.0 for smart oil palm mills. Malaysian Oil Sci. Technol. 2019, 28, 28–36. [Google Scholar]
- Keong, N.W. Modernising sales and widening markets. Malaysian Oil Sci. Technol. 2019, 28, 38–46. [Google Scholar]
- UFOP. Report on Global Market Supply 2020/2021; Union zur Förderung von Oel- Und Proteinpflanzen EV: Berlin, Germany, 2021; p. 53. Available online: https://www.ufop.de/files/7216/1649/5848/UFOP_SupplyReport_2020-2021__120321.pdf (accessed on 10 May 2025).
- Baer, D.J.; Henderson, T.; Gebauer, S.K. Consumption of High-Oleic Soybean Oil Improves Lipid and Lipoprotein Profile in Humans Compared to a Palm Oil Blend: A Randomized Controlled Trial. Lipids 2021, 56, 313–325. [Google Scholar] [CrossRef]
- Hanno, S.L.; Hurst, A.M.; Weaver, K.; Richards, A.T.; Montes, M.E.; Boerman, J.P. High oleic soybean oil maintains milk fat and increases apparent total-tract fat digestibility and fat deposition in lactating dairy cows. J. Dairy Sci. Commun. 2024, 5, 287–292. [Google Scholar] [CrossRef]
- Oviedo-Rondon, E.O. High Oleic Soybeans and their Impact on Egg and Poultry Meat Quality. Avinews 2024, September. Available online: https://avinews.com/en/high-oleic-soybeans-and-their-impact-on-egg-and-poultry-meat-quality/ (accessed on 10 May 2025).
- United Soybean Board. High Oleic Soybeans. 2024. Available online: https://unitedsoybean.org/high-oleic-soybeans/ (accessed on 10 May 2025).
- Ritchie, H. Is Our Appetite for Soy Driving Deforestation in the Amazon? OurWorldInData.org. 2021. Available online: https://ourworldindata.org/soy (accessed on 10 May 2025).
- Rudorff, B.F.T.; Adami, M.; Aguiar, D.A.; Moreira, M.A.; Mello, M.P.; Fabiani, L.; Amaral, D.F.; Pires, B.M. The Soy Moratorium in the Amazon Biome Monitored by Remote Sensing Images. Remote Sens. 2011, 3, 185–202. Available online: https://www.mdpi.com/2072-4292/3/1/185 (accessed on 10 May 2025). [CrossRef]
- Tyukavina, A.; Hansen, M.V.; Potapov, P.V.; Stehman, S.V.; Smith-Rodriguez, K.; Okpa, C.; Aguilar, R. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 2017, 3, e1601047. [Google Scholar] [CrossRef]
- Soterroni, A.C.; Ramos, F.M.; Mosnier, A.; Fargione, J.; Andrade, P.R.; Baumgarten, L.; Pirker, J.; Obersteiner, M.; Kraxner, F.; Câmara, G.; et al. Expanding the Soy Moratorium to Brazil’s Cerrado. Sci. Adv. 2019, 5, eaav7336. Available online: https://www.science.org/doi/10.1126/sciadv.aav7336 (accessed on 10 May 2025). [CrossRef]
- Kuschnig, N.; Cuaresma, J.C.; Krisztin, T.; Giljum, S. Spatial spillover effects from agriculture drive deforestation in Mato Grosso, Brazil. Sci. Rep. 2021, 11, 21804. [Google Scholar] [CrossRef]
- Agomoh, I.V.; Drury, C.F.; Yang, X.; Phillips, L.A.; Reynolds, W.D. Crop rotation enhances soybean yields and soil health indicators. Soil Sci. Soc. Am. J. 2021, 85, 1185–1195. [Google Scholar] [CrossRef]
- De Lima, C.Z.; Estevam, C.G.; Pavao, E.M.; Pinto, T.P.; Assad, E.D. Greenhouse Gases Mitigation Potential of Soy Farming Decarbonization Actions to be Taken by 2030. In Observatório de Conhecimento e Inovação em Bioeconomia; FGV EESP: São Paulo, Brasil, 2022; Available online: https://agro.fgv.br/sites/default/files/2023-05/greenhouse_gases_mitigation_potential_of_soy_farming_decarbonization_actions_to_be_taken_by_2030.pdf (accessed on 10 May 2025).
- Toloi, M.N.V.; Bonilla, S.H.; Toloi, R.C.; Naas, I.A. Potential for carbon sequestration in different biomes and CO2 emissions in soybean crop. Environ. Dev. Sustain. 2024, 26, 3331–3347. Available online: https://link.springer.com/article/10.1007/s10668-022-02824-3 (accessed on 10 May 2025). [CrossRef]
- Flynn, H.C.; Canals, L.M. Quantifying global greenhouse gas emissions from land-use change for crop production. Glob. Change Biol. 2012, 18, 1622–1635. [Google Scholar] [CrossRef]
- Critchley, W.R.; Bruijnzeel, L.A. Environmental Impacts of Converting Moist Tropical Forest to Agriculture and Plantations; IHP Humid Tropics Programme Series; UNESCO: Paris, France, 1999; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000109608 (accessed on 10 May 2025).
- Odhiambo, C.R. Up to Half of Tropical Forestland Cleared for Agriculture Isn’t Put to Use, Research Shows. Mongabay. 2022. Available online: https://news.mongabay.com/2022/12/half-of-tropical-forestland-cleared-for-agriculture-isnt-put-to-use-research-shows/ (accessed on 10 May 2025).
- Pendrill, F.; Gardner, T.A.; Meyfroidt, P.; Persson, U.M.; Adams, J.; Azevedo, T.; Bastos Lima, M.G.; Baumann, M.; Curtis, P.G.; De Sy, V.; et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 2022, 377, eabm9267. [Google Scholar] [CrossRef] [PubMed]
- Bausano, G.; Masiero, M.; Migliavacca, M.; Pettenella, D.; Rougieux, P. Food, biofuels or cosmetics? Land-use, deforestation and CO2 emissions embodied in the palm oil consumption of four European countries: A biophysical accounting approach. Agric. Econ. 2003, 11, 35. [Google Scholar] [CrossRef]
- WTO. Certain Measures Concerning Palm Oil and Oil Palm Crop-Based Biofuels. World Trade Organization Dispute Settlement; DS593; European Union: Brussels, Belgium, 2024. Available online: https://www.wto.org/english/tratop_e/dispu_e/600r_a_e.pdf (accessed on 10 May 2025).
- Leijten, F.; Baldos, U.L.; Johnson, J.A.; Sim, S.; Verburg, P.H. Projecting global oil palm expansion under zero-deforestation commitments: Direct and indirect land use change impacts. iScience 2023, 26, 106971. [Google Scholar] [CrossRef]
- Villoria, N.; Garrett, R.; Gollnow, F.; Carlson, K. Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil. Nat. Commun. 2022, 13, 5476. Available online: https://www.nature.com/articles/s41467-022-33213-z (accessed on 10 May 2025). [CrossRef]
- Hasan, F.H.; Fadhil, I.; Fahmind, M.M.; Ahmad, T. Impact of European Union Regulations on Indonesian Palm Oil Smallholders: Quantitative Approach. Int. J. Oil Palm. 2024, 5, 1–5. Available online: https://ijop.id/index.php/ijop/article/view/69/51 (accessed on 10 May 2025).
- World Economic Forum. The EU Has Delayed Measures on Deforestation-Free Products. But Business Can Start Today. 2025. Available online: https://www.weforum.org/stories/2025/02/deforestation-compliance-business/ (accessed on 10 May 2025).
- Delzeit, R.; Zabel, F.; Meyer, C.; Vaclavik, T. Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg. Environ. Change 2017, 17, 1429–1441. [Google Scholar] [CrossRef]
- Rapool. Market Update for Rapeseed & Canola. 2024. Available online: https://www.rapool.com/news/oilseed-rape-market/market-update-for-rapeseed-und-canola-7th-of-oct.-2024/ (accessed on 10 May 2025).
- USDA. Rapeseed 2024 World Production, Rapeseed Explorer. 2025. Available online: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2226000 (accessed on 10 May 2025).
- Farmonaut. EU Rapeseed Supply Crunch: Global Canola Market Trends and Trade Flow Dynamics for 2024–25. 2025. Available online: https://farmonaut.com/europe/eu-rapeseed-supply-crunch-global-canola-market-trends-and-trade-flow-dynamics-for-2024-25/#:~:text=“EU%20rapeseed%20production%20is%20forecasted,of%20a%20looming%20supply%20crunch (accessed on 10 May 2025).
- Galanty, A.; Grudzińska, M.; Paździora, W.; Paśko, P. Erucic Acid—Both Sides of the Story: A Concise Review on Its Beneficial and Toxic Properties. Molecules 2023, 28, 1924. [Google Scholar] [CrossRef]
- Mohanty, S.; Mehrotra, N.; Khan, M.T.; Sharma, S.; Tripathi, P. Paradoxical Effects of Erucic Acid-A Fatty Acid with Two-Faced Implications. Nutr. Rev. 2025, nuaf032. Available online: https://pubmed.ncbi.nlm.nih.gov/40202517/ (accessed on 10 May 2025). [CrossRef]
- Raatz, S.K.; Conrad, Z.; Jahns, L.; Belury, M.A.; Picklo, M.J. Modeled replacement of traditional soybean and canola oil with high-oleic varieties increases monounsaturated fatty acid and reduces both saturated fatty acid and polyunsaturated fatty acid intake in the US adult population. Am. J. Clin. Nutr. 2018, 108, 594–602. Available online: https://pubmed.ncbi.nlm.nih.gov/30084912/ (accessed on 10 May 2025). [CrossRef] [PubMed]
- Kaur, S.; Singh, J. Changing cropping pattern of oilseed crops and its diversification: The case of Thar Desert, Rajasthan (1985–1986 to 2015–2016). OCL 2023, 30, 13. [Google Scholar] [CrossRef]
- Pullens, J.W.M.; Sharif, B.; Trnka, M.; Balek, J.; Semenov, M.A.; Olesen, J.E. Risk factors for European winter oilseed rape production under climate change. Agric. For. Meteorol. 2019, 272–273, 30–39. [Google Scholar] [CrossRef]
- Ma, B.L.; Liang, C.; Herath, A.; Caldwell, C.D.; Smith, D.L. Canola productivity and carbon footprint under different cropping systems in eastern Canada. Nutr. Cycl. Agroecosyst. 2023, 127, 191–207. [Google Scholar] [CrossRef]
- Tarigan, S.; Pradiko, I.; Darlan, N.H.; Kristanto, Y. Carbon Footprint Comparison of Rapeseed and Palm Oil: Impact of Land Use and Fertilizers. Sustainability 2025, 17, 1521. [Google Scholar] [CrossRef]
- Pehnelt, G.; Vietze, C. Uncertainties about the GHG Emissions Saving of Rapeseed Biodiesel. In Jena Economic Research Papers 2012-039; Friedrich Schiller University Jena and Max Planck Institute of Economics: Jena, Germany, 2012; Available online: https://www.fib.is/myndir/Repjuryni.pdf (accessed on 10 May 2025).
- Reap, J.; Bras, B.; Newcomb, P.J.; Carmichael, C. Improving Life Cycle Assessment by Including Spatial, Dynamic and Place-Based Modeling. In Proceedings of the ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, USA, 2–6 September 2003; Proceedings Paper 2003. No: DETC2003/DFM-48140. pp. 77–83. [Google Scholar] [CrossRef]
- Gasol, C.N.; Gaarrell, X.; Rigola, M.; Garcia, S.G.; Rieradevall, J. Environmental assessment: (LCA) and spatial modelling (GIS) of energy crop implementation on local scale. Biomass Bioenergy 2011, 35, 2975–2985. [Google Scholar] [CrossRef]
- O’Keeffe, S.; Majer, S.; Bezama, A.; Thran, D. When considering no man is an island—Assessing bioenergy systems in a regional and LCA context: A review. Int. J. Life Cycle Assess. 2016, 21, 885–902. [Google Scholar] [CrossRef]
- Escobar, N.; Tizado, E.J.; Ermgassen, E.K.J.; Lofgren, P.; Borner, J.; Godar, J. Spatially-explicit footprints of agricultural commodities: Mapping carbon emissions embodied in Brazil’s soy exports. Glob. Environ. Change 2020, 62, 102067. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Bezama, A.; Thran, D. Two birds with one stone: A combined environmental and economic performance assessment of rapeseed-based biodiesel production. Glob. Change Biol. Bioenergy 2022, 14, 215–241. [Google Scholar] [CrossRef]
- Yang, X.; Dong, X.; Bezama, A.; Liu, Y. Improving rapeseed carbon footprint evaluation via the integration of remote sensing technology into an LCA approach. Sci. Total Environ. 2024, 946, 174262. [Google Scholar] [CrossRef]
- Fridrihsone, A.; Romagnoli, F.; Cabulis, U. Environmental Life Cycle Assessment of Rapeseed and Rapeseed Oil Produced in Northern Europe: A Latvian Case Study. Sustainability 2020, 12, 5699. [Google Scholar] [CrossRef]
- Alcock, T.D.; Salt, D.E.; Wilson, P.; Ramsden, S.J. More sustainable vegetable oil: Balancing productivity with carbon storage opportunities. Sci. Total Environ. 2022, 829, 154539. [Google Scholar] [CrossRef] [PubMed]
- Vear, F.; Bony, H.; Joubert, G.; Labrouhe, D.T.; Pauchet, I.; Pinochet, X. 30 years of sunflower breeding in France. Oléagineux 2003, 10, 66–73. [Google Scholar] [CrossRef]
- Business Research Insights. Sunflower Oil Market Size, Share, Growth, and Industry Analysis, By Type (Linoleic Oil, Mid-Oleic Oil, High-Oleic Oil), and by Application (Food, Biofuels, Cosmetics, Other), and Regional Forecast to 2033. 2025. Available online: https://www.businessresearchinsights.com/market-reports/sunflower-oil-market-118782 (accessed on 10 May 2025).
- Figueiredo, F.; Castanheira, E.G.; Freire, F. Life-cycle assessment of irrigated and rainfed sunflower addressing uncertainty and land use change scenarios. J. Clean. Prod. 2017, 140, 436–444. [Google Scholar] [CrossRef]
- Jefferies, D.; Munoz, I.; Hodges, J.; King, V.J.; Aldaya, M.M.; Ercin, E.; Canals, L.M. Water Footprint and Life Cycle Assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. J. Clean. Prod. 2012, 33, 155–166. [Google Scholar] [CrossRef]
- Debaeke, P.; Izquierdo, N.G. Sunflower. In Crop Physiology Case Histories for Major Crops; Sadras, V.O., Calderini, D.F., Eds.; Academic Press: Cambridge, MA, USA, 2021; Chapter 16; pp. 482–517. [Google Scholar] [CrossRef]
- Pacci, S.; Dengiz, O. Determination of Carbon Sequestration Potentials of Sunflower Cultivated Areas Under Semi-arid Climate Conditions and Their Prediction Using Artificial Neural Networks. In Proceedings of the International Conference on Scientific and Innovation Research 2023, Sivas, Turkey, 15–17 September 2023; Available online: https://www.researchgate.net/publication/374676224_Determination_of_Carbon_Sequestration_Potentials_of_Sunflower_Cultivated_Areas_Under_Semi-arid_Climate_Conditions_and_Their_Prediction_Using_Artificial_Neural_Networks (accessed on 10 May 2025).
- Debaeke, P.; Casadebaig, P.; Flenet, F.; Langlade, N. Sunflower crop and climate change: Vulnerability, adaptation, and mitigation potential from case studies in Europe. OCL 2017, 24, D102. [Google Scholar] [CrossRef]
- Murphy, D.J.; Soon, C.P.; Onn, H.W.; Evers, S.; Hai, T.C.; Jantan, N.M.; Girkin, N. Sustainable Palm Oil Production. Balancing Carbon Sequestration and Greenhouse Gas Emissions: A Scientific Review; Malaysian Oil Scientists’ & Technologists’ Association: Petaling Jaya, Malaysia, 2025; Available online: https://www.linkedin.com/posts/denis-murphy-3b144a26_our-latest-report-on-sustainable-palm-oil-activity-7297281055110189057-s-rE/ (accessed on 10 May 2025).
- Suardi, A.; Bravo, I.; Beni, C.; Papetti, P.; Rana, R.L. Carbon footprint of hemp and sunflower oil in southern Italy: A case study. Ecol. Indic. 2024, 160, 111768. Available online: https://www.sciencedirect.com/science/article/pii/S1470160X24002437 (accessed on 10 May 2025).
- Iriarte, A.; Rieradevall, J.; Gabarrell, X. Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. J. Clean. Prod. 2010, 18, 336–345. [Google Scholar] [CrossRef]
- Matsuura, M.; Dias, F.; Picoli, J.F.; Lucas, K.; Castro, C.; Hirakuri, M. Life Cycle Assessment of soybean-sunflower production system in the Brazilian Cerrado. Int. J. Life Cycle Assess. 2017, 22, 492–501. [Google Scholar] [CrossRef]
- Dressler, D.; Loewen, A.; Nelles, M. Life cycle assessment of the supply and use of bioenergy: Impact of regional factors on biogas production. Int. J Life Cycle Assess. 2012, 17, 1104–1115. Available online: https://link.springer.com/article/10.1007/s11367-012-0424-9 (accessed on 10 May 2025). [CrossRef]
- Muñoz, I.; Schmidt, J.H.; Dalgaard, R. Comparative Life Cycle Assessment of Five Different Vegetable Oils. In Proceedings of the 9th International Conference LCA of Food, San Francisco, CA, USA, 8–10 October 2014; Available online: https://lca-net.com/files/Paper-no-165_Munoz_et_al.pdf (accessed on 10 May 2025).
- Schmidt, J.H. Life cycle assessment of five vegetable oils. J. Clean. Prod. 2015, 87, 130–138. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products. Hydrol. Earth Syst. Sci. 2010, 15, 1577–1600. Available online: https://www.waterfootprint.org/resources/Mekonnen-Hoekstra-2011-WaterFootprintCrops.pdf (accessed on 10 May 2025). [CrossRef]
- Paris, B. Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption. Renew. Sustain. Energy Rev. 2022, 158, 112098. [Google Scholar] [CrossRef]
- Sadras, V.O.; Grassini, P.; Steduto, P. Status of water use efficiency of main crops. In SOLAW Background Thematic Report; FAO: Rome, Italy, 2008. Available online: http://www.fao.org/fileadmin/templates/solaw/files/thematic_reports/TR_07_web.pdf (accessed on 10 May 2025).
- Boev, P.; Rijk, G.; Stravens, M. The Environmental Impact of Food, on Climate, Forests, Land, Water, and Air, Profundo. 2024. Amsterdam, The Netherlands. Available online: https://wwfeu.awsassets.panda.org/downloads/240429_report-profundo-wwf_final.pdf (accessed on 10 May 2025).
- Efeca. Carbon Emissions and Palm Oil. Efeca Briefing Note 2022. January. Available online: https://www.efeca.com/wp-content/uploads/2022/01/Palm-Oil-and-Carbon-Emissions_final.pdf (accessed on 10 May 2025).
- Afriyanti, D.; Hein, L.; Kroeze, C.; Zuhdi, M.; Sdda, A. Scenarios for withdrawal of oil palm plantations from peatlands in Jambi Province, Sumatra, Indonesia. Reg. Environ. Change 2019, 19, 1201–1215. [Google Scholar] [CrossRef]
- Daud, N.N.; Chinenyenwa, A.S.; Rhys, T.H.; Ken, L.; Lee, H. Carbon Sequestration in Malaysian Oil Palm Plantations—An Overview: Towards a Sustainable Geoenvironment. In Proceedings of the 8th International Congress on Environmental Geotechnics, Hangzhou, China, 28 October–1 November 2019; Volume 3, pp. 49–56. [Google Scholar] [CrossRef]
- Scholz, I. Peatland Atlas 2023, Facts and Figures About Wet Climate Guardians; Heinrich Böll Stiftung: Brussels, Belgium, 2023; Available online: https://eu.boell.org/en/PeatlandAtlas (accessed on 10 May 2025).
- Yunus, M. Unraveling the Dilemma of Tropical Peatland Restoration in Indonesia. Modern Diplomacy. 2024. Available online: https://moderndiplomacy.eu/2024/01/31/unraveling-the-dilemma-of-tropical-peatland-restoration-in-indonesia/ (accessed on 10 May 2025).
- Global Methane Initiative. Resource Assessment for Livestock and Agro-Industrial Wastes—Indonesia. 2015. Available online: https://www.globalmethane.org/documents/ag_indonesia_res_assessment.pdf (accessed on 10 May 2025).
- Patthanaissaranukool, W.; Polprasert, C. Carbon Mobilization in Oil Palm Plantation and Milling Based on a Carbon-Balanced. Environ. Asia 2011, 4, 17–26. Available online: https://repository.li.mahidol.ac.th/handle/20.500.14594/11921 (accessed on 10 May 2025).
- Loh, S.K.; Nasrin, A.B.; Azri, S.M.; Bukhari, N.A.; Muzzammil, N.; Elanor, R.A. Biogas Capturing Facilities in Palm Oil Mills: Current Status and Way Forward. Palm Oil Engineering Bulletin 2019. No.132, pp. 13–17. Available online: http://poeb.mpob.gov.my/biogas-capturing-facilities-in-palm-oil-mills-current-status-and-way-forward/ (accessed on 10 May 2025).
- Schmidt, J.; De Rosa, M. Certified palm oil reduces greenhouse gas emissions compared to non-certified. J. Clean. Prod. 2020, 277, 124045. [Google Scholar] [CrossRef]
- Loh, S.K.; Nasrin, A.B.; Azri, S.M.; Adela, B.N.; Muzzammil, N.; Elanor, R.A.S.; Lim, W.S.; Choo, Y.M.; Kaltschmitt, M. First Report on Malaysia’s experiences and development in biogas capture and utilization from palm oil mill effluent under the Economic Transformation Programme. Renew. Sustain. Energy Rev. 2017, 74, 1257–1274. [Google Scholar] [CrossRef]
- Ariesca, R.; Sau, A.A.W.T.; Adinugroho, W.C.; Setiawan, A.A.R.; Ahamed, T.; Noguchi, R. Land Swap Option for Sustainable Production of Oil Palm Plantations in Kalimantan, Indonesia. Sustainability 2023, 15, 2394. Available online: https://www.mdpi.com/2071-1050/15/3/2394 (accessed on 10 May 2025). [CrossRef]
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop Yield Gaps: Their Importance, Magnitudes, and Causes. Ann. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nat. Cell Biol. 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crop. Res. 2013, 143, 4–17. [Google Scholar] [CrossRef]
- Clay, J. Freeze the footprint of food. Nature 2011, 475, 287–289. [Google Scholar] [CrossRef]
- Phalan, B.; Green, R.; Dicks, L.; Dotta, G.; Feniuk, C.; Lamb, A.; Strassburg, B.; Williams, D.; zu Ermgassen, E.K.H.J.; Balmford, A. How can higher-yield farming help to spare nature? Science 2016, 351, 450–451. Available online: https://www.science.org/doi/10.1126/science.aad0055 (accessed on 10 May 2025). [CrossRef]
- Phalan, B.; Green, R.; Balmford, A. Closing yield gaps: Perils and possibilities for biodiversity conservation. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120285. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Suh, S.; Johnson, J.A.; Tambjerg, L.; Sim, S.; Broeckx-Smith, S.; Reyes, W.; Chaplin-Kramer, R. Closing yield gap is crucial to avoid potential surge in global carbon emissions. Glob. Environ. Change 2020, 63, 102100. [Google Scholar] [CrossRef]
- Beyer, R.; Rademacher, T. Species Richness and Carbon Footprints of Vegetable Oils: Can High Yields Outweigh Palm Oil’s Environmental Impact? Sustainability 2021, 13, 1813. [Google Scholar] [CrossRef]
- Aramburu-Merlos, F.; Tenorio, F.A.M.; Mashingaidze, N.; Sananka, S.A.; Aston, S.; Ojeda, J.J.; Grassini, P. Adopting yield-improving practices to meet maize demand in Sub-Saharan Africa without cropland expansion. Nat. Commun. 2024, 15, 4492. [Google Scholar] [CrossRef]
- Global Crop Yield Atlas. Maize Production in Nine Sub-Saharan African Countries. 2024. Available online: https://www.yieldgap.org/ssa-maize (accessed on 10 May 2025).
- Gerber, J.S.; Ray, D.K.; Makowski, D.; Butler, E.E.; Mueller, N.D.; West, P.C.; Johnson, J.A.; Polasky, S.; Samberg, L.H.; Siebert, S.; et al. Global spatially explicit yield gap time trends reveal regions at risk of future crop yield stagnation. Nat. Food 2024, 5, 125–135. [Google Scholar] [CrossRef]
- Henson, I.; Ruiz, R.R.; Romero, H.M. The greenhouse gas balance of the oil palm industry in Colombia: A preliminary analysis. I. Carbon sequestration and carbon. Agron. Colomb. 2012, 30, 359–369. Available online: http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-99652012000300007 (accessed on 10 May 2025).
- McAlpine, C.A.; Johnson, A.; Salazar, A.; Syktus, J.; Wilson, K.; Meijaard, E.; Seabrook, L. Forest loss and Borneo’s climate. Env. Res. Lett. 2018, 13, 044009. [Google Scholar] [CrossRef]
- Cheah, L.W.; Gan, H.H.; Goh, K.J. Potential carbon stock and management of carbon in oil palm plantations on mineral soils. AAR Newsletter 2015, October 4–7. Available online: https://aarsb.com.my/wp-content/Publication/Newsletter/PDF/2015-Oct.pdf (accessed on 10 May 2025).
- Henson, I.E. A review of models for assessing carbon stocks and carbon sequestration in oil palm plantations. J. Oil Palm Res. 2017, 29, 1–10. Available online: https://jopr.mpob.gov.my/wp-content/uploads/2017/03/JOPR-VOL.291-1.pdf (accessed on 10 May 2025). [CrossRef]
- Pulhin, F.B.; Urquiola, J.P.; Lasco, R.D. Carbon Sequestration Potential of Oil Palm in Bohol, Philippines. Ecosyst. Devel. J. 2014, 4, 14–19. Available online: https://www.cifor-icraf.org/fr/ressources/publication/31672/ (accessed on 10 May 2025).
- Sprunger, C.D.; Martin, T.; Mann, M. Systems with greater perenniality and crop diversity enhance soil biological health. Agric. Environ. Lett. 2020, 5, e20030. [Google Scholar] [CrossRef]
- Sibhatu, K.T. Oil palm boom: Its socioeconomic use and abuse. Front. Sustain. Food Syst. 2023, 7, 1083022. [Google Scholar] [CrossRef]
- Sheil, D.; Casson, A.; Meijaard, E.; Noordwijk, M.; Gaskell, J.; Sunderland-Groves, J.; Wertz, K.; Kanninen, M. The Impacts and Opportunities of Oil Palm in Southeast Asia: What Do We Know and What Do We Need to Know? Occasional Paper 51; CIFOR: Bogor, Indonesia, 2009; Available online: https://www.cifor-icraf.org/publications/pdf_files/OccPapers/OP-51.pdf (accessed on 10 May 2025).
- Murphy, D.J. The future of oil palm as a major global crop: Opportunities and challenges. J. Oil Palm Res. 2014, 26, 1–24. Available online: http://jopr.mpob.gov.my/ (accessed on 10 May 2025).
- Kiese, R.; Butterbach-Bahl, W. N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil. Biol. Biochem. 2002, 34, 975–987. [Google Scholar] [CrossRef]
Crop | Oil Yield, Mt | Land Use Mha | Oil Yield t/ha | H2O Footprint, m3/t Oil | Fertilizer Use | Agroforestry Potential | Climate Risks |
---|---|---|---|---|---|---|---|
Oil palm | 90 | 29 | 3–6 (10-) | 5000 | Medium | Moderate | Low |
Soybean | 68 | 130 | 0.5 () | 4200 | High | Low | Low-mid |
Rapeseed | 27 | 37 | 0.7 () | 4300 | High | Low | Moderate |
Sunflower | 21 | 26 | 0.8 () | 6800 | High | Low | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, D.J. Agronomy and Environmental Sustainability of the Four Major Global Vegetable Oil Crops: Oil Palm, Soybean, Rapeseed, and Sunflower. Agronomy 2025, 15, 1465. https://doi.org/10.3390/agronomy15061465
Murphy DJ. Agronomy and Environmental Sustainability of the Four Major Global Vegetable Oil Crops: Oil Palm, Soybean, Rapeseed, and Sunflower. Agronomy. 2025; 15(6):1465. https://doi.org/10.3390/agronomy15061465
Chicago/Turabian StyleMurphy, Denis J. 2025. "Agronomy and Environmental Sustainability of the Four Major Global Vegetable Oil Crops: Oil Palm, Soybean, Rapeseed, and Sunflower" Agronomy 15, no. 6: 1465. https://doi.org/10.3390/agronomy15061465
APA StyleMurphy, D. J. (2025). Agronomy and Environmental Sustainability of the Four Major Global Vegetable Oil Crops: Oil Palm, Soybean, Rapeseed, and Sunflower. Agronomy, 15(6), 1465. https://doi.org/10.3390/agronomy15061465