Metagenomic Analysis for Unveiling Agricultural Microbiome—2nd Edition
Author Contributions
Funding
Conflicts of Interest
References
- Shujaat, N.; Sajid, M.; Khan, F.U.; Nawaz, I. Assessment of fungal diseases and their impact on yield in wheat varieties under fungicide treatment. Plant Prot. 2025, 9, 57–68. [Google Scholar]
- Jones, R.A. Disease pandemics and major epidemics arising from new encounters between indigenous viruses and introduced crops. Viruses 2020, 12, 1388. [Google Scholar] [CrossRef] [PubMed]
- Savary, S.; Akter, S.; Almekinders, C.; Harris, J.; Korsten, L.; Rötter, R.; Waddington, S.; Watson, D. Mapping disruption and resilience mechanisms in food systems. Food Secur. 2020, 12, 695–717. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Zhao, Y.; Zhu, D.; Gillings, M.; Penuelas, J.; Ok, Y.S.; Capon, A.; Banwart, S. Soil biota, antimicrobial resistance and planetary health. Environ. Int. 2019, 131, 105059. [Google Scholar] [CrossRef]
- Sivakumar, M.V. Climate extremes and impacts on agriculture. Agroclimatol. Link. Agric. Clim. 2020, 60, 621–647. [Google Scholar]
- Meena, M.; Yadav, G.; Sonigra, P.; Nagda, A.; Mehta, T.; Swapnil, P.; Harish; Marwal, A.; Kumar, S. Multifarious responses of forest soil microbial community toward climate change. Microb. Ecol. 2023, 86, 49–74. [Google Scholar] [CrossRef]
- Callens, K.; Fontaine, F.; Sanz, Y.; Bogdanski, A.; D ‘Hondt, K.; Lange, L.; Smidt, H.; Van Overbeek, L.; Kostic, T.; Maguin, E. Microbiome-based solutions to address new and existing threats to food security, nutrition, health and agrifood systems’ sustainability. Front. Sustain. Food Syst. 2022, 6, 1047765. [Google Scholar] [CrossRef]
- Oishy, M.N.; Shemonty, N.A.; Fatema, S.I.; Mahbub, S.; Mim, E.L.; Hasan Raisa, M.B.; Anik, A.H. Unravelling the effects of climate change on the soil-plant-atmosphere interactions: A critical review. Soil Environ. Health 2025, 3, 100130. [Google Scholar] [CrossRef]
- Suman, J.; Rakshit, A.; Ogireddy, S.D.; Singh, S.; Gupta, C.; Chandrakala, J. Microbiome as a key player in sustainable agriculture and human health. Front. Soil Sci. 2022, 2, 821589. [Google Scholar] [CrossRef]
- Compant, S.; Cassan, F.; Kostić, T.; Johnson, L.; Brader, G.; Trognitz, F.; Sessitsch, A. Harnessing the plant microbiome for sustainable crop production. Nat. Rev. Microbiol. 2025, 23, 9–23. [Google Scholar] [CrossRef]
- Sessitsch, A.; Wakelin, S.; Schloter, M.; Maguin, E.; Cernava, T.; Champomier-Verges, M.-C.; Charles, T.C.; Cotter, P.D.; Ferrocino, I.; Kriaa, A. Microbiome interconnectedness throughout environments with major consequences for healthy people and a healthy planet. Microbiol. Mol. Biol. Rev. 2023, 87, e00212-22. [Google Scholar] [CrossRef]
- Gouda, S.; Kerry, R.G.; Das, G.; Paramithiotis, S.; Shin, H.-S.; Patra, J.K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 2018, 206, 131–140. [Google Scholar] [CrossRef]
- Yao, X.; He, D.; Zhao, X.; Tan, Z.; Zhao, H.; Xie, F.; Wang, J. Integrated Microbiology and Metabolomics Analysis Reveal How Tolerant Soybean Cultivar Adapt to Continuous Cropping. Agronomy 2025, 15, 468. [Google Scholar] [CrossRef]
- Jin, H.; Quan, K.; He, Q.; Kwok, L.-Y.; Ma, T.; Li, Y.; Zhao, F.; You, L.; Zhang, H.; Sun, Z. A high-quality genome compendium of the human gut microbiome of Inner Mongolians. Nat. Microbiol. 2023, 8, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Carlino, N.; Blanco-Míguez, A.; Punčochář, M.; Mengoni, C.; Pinto, F.; Tatti, A.; Manghi, P.; Armanini, F.; Avagliano, M.; Barcenilla, C. Unexplored microbial diversity from 2,500 food metagenomes and links with the human microbiome. Cell 2024, 187, 5775–5795.e15. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Jiang, S.; Jiang, C.; Wu, C.; Gao, M.; Wang, Q. A review of root exudates and rhizosphere microbiome for crop production. Environ. Sci. Pollut. Res. 2021, 28, 54497–54510. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, G.; Jiang, S.; Liu, Y.X. Wekemo Bioincloud: A user-friendly platform for meta-omics data analyses. iMeta 2024, 3, 175. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.L.; Chen, T.; Lan, C.; Gan, R.Y.; Yu, J.; Zhao, F.; Liu, Y.X. iMetaOmics: Advancing human and environmental health through integrated meta-omics. iMetaOmics 2024, 1, 21. [Google Scholar] [CrossRef]
- Zhang, F.; Cao, Z.; Zhao, X.; Yan, Q.; Guan, M.; Chen, M.; Lin, X. Microbiome Analysis Revealed the Effects of Environmental Factors on the Presence of Toxigenic Fungi and Toxin Production in Rice Grains. Agronomy 2024, 14, 1681. [Google Scholar] [CrossRef]
- Xia, H.; Zhang, Z.; Luo, C.; Wei, K.; Li, X.; Mu, X.; Duan, M.; Zhu, C.; Jin, L.; He, X. MultiPrime: A reliable and efficient tool for targeted next-generation sequencing. iMeta 2023, 2, 143. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ 2018, 6, 4652. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, Y.X.; Li, X. USEARCH 12: Open-source software for sequencing analysis in bioinformatics and microbiome. iMeta 2024, 3, 236. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Wood, D.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Beghini, F.; McIver, L.J.; Blanco-Míguez, A.; Dubois, L.; Asnicar, F.; Maharjan, S.; Mailyan, A.; Manghi, P.; Scholz, M.; Thomas, A.M. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife 2021, 10, 65088. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.-X.; Guo, X.; Qin, Y.; Garrido-Oter, R.; Schulze-Lefert, P.; Bai, Y. High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat. Protoc. 2021, 16, 988–1012. [Google Scholar] [CrossRef]
- Yousuf, S.; Luo, H.; Zeng, M.; Chen, L.; Ma, T.; Li, X.; Zheng, M.; Zhou, X.; Chen, L.; Xi, J. Unveiling microbial communities with EasyAmplicon: A user-centric guide to perform amplicon sequencing data analysis. iMetaOmics 2024, 1, 42. [Google Scholar] [CrossRef]
- Liu, Y.X.; Chen, L.; Ma, T.; Li, X.; Zheng, M.; Zhou, X.; Chen, L.; Qian, X.; Xi, J.; Lu, H. EasyAmplicon: An easy-to-use, open-source, reproducible, and community-based pipeline for amplicon data analysis in microbiome research. iMeta 2023, 2, 83. [Google Scholar] [CrossRef]
- Bai, D.; Chen, T.; Xun, J.; Ma, C.; Luo, H.; Yang, H.; Cao, C.; Cao, X.; Cui, J.; Deng, Y.P.; et al. EasyMetagenome: A user-friendly and flexible pipeline for shotgun metagenomic analysis in microbiome research. iMeta 2025, 4, 70001. [Google Scholar] [CrossRef] [PubMed]
- Bai, D.; Ma, C.; Xun, J.; Luo, H.; Yang, H.; Lyu, H.; Zhu, Z.; Gai, A.; Yousuf, S.; Peng, K. MicrobiomeStatPlots: Microbiome statistics plotting gallery for meta-omics and bioinformatics. iMeta 2025, 4, 70002. [Google Scholar] [CrossRef]
- Schiebenhoefer, H.; Schallert, K.; Renard, B.Y.; Trappe, K.; Schmid, E.; Benndorf, D.; Riedel, K.; Muth, T.; Fuchs, S. A complete and flexible workflow for metaproteomics data analysis based on MetaProteomeAnalyzer and Prophane. Nat. Protoc. 2020, 15, 3212–3239. [Google Scholar] [CrossRef] [PubMed]
- Klåvus, A.; Kokla, M.; Noerman, S.; Koistinen, V.M.; Tuomainen, M.; Zarei, I.; Meuronen, T.; Häkkinen, M.R.; Rummukainen, S.; Farizah Babu, A. “Notame”: Workflow for non-targeted LC–MS metabolic profiling. Metabolites 2020, 10, 135. [Google Scholar] [CrossRef]
- Chong, J.; Liu, P.; Zhou, G.; Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 2020, 15, 799–821. [Google Scholar] [CrossRef]
- Nayfach, S.; Páez-Espino, D.; Call, L.; Low, S.J.; Sberro, H.; Ivanova, N.N.; Proal, A.D.; Fischbach, M.A.; Bhatt, A.S.; Hugenholtz, P. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 2021, 6, 960–970. [Google Scholar] [CrossRef]
- Zhou, Z.; Martin, C.; Kosmopoulos, J.C.; Anantharaman, K. ViWrap: A modular pipeline to identify, bin, classify, and predict viral–host relationships for viruses from metagenomes. iMeta 2023, 2, 118. [Google Scholar] [CrossRef] [PubMed]
- Roach, M.J.; Beecroft, S.J.; Mihindukulasuriya, K.A.; Wang, L.; Paredes, A.; Cárdenas, L.A.C.; Henry-Cocks, K.; Lima, L.F.O.; Dinsdale, E.A.; Edwards, R.A. Hecatomb: An integrated software platform for viral metagenomics. GigaScience 2024, 13, giae020. [Google Scholar] [CrossRef]
- Peng, X.; Feng, K.; Yang, X.; He, Q.; Zhao, B.; Li, T.; Wang, S.; Deng, Y. iNAP 2.0: Harnessing metabolic complementarity in microbial network analysis. iMeta 2024, 3, 235. [Google Scholar] [CrossRef]
- Li, T.; Kim, A.; Rosenbluh, J.; Horn, H.; Greenfeld, L.; An, D.; Zimmer, A.; Liberzon, A.; Bistline, J.; Natoli, T. GeNets: A unified web platform for network-based genomic analyses. Nat. Methods 2018, 15, 543–546. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Y.; Fan, G.; Sun, D.; Zhang, X.; Yu, Z.; Wang, J.; Wu, L.; Shi, W.; Ma, J. IPGA: A handy integrated prokaryotes genome and pan-genome analysis web service. iMeta 2022, 1, 55. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chen, T.; Liu, Y.X.; Huang, L. Visualizing set relationships: EVenn’s comprehensive approach to Venn diagrams. iMeta 2024, 3, 184. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lyu, H.; Yang, H.; Ju, Z.; Ma, C.; Hou, H.; Wang, Y.; Zhou, Y.; Gao, Y.; Yang, J. FoodMicroDB: A microbiome database for composition and time-series research in food. iMetaOmics 2024, 1, 40. [Google Scholar] [CrossRef]
- Wen, T.; Xie, P.; Yang, S.; Niu, G.; Liu, X.; Ding, Z.; Xue, C.; Liu, Y.X.; Shen, Q.; Yuan, J. ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts. iMeta 2022, 1, 32. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Y.; Li, B.; Gong, Y. A novel multi-class classification model for schizophrenia, bipolar disorder and healthy controls using comprehensive transcriptomic data. Comput. Biol. Med. 2022, 148, 105956. [Google Scholar] [CrossRef]
- Hao, J.; Liu, Q.; Song, F.; Cui, X.; Liu, L.; Fu, L.; Zhang, S.; Wu, X.; Zhang, X. Community Diversity of Endophytic Bacteria in the Leaves and Roots of Pea Seedlings. Agronomy 2024, 14, 2030. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, B.; Hou, W.; Zhou, X.; Gao, Q. Differential Effects of Sulfur Fertilization on Soil Microbial Communities and Maize Yield Enhancement. Agronomy 2024, 14, 2251. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, Y.; Xu, P.; Xie, K.; Zhou, C.; Li, Y.; Geng, H.; Wang, Q.; Gu, W. Insights into the Driving Factors of Methane Emission from Double-Season Rice Field Under Different Fertilization Practices in South China. Agronomy 2024, 14, 2767. [Google Scholar] [CrossRef]
- Ren, R.; Zeng, M.; Liu, Y.; Shi, J.; Wan, Z.; Wang, M.; Zhang, S.; Zhang, Z.; Zeng, Q. Grape Endophytic Microbial Community Structures and Berry Volatile Components Response to the Variation of Vineyard Sites. Agronomy 2024, 14, 2186. [Google Scholar] [CrossRef]
- Li, L.; Gupta, A.; Zhu, C.; Xu, K.; Watanabe, Y.; Tanaka, M.; Seki, M.; Mochida, K.; Kanno, Y.; Seo, M.; et al. Strigolactone and karrikin receptors regulate phytohormone biosynthetic and catabolic processes. Plant Cell Rep. 2025, 44, 60. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousuf, S.; Wang, Y.; Yu, P.; Liu, Y.-X. Metagenomic Analysis for Unveiling Agricultural Microbiome—2nd Edition. Agronomy 2025, 15, 1419. https://doi.org/10.3390/agronomy15061419
Yousuf S, Wang Y, Yu P, Liu Y-X. Metagenomic Analysis for Unveiling Agricultural Microbiome—2nd Edition. Agronomy. 2025; 15(6):1419. https://doi.org/10.3390/agronomy15061419
Chicago/Turabian StyleYousuf, Salsabeel, Yao Wang, Peng Yu, and Yong-Xin Liu. 2025. "Metagenomic Analysis for Unveiling Agricultural Microbiome—2nd Edition" Agronomy 15, no. 6: 1419. https://doi.org/10.3390/agronomy15061419
APA StyleYousuf, S., Wang, Y., Yu, P., & Liu, Y.-X. (2025). Metagenomic Analysis for Unveiling Agricultural Microbiome—2nd Edition. Agronomy, 15(6), 1419. https://doi.org/10.3390/agronomy15061419