Modulation of Potassium-to-Calcium Ratio in Nutrient Solution Improves Quality Attributes and Mineral Composition of Solanum lycopersicum var. cerasiforme
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Trial Design
2.3. Experimental Nutrient Solution Formula
2.4. Cultivation Management Practices
2.5. Measurement of Fruit Quality Parameters
2.5.1. Determination of Fruit Quality Indicators
2.5.2. Determination of Mineral Element Content in Fruits
2.6. Data Processing and Analysis
3. Effect of the Potassium-to-Calcium Ratio on Cherry Tomato Fruit Quality
3.1. Effect of the Potassium-to-Calcium Ratio on Commodity Quality
3.1.1. Effect of the Potassium-to-Calcium Ratio on Fruit Appearance Quality
3.1.2. Effect of the Potassium-to-Calcium Ratio on Fruit Physical Characteristic Quality
3.2. Effect of the Potassium-to-Calcium Ratio on Fruit Flavor Quality
3.3. Effect of the Potassium-to-Calcium Ratio on Fruit Nutritional Quality
3.4. Effect of the Potassium-to-Calcium Ratio on Fruits Antioxidant Quality
3.5. Effect of the Potassium-to-Calcium Ratio on Fruits Soluble Sugar Content
4. Principal Component Analysis of Quality Parameters
5. Effect of the Potassium-to-Calcium Ratio on Mineral Element Content on Cherry Tomato
5.1. Effect of the Potassium-to-Calcium Ratio on Mineral Element Content in Fruits at Different Stages
5.2. Correlation Analysis Among Eight Mineral Element Contents in Fruits During Fruiting Period
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.Y. Metabolism of Sugar and Organic Acids in Different Varieties of Tomato Fruits and the Hybrid Seed Purity Identification of ‘ZheFen 702’ by SSR Marker. Master’s Thesis, Zhejiang A&F University, Hangzhou, China, 2014. [Google Scholar]
- Chen, J. Analysis of Suitable Cherry Tomato Cultivated in Suzhou Region and Tomato’s Weak Light Resistance. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2016. [Google Scholar]
- Sun, R.; Chen, S.; Chen, X.; Liu, X.; Zhang, F.; Wu, J.; Su, L. Enzymatic treatment to improve permeability and quality of cherry tomatoes for production of dried products. J. Sci. Food Agric. 2023, 104, 2718–2727. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Wu, L.; Li, Y.; He, C.; Yu, X.; Wang, J. Effects of different topdressing nitrogen fertilizer on quality, growth, and nitrogen use efficiency of cherry tomato in solar greenhouse. China Veg. 2021, 7, 40–47. [Google Scholar]
- Moran, N.E.; Thomas-Ahner, J.M.; Lei, W.; Zuniga, K.E.; Erdman, J.W., Jr.; Clinton, S.K. Tomatoes, lycopene, and prostate cancer: What have we learned from experimental models. J. Nutr. 2022, 152, 1381–1403. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; He, J.; Wei, F.; Yang, W. Evaluation of tomato Industry development and its international competitiveness in China during the “13th Five-Year Plan” period. China Cucurbits Veg. 2023, 36, 112–116. [Google Scholar]
- Li, J.; Xiang, Z.; Wang, X.; Guo, Y.; Huang, Z.; Liu, L.; Li, X.; Du, Y. Status and prospect of tomato industry in China during the “13th Five-Year Plan” period. China Veg. 2021, 2, 13–20. [Google Scholar]
- Zhou, M.; Li, C. Current situation and prospect of tomato seed industry in China. Vegetables 2022, 5, 6–10. [Google Scholar]
- Wu, L.Y.; Gong, Y.J.; Li, Z.B.; Bao, R.; Zhong, L.; Liang, M.T. Multivariate statistical analysis of fruit characters of cherry tomato germplasm resources. Southwest China J. Agric. Sci. 2012, 25, 1818–1822. [Google Scholar]
- Fanasca, S.; Colla, G.; Maiani, G.; Venneria, E.; Rouphael, Y.; Azzini, E.; Saccardo, F. Changes in anti-oxidant content of tomato fruits in response to culti-var and nutrient soluton composition. J. Agric. Food Chem. 2006, 54, 4319–4325. [Google Scholar] [CrossRef]
- Martinez-Ballesta, M.A.; López-Pérez, L.; Hernández, M.; López-Berenguer, C.; Fernández-García, N.; Carvajal, M. Agricultural practices for enhanced human health. Phytochem. Rev. 2008, 7, 251–260. [Google Scholar] [CrossRef]
- Fan, B.; Ma, L.; Li, J. Effects of Different Formula Nutrient Solutions on Tomato Yield, Quality and Nutrient Absorption. J. Northwest AF Univ. (Nat. Sci. Ed.) 2021, 49, 104–112, 122. [Google Scholar]
- Wu, K.J.; Hu, C.G.; Wang, J.; Guo, J.D.; Sun, X.C.; Tan, Q.L.; Zhao, X.H.; Wu, S.W. Comparative effects of different potassium sources on soluble sugars and organic acids in tomato. Sci. Hortic. 2023, 308, 111601. [Google Scholar] [CrossRef]
- Ding, S.S.; Li, Y.T.; Yuan, L.; Zhao, B.; Lin, J.; Li, J.; Yang, X.; Zhang, J.; Gao, J. Effects of small molecular organics chelated calcium fertilizer on cherry tomato yield, quality and nutrients absorption. Soil Fertil. Sci. China 2015, 5, 61–66. [Google Scholar]
- Liu, R.L. Effects of different irrigation methods on the growth and quality of cherry tomato. Heilongjiang Sci. 2024, 15, 25–27. [Google Scholar]
- Liu, Y.; Xia, H.; Li, Y.; Ren, N. Effects of irrigation and nitrogen coupling on growth, yield and quality of cherry tomato under greenhouse cultivation during the whole growth period. J. Chin. Agric. Mech. 2024, 45, 200–207. [Google Scholar]
- Ma, R.P.; Sun, Y.S.; Zhang, G.X.; Han, J.X. Absorption and distribution of mineral elements in greenhouse tomato under salt stress. North. Hortic. 2024, 11, 40–49. [Google Scholar]
- Song, M.Y.; Li, J.P.; Xu, M.M.; Gao, L.H.; Xie, Y. Effects of foliar fertilizer treatment with medium and trace elements on growth, yield and quality of cherry tomato. North. Hortic. 2022, 6, 24–31. [Google Scholar]
- Gao, J.F.; Sun, Q.; Cao, C.; Zhiwu, S.X.; Shiyan, Z. Experimental Guide to Plant Physiology; Higher Education Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Cheng, D.W.; He, S.S.; Li, Z.Y.; Gu, H.; Li, M.; Guo, X.Z.; Chen, J.Y. Research on grading evaluation of ‘Shine-Muscat’ grape fruit quality. Acta Agric. Jiangxi 2020, 32, 30–35. [Google Scholar]
- Huang, H.; Gu, J.; Zeng, Z.; Liao, Y.; Lu, M. Determination of total nitrogen in water quality by redox digestion-fully automatic kjeldahl nitrogen method. Guangzhou Chem. Ind. 2024, 52, 97–99. [Google Scholar]
- Zhang, H.; Xiao, G.Z.; Li, L.P.; Su, F.K.; Yang, J. The optimal colorimetric conditions and colorimetric wavelength for the determination of total phosphorus in soil using molybdenum antimony colorimetric method. Soil Fertil. Sci. China. 1992, 2, 46–48. [Google Scholar]
- Cai, Y.R.; Liu, Y.; Li, L.L.; Wang, W. Ten element contents and their distribution in fruits determinated by atomic absorption spectrometry. J. Hyg. Res. 2011, 40, 361–364. [Google Scholar]
- Wang, K. Determination of Important Substances Content, Functional Analysis and Screening of Excellent Varieties in Cherry Tomato. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2023. [Google Scholar]
- Cheng, G.T.; Lou, Q.Q.; Li, X.F.; Sun, H.R.; Xu, C.N.; Li, S.; Zhao, J.R.; Qiao, H.X.; Wang, Y.F.; Liang, Y. Research progress on tomato fruits flavor substance composition and its influencing factors. China Veg. 2022, 7, 23–33. [Google Scholar]
- Guo, Z.G.; Li, W.F.; Mao, J.; Zuo, C.W.; Chen, B.H. Effects of potassium fertilizer on endogenous hormone content and acid metabolism in fruit of apple cv. ‘Red Delicious’. Trans. Chin. Soc. Agric. Eng. 2019, 35, 281–290. [Google Scholar]
- Almeselmani, M.; Pant, R.C.; Singh, B. Potassium level and physiological response and fruit quality in hydroponically grown tomato. Int. J. Veg. Sci. 2010, 16, 85–99. [Google Scholar] [CrossRef]
- Zahoor, A.; Shazia, A.; Ahmad, W.E.; Ashar, A.M.; Tanveer, A.; Sabir, T.R.M.; Rashid, A.; Aamir, I.M. Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress-a review. J. Plant Nutr. 2018, 41, 1734–1743. [Google Scholar]
- Chang, R. Effect of Potassium Level on Cucumber Growth, Physiological Indices and Yield Under Sub-Optimum Temperature and Light Intensity. Master’s Thesis, Henan University of Science and Technology, Luoyang, China, 2015. [Google Scholar]
- Qi, H.Y.; Li, T.L.; Chen, Y.H.; Zhang, J. Effects of foliage applications of KH2PO4 and glucose on photosynthesis and sucrose metabolism of tomato. Trans. Chin. Soc. Agric. Eng. 2005, 21, 137–142. [Google Scholar]
- Han, Q. Regulation of Potassium Fertilization at Different Growth Stages on Sucrose Metabolism in Greenhouse Tomatoes. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2009. [Google Scholar]
- Haghshenas, M.; Arshad, M.; Nazarideljou, M.J. Different K: Ca ratios affected fruit color and quality of strawberry ‘Selva’ in soilless system. J. Plant Nutr. 2018, 41, 243–252. [Google Scholar] [CrossRef]
- Dong, P.; Liang, Y.; Han, J.; Shi, Y.; Hou, L.; Xing, G.; Zhang, Y. Effects of reducing nitrogen and potassium fertilizer application and increasing organic fertilizer application on tomato fruit quality and mineral element content. Soils Fertil. China 2023, 1, 13–22. [Google Scholar]
- Tao, Y.; Liu, T.; Wu, J.; Wu, Z.; Liao, D.; Shah, F.; Wu, W. Effect of combined application of chicken manure and inorganic nitrogen fertilizer on yield and quality of cherry tomato. Agronomy 2022, 12, 1574. [Google Scholar] [CrossRef]
- Yao, Q.; Han, T.Y.; Liang, W.; Shi, Y.; Hou, L.P.; Zhang, Y. Effects of exogenous calcium and EBR on fruit quality characteristics of tomato. China Cucurbits Veg. 2021, 34, 74–79. [Google Scholar]
- Li, C.P.; Wang, S.P.; Du, L.; Hong, J.; Huang, X.; Zhang, G.Y.; Zhang, L.H.; Ye, L.X.; Lian, Z.C.; Jiang, L.; et al. Effects of different potassium fertilization modes on yield, quality of lettuce and soil regime. Hubei Agric. Sci. 2020, 59, 28–33. [Google Scholar]
- Ji, S.X.; Li, J.R.; Zhang, B.; Gong, B.; Wu, X.; Gao, H. Preliminary analysis on difference of fruit quality of different tomato varieties. North. Hortic. 2021, 1, 15–22. [Google Scholar]
- Liu, H.; Zhang, J.L.; Liu, J.C.; Zhang, G.D.; Fang, H.T.; Ye, L.; Jiao, Z.G. Effects of selenium on cherry tomato storage qualities and involved three active oxygen metabolism related enzymes. Sci. Technol. Food Ind. 2019, 40, 256–261. [Google Scholar]
- Su, Y.J. Optimal Proportion Selection of Nutrient Solution and Quality Adjustment of Hydroponic Lettuce. Ph.D. Thesis, Northwest A & F University, Yangling, China, 2016. [Google Scholar]
- Song, C.-Z.; Liu, M.-Y.; Meng, J.-F.; Chi, M.; Xi, Z.-M.; Zhang, Z.-W. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil. Molecules 2015, 20, 2536–2554. [Google Scholar] [CrossRef] [PubMed]
- Lobos, T.E.; Retamales, J.B.; Luengo, E.A.; Hanson, E.J. Timing of foliar calcium sprays improves fruit firmness and antioxidants in ‘Liberty ’blueberries. J. Soil Sci. Plant Nutr. 2021, 21, 426–436. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Lin, Q.; Chen, Z.C.; Lin, J. Effects of calcium level on calcium absorption, fruit quality and yield of infinite growth tomato. J. Soil Water Conserv. 2019, 33, 185–189. [Google Scholar]
- Seyed, H.M.; Majid, R. Seasonal changes of mineral nutrients and phenolics in pomegranate (Punica granatum L.) fruit. Sci. Hortic. 2006, 111, 120–127. [Google Scholar]
- Wang, J.F. Study on Potassium Nutrient Responses and Its Rapid Detection Techniques in Substrate Cultivated Tomato. Ph.D. Thesis, China Agricultural University, Beijing, China, 2016. [Google Scholar]
- Qin, W.L.; Li, C.J. Effects of increasing potassium fertilizer dosage on the quality and yield of tomato in greenhouse. Soil Fertil. Sci. China 2007, 1, 44–47. [Google Scholar]
Periods | Seedling Stage (A) | Flowering and Fruit Setting Stage (B) | Fruiting Stage (C) | Treatment |
---|---|---|---|---|
Different growth stages Potassium-to-calcium ratio in nutrient solution | 0.5 times the standard nutrient solution | B1 K:Ca = 1.4:1 | C1 K:Ca = 1.7:1 | T1:B1C1 |
B1 K:Ca = 1.4:1 | C2 K:Ca = 1.8:1 | T2:B1C2 | ||
B1 K:Ca = 1.4:1 | C3 K:Ca = 1.9:1 | T3:B1C3 | ||
B1 K:Ca = 1.4:1 | C4 K:Ca = 2.0:1 | T4:B1C4 | ||
B1 K:Ca = 1.4:1 | C5 K:Ca = 2.1:1 | T5:B1C5 | ||
B2 K:Ca = 1.5:1 | C1 K:Ca = 1.7:1 | T6:B2C1 | ||
B2 K:Ca = 1.5:1 | C2 K:Ca = 1.8:1 | T7:B2C2 | ||
B2 K:Ca = 1.5:1 | C3 K:Ca = 1.9:1 | T8:B2C3 | ||
B2 K:Ca = 1.5:1 | C4 K:Ca = 2.0:1 | T9:B2C4 | ||
B2 K:Ca = 1.5:1 | C5 K:Ca = 2.1:1 | T10:B2C5 | ||
B3 K:Ca = 1.6:1 | C1 K:Ca = 1.7:1 | T11:B3C1 | ||
B3 K:Ca = 1.6:1 | C2 K:Ca = 1.8:1 | T12:B3C2 | ||
B3 K:Ca = 1.6:1 | C3 K:Ca = 1.9:1 | T13:B3C3 | ||
B3 K:Ca = 1.6:1 | C4 K:Ca = 2.0:1 | T14:B3C4 | ||
B3 K:Ca = 1.6:1 | C5 K:Ca = 2.1:1 | T15:B3C5 | ||
Standard nutrient solution K:Ca = 1.9:1 | CK1 | |||
Tap water | CK2 |
Composition | Total | Percentage of Variance (%) | Cumulative (%) |
---|---|---|---|
1 | 4.10 | 34.15 | 34.15 |
2 | 1.64 | 13.67 | 47.82 |
3 | 1.36 | 11.30 | 59.12 |
4 | 1.09 | 9.07 | 68.19 |
5 | 1.04 | 8.62 | 76.81 |
6 | 0.83 | 6.92 | 83.73 |
7 | 0.64 | 5.36 | 89.09 |
8 | 0.52 | 4.36 | 93.44 |
9 | 0.44 | 3.67 | 97.11 |
10 | 0.25 | 2.09 | 99.20 |
11 | 0.09 | 0.77 | 99.97 |
12 | 0.00 | 0.03 | 100.00 |
Index | Principal Component 1 | Principal Component 2 | Principal Component 3 | Principal Component 4 | Principal Component 5 |
---|---|---|---|---|---|
Soluble Sugar Content | 0.82 | −0.46 | 0.03 | −0.07 | 0.09 |
Titratable Acid Content | 0.66 | 0.26 | −0.37 | 0.13 | 0.38 |
Sugar–Acid Ratio | 0.46 | −0.74 | 0.35 | −0.20 | −0.21 |
Soluble Protein Content | 0.89 | 0.07 | 0.18 | −0.04 | −0.01 |
Soluble Solids Content | 0.88 | 0.23 | 0.09 | −0.22 | 0.02 |
Vc Content | 0.23 | 0.67 | 0.27 | −0.41 | −0.03 |
Lycopene Content | 0.48 | 0.16 | −0.01 | 0.21 | −0.51 |
Total Phenols Content | 0.61 | −0.24 | 0.06 | 0.42 | −0.03 |
Flavonoids Content | 0.31 | 0.45 | 0.17 | 0.46 | −0.42 |
Fruit Shape Index | 0.07 | 0.15 | 0.71 | −0.22 | 0.24 |
Fruit Stalk Length | −0.15 | 0.03 | 0.52 | 0.57 | 0.49 |
Hardness | 0.67 | 0.07 | −0.43 | −0.03 | 0.32 |
Treatment | F1 | F2 | F3 | F4 | F5 | F | Ranking |
---|---|---|---|---|---|---|---|
T1 | 13.62 | 3.82 | 6.78 | 4.34 | −12.07 | 5.29 | 13 |
T2 | 14.01 | 3.17 | 7.38 | 4.85 | −12.17 | 5.44 | 11 |
T3 | 14.13 | 4.28 | 7.01 | 4.58 | −12.39 | 5.55 | 9 |
T4 | 14.21 | 2.05 | 7.08 | 3.81 | −13.36 | 5.13 | 13 |
T5 | 13.90 | 2.99 | 7.55 | 3.30 | −11.49 | 5.32 | 16 |
T6 | 14.12 | 4.06 | 7.40 | 3.19 | −11.72 | 5.49 | 12 |
T7 | 13.15 | 3.31 | 7.11 | 3.43 | −10.60 | 5.14 | 15 |
T8 | 15.04 | 5.13 | 7.26 | 3.13 | −12.11 | 5.90 | 7 |
T9 | 15.64 | 3.71 | 8.00 | 2.59 | −11.90 | 5.96 | 5 |
T10 | 15.19 | 5.05 | 7.20 | 3.27 | −12.61 | 5.90 | 6 |
T11 | 16.57 | 0.50 | 7.61 | 3.19 | −12.28 | 5.82 | 8 |
T12 | 17.07 | 2.58 | 8.01 | 2.63 | −13.39 | 6.17 | 3 |
T13 | 17.26 | 3.94 | 8.28 | 3.68 | −14.27 | 6.47 | 1 |
T14 | 17.53 | 2.03 | 7.89 | 3.13 | −13.06 | 6.31 | 2 |
T15 | 15.51 | 4.25 | 7.15 | 3.43 | −11.98 | 5.96 | 4 |
CK1 | 13.82 | 3.97 | 6.64 | 2.96 | −11.77 | 5.27 | 14 |
CK2 | 12.40 | 3.79 | 6.96 | 2.78 | −10.70 | 4.87 | 17 |
Potassium | Treatment | Total Nitrogen g·kg−1 | Total Phosphorus g·kg−1 | Total Potassium g·kg−1 | Total Calcium g·kg−1 | Total Magnesium g·kg−1 | Total Sodium g·kg−1 | Total Copper mg·kg−1 | Total Iron mg·kg−1 |
---|---|---|---|---|---|---|---|---|---|
White mature | T1 | 12.68 ± 0.89 bc | 3.13 ± 0.84 gh | 23.65 ± 1.93 g | 0.10 ± 0.00 b | 0.39 ± 0.01 de | 0.32 ± 0.02c | 3.72 ± 1.21 efg | 32.95 ± 1.28 bcde |
T2 | 12.72 ± 0.16 bc | 2.02 ± 0.28 h | 27.52 ± 0.56 f | 0.10 ± 0.00 b | 0.37 ± 0.00 def | 0.28 ± 0.04 c | 4.47 ± 0.56 cdefg | 30.45 ± 1.29 de | |
T3 | 12.72 ± 0.41 bc | 2.92 ± 0.44 gh | 28.30 ± 0.18 ef | 0.09 ± 0.00 b | 0.39 ± 0.00 cd | 0.33 ± 0.05 c | 4.98 ± 0.85 bcdefg | 31.15 ± 0.26 cde | |
T4 | 11.97 ± 0.62 c | 3.01 ± 0.31 gh | 28.15 ± 0.21 ef | 0.10 ± 0.00 b | 0.39 ± 0.01 cd | 0.34 ± 0.05 c | 5.39 ± 0.76 abcdefg | 32.43 ± 0.33 bcde | |
T5 | 12.85 ± 0.53 bc | 4.04 ± 0.83 fg | 22.88 ± 0.43 g | 0.10 ± 0.00 b | 0.42 ± 0.00ab | 0.72 ± 0.16 a | 6.56 ± 1.17 abc | 34.32 ± 0.8 bcd | |
T6 | 14.38 ± 0.35 a | 4.07 ± 1.00 fg | 26.22 ± 0.11 f | 0.10 ± 0.00 b | 0.42 ± 0.00 ab | 0.56 ± 0.27 ab | 6.85 ± 0.48 ab | 33.07 ± 1.25 bcd | |
T7 | 14.55 ± 0.52 a | 6.03 ± 0.72 cde | 28.07 ± 2.34 ef | 0.10 ± 0.00 b | 0.42 ± 0.00 ab | 0.74 ± 0.09 a | 7.23 ± 1.95 a | 35.28 ± 4.04 abc | |
T8 | 13.83 ± 0.53 ab | 7.70 ± 1.41 bc | 31.29 ± 2.17 d | 0.09 ± 0.00 b | 0.39 ± 0.00 d | 0.34 ± 0.07 c | 5.76 ± 0.89 abcde | 28.86 ± 3.05 ef | |
T9 | 13.50 ± 1.48 ab | 6.53 ± 0.77 bcd | 31.53 ± 0.32 d | 0.10 ± 0.01 a | 0.4 ± 0.00 bcd | 0.74 ± 0.04 a | 5.76 ± 1.87 abcde | 31.32 ± 0.91 cde | |
T10 | 13.10 ± 0.66 bc | 5.66 ± 1.37 def | 34.56 ± 1.21 c | 0.10 ± 0.00 b | 0.44 ± 0.00 a | 0.57 ± 0.18ab | 5.46 ± 1.81 abcdef | 25.60 ± 1.15 f | |
T11 | 12.63 ± 0.35 bc | 9.76 ± 2.19 a | 35.48 ± 0.53 c | 0.09 ± 0.00 cd | 0.39 ± 0.01 cd | 0.49 ± 0.14 bc | 5.20 ± 1.4 abcdefg | 30.41 ± 4.24 de | |
T12 | 12.72 ± 0.36 bc | 6.85 ± 0.45 bcd | 39.43 ± 0.66 b | 0.09 ± 0.00 cd | 0.36 ± 0.00 ef | 0.43 ± 0.03 bc | 3.83 ± 0.1 defg | 32.39 ± 2.50 bcde | |
T13 | 12.77 ± 0.69 bc | 7.88 ± 1.20 b | 33.87 ± 2.67 c | 0.09 ± 0.00 cd | 0.38 ± 0.01 de | 0.45 ± 0.04 bc | 3.35 ± 0.27 g | 34.19 ± 0.62 bcd | |
T14 | 11.97 ± 0.68 c | 6.12 ± 0.1 cde | 44.9 ± 0.88 a | 0.08 ± 0.00 d | 0.35 ± 0.01 f | 0.44 ± 0.13 bc | 3.40 ± 0.43 fg | 34.32 ± 0.07 bcd | |
T15 | 13.15 ± 0.56 bc | 4.53 ± 0.72 efg | 38.17 ± 1.09 b | 0.08 ± 0.00 d | 0.39 ± 0.06 d | 0.61 ± 0.10 ab | 5.13 ± 0.34 abcdefg | 31.41 ± 3.01 bcde | |
CK1 | 12.78 ± 0.53 bc | 3.38 ± 0.55 gh | 33.84 ± 1.68 c | 0.09 ± 0.01 bc | 0.42 ± 0.00 abc | 0.63 ± 0.01 ab | 5.87 ± 0.50 abcd | 35.51 ± 2.99 ab | |
CK2 | 13.88 ± 0.64 ab | 3.55 ± 0.38 gh | 30.04 ± 0.03 de | 0.10 ± 0.00 b | 0.44 ± 0.01 a | 0.56 ± 0.08 ab | 6.44 ± 1.20 abc | 38.80 ± 0.80 a | |
Color turning | T1 | 14.05 ± 0.46 abc | 2.94 ± 0.07 e | 31.41 ± 0.51 cdef | 0.11 ± 0.01 ab | 0.71 ± 0.01 b | 0.84 ± 0.14 a | 6.71 ± 0.58 abc | 35.61 ± 1.24 b |
T2 | 14.00 ± 1.05 abc | 5.43 ± 3.02 bcd | 26.28 ± 0.37 g | 0.10 ± 0.01 abc | 0.85 ± 0.03 a | 0.37 ± 0.10 ef | 7.76 ± 1.28 a | 31.34 ± 1.42 cdefg | |
T3 | 13.47 ± 1.41 bc | 3.32 ± 0.60 de | 28.43 ± 0.51 efg | 0.10 ± 0.01 abc | 0.49 ± 0.02 f | 0.50 ± 0.08 bcdef | 6.34 ± 0.85 abcd | 33.05 ± 1.45 bcde | |
T4 | 14.65 ± 0.26 ab | 2.81 ± 1.27 e | 29.07 ± 1.82 defg | 0.10 ± 0.00 abc | 0.60 ± 0.01 d | 0.38 ± 0.06 def | 7.14 ± 1.71 abc | 32.15 ± 0.76 bcdef | |
T5 | 13.85 ± 0.85 bc | 5.8 ± 1.34 abc | 32.36 ± 1.72 bcde | 0.10 ± 0.01 abc | 0.45 ± 0.01 ij | 0.27 ± 0.07 f | 5.94 ± 0.71 abcde | 34.25 ± 1.11 bcd | |
T6 | 15.43 ± 0.94 a | 5.81 ± 1.09 abc | 31.3 ± 3.06 cdef | 0.10 ± 0.01 abc | 0.44 ± 0.01 jk | 0.41 ± 0.16 def | 5.35 ± 1.49 bcdefg | 28.00 ± 0.76 gh | |
T7 | 13.98 ± 0.37 abc | 6.2 ± 1.33 abc | 32.06 ± 1.17 bcde | 0.10 ± 0.01 abc | 0.47 ± 0.00 gh | 0.50 ± 0.26 bcdef | 7.37 ± 1.34 ab | 29.84 ± 0.20 efg | |
T8 | 12.52 ± 0.77 c | 6.98 ± 1.69 ab | 32.25 ± 1.07 bcde | 0.10 ± 0.00 abc | 0.46 ± 0.00 hi | 0.73 ± 0.08 ab | 5.24 ± 0.84 cdefg | 28.96 ± 1.26 fgh | |
T9 | 13.52 ± 0.53 bc | 8.04 ± 0.59 a | 43.12 ± 3.74 a | 0.1 ± 0.01 abc | 0.43 ± 0.00 k | 0.7 ± 0.09 abc | 5.92 ± 0.35 abcde | 34.25 ± 3.36 bcd | |
T10 | 13.63 ± 0.73 bc | 8.04 ± 0.77 a | 33.76 ± 1.94 bc | 0.09 ± 0.00 c | 0.49 ± 0.01 fg | 0.64 ± 0.12 abcde | 5.3 ± 0.07 bcdefg | 34.74 ± 0.45 bc | |
T11 | 13.32 ± 1.29 bc | 7.85 ± 0.89 a | 32.52 ± 1.28 bcd | 0.09 ± 0.01 c | 0.38 ± 0.00 l | 0.52 ± 0.11 bcdef | 5.66 ± 1.25 bcdef | 34.25 ± 5.13 bcd | |
T12 | 13.37 ± 0.51 bc | 6.89 ± 0.45 ab | 32.7 ± 0.55 bcd | 0.09 ± 0.01 bc | 0.38 ± 0.00 l | 0.42 ± 0.11 cdef | 6.29 ± 0.58 abcd | 31 ± 1.92 defg | |
T13 | 13.37 ± 0.4 bc | 6.98 ± 0.73 ab | 35.91 ± 1.37 b | 0.09 ± 0.01 bc | 0.55 ± 0.00 e | 0.58 ± 0.16 abcde | 6.49 ± 1.34 abcd | 33.29 ± 1.28 bcde | |
T14 | 12.47 ± 0.92 c | 7.76 ± 1.38 ab | 33.36 ± 1.10 bc | 0.09 ± 0.01 c | 0.47 ± 0.00 hi | 0.63 ± 0.19 abcde | 3.43 ± 0.97 g | 33.56 ± 1.44 bcd | |
T15 | 12.98 ± 0.93 c | 6.89 ± 0.40 ab | 33.13 ± 1.21 bc | 0.1 ± 0.01 abc | 0.5 ± 0.01 f | 0.6 ± 0.23 abcde | 3.85 ± 1.64 fg | 49.31 ± 0.45 a | |
CK1 | 13.35 ± 0.70 bc | 4.35 ± 0.46 cde | 27.69 ± 5.41 fg | 0.1 ± 0.01 abc | 0.49 ± 0.01 fg | 0.67 ± 0.26 abcd | 3.96 ± 0.43 efg | 33.94 ± 0.50 bcd | |
CK2 | 12.68 ± 1.14 c | 3.24 ± 1.27 e | 21.91 ± 1.38 h | 0.11 ± 0.02 a | 0.62 ± 0.01 c | 0.46 ± 0.07 bcdef | 4.63 ± 0.95 defg | 26.23 ± 1.87 h | |
Mature period | T1 | 13.08 ± 0.95 bcd | 5.14 ± 0.73 def | 30.84 ± 0.45 cde | 0.11 ± 0.00 bc | 0.5 ± 0.01 f | 0.77 ± 0.20 a | 9.63 ± 1.04 abcd | 30.32 ± 1.53 bcde |
T2 | 13.35 ± 0.93bcd | 2.92 ± 0.87 g | 34.37 ± 3.56 b | 0.11 ± 0.00 b | 0.46 ± 0.00 gh | 0.61 ± 0.15 ab | 9.96 ± 0.51 abc | 27.84 ± 1.5 def | |
T3 | 13.62 ± 0.78 abcd | 3.75 ± 0.29 fg | 32.65 ± 2.65 bcd | 0.11 ± 0.00 bc | 0.77 ± 0.01 b | 0.66 ± 0.07 ab | 11.16 ± 0.29 a | 34.05 ± 1.79 ab | |
T4 | 12.8 ± 0.26 cd | 7.28 ± 1.14 abcd | 34.78 ± 0.71 b | 0.11 ± 0.00 bc | 0.67 ± 0.01 c | 0.29 ± 0.21 cd | 10.31 ± 0.6ab | 33.79 ± 0.53 abc | |
T5 | 14.38 ± 0.65 abc | 4.60 ± 1.08 efg | 26.11 ± 2.05 fg | 0.11 ± 0.00 bc | 0.48 ± 0.01 g | 0.49 ± 0.12 bc | 10.45 ± 0.47 ab | 24.82 ± 1.06 f | |
T6 | 15.2 ± 0.408 a | 7.81 ± 1.06 abc | 27.15 ± 1.94 fg | 0.11 ± 0.00 bc | 0.56 ± 0.01 e | 0.46 ± 0.06 bc | 7.86 ± 0.72 def | 29.73 ± 1.47 cde | |
T7 | 15.15 ± 1.30 a | 6.59 ± 1.54 cde | 34.51 ± 2.05 b | 0.11 ± 0.00 bc | 0.79 ± 0.00 a | 0.65 ± 0.02 ab | 7.23 ± 1.02 ef | 26.65 ± 0.35 ef | |
T8 | 14.50 ± 0.88 abc | 6.44 ± 1.91 cde | 34.10 ± 1.92 bc | 0.11 ± 0.00 bc | 0.79 ± 0.00 a | 0.68 ± 0.24 ab | 7.07 ± 1.20 ef | 28.11 ± 1.46 def | |
T9 | 13.37 ± 1.16 bcd | 8.80 ± 2.70 ab | 30.38 ± 0.89 de | 0.11 ± 0.00 bc | 0.51 ± 0.02 f | 0.46 ± 0.21 bc | 8.77 ± 0.93 bcde | 32.86 ± 0.74 bc | |
T10 | 12.50 ± 1.36 d | 8.98 ± 0.62 a | 28.93 ± 1.72 ef | 0.10 ± 0.00 d | 0.59 ± 0.00 d | 0.26 ± 0.03 cd | 6.29 ± 1.78 f | 36.99 ± 0.87 a | |
T11 | 12.43 ± 0.64 d | 7.25 ± 1.03 abcd | 33.06 ± 0.70 bcd | 0.11 ± 0.01 bcd | 0.52 ± 0.00 f | 0.46 ± 0.12 bc | 6.03 ± 0.49 f | 30.85 ± 4.58 bcd | |
T12 | 15.27 ± 0.51 a | 6.69 ± 0.94 bcde | 33.59 ± 0.73 bcd | 0.10 ± 0.00 bcd | 0.45 ± 0.01 hi | 0.15 ± 0.03 d | 7.31 ± 1.02 ef | 30.97 ± 1.60 bcd | |
T13 | 12.32 ± 1.46 d | 8.19 ± 0.64 abc | 33.42 ± 1.39 bcd | 0.10 ± 0.01 cd | 0.50 ± 0.02 f | 0.44 ± 0.10 bc | 7.00 ± 1.10 ef | 31.74 ± 1.49 bcd | |
T14 | 11.90 ± 0.92 d | 7.87 ± 0.38 abc | 38.79 ± 0.77 a | 0.10 ± 0.00 d | 0.50 ± 0.00 f | 0.64 ± 0.20 ab | 8.24 ± 0.75 cde | 30.40 ± 0.44 bcde | |
T15 | 12.72 ± 0.75 cd | 6.22 ± 0.34 cde | 30.93 ± 0.46 cde | 0.11 ± 0.01 bcd | 0.51 ± 0.00 f | 0.76 ± 0.10 a | 6.95 ± 1.56 ef | 30.11 ± 1.43 bcde | |
CK1 | 14.80 ± 1.25 ab | 4.73 ± 0.42 efg | 30.94 ± 0.73 cde | 0.11 ± 0.00 bc | 0.43 ± 0.02 i | 0.68 ± 0.13 ab | 9.36 ± 0.71 abcd | 27.63 ± 1.85 def | |
CK2 | 11.98 ± 0.70 d | 4.67 ± 1.05 efg | 24.85 ± 3.11 g | 0.13 ± 0.01 a | 0.25 ± 0.02 j | 0.53 ± 0.09 abc | 9.64 ± 0.97 abcd | 27.81 ± 5.72 def |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Su, K.; Wang, L.; Zhou, J.; Sun, S.; Wang, J.; Xing, G. Modulation of Potassium-to-Calcium Ratio in Nutrient Solution Improves Quality Attributes and Mineral Composition of Solanum lycopersicum var. cerasiforme. Agronomy 2025, 15, 1380. https://doi.org/10.3390/agronomy15061380
He Y, Su K, Wang L, Zhou J, Sun S, Wang J, Xing G. Modulation of Potassium-to-Calcium Ratio in Nutrient Solution Improves Quality Attributes and Mineral Composition of Solanum lycopersicum var. cerasiforme. Agronomy. 2025; 15(6):1380. https://doi.org/10.3390/agronomy15061380
Chicago/Turabian StyleHe, Yirong, Kaiqi Su, Lilong Wang, Jiameng Zhou, Sheng Sun, Jun’e Wang, and Guoming Xing. 2025. "Modulation of Potassium-to-Calcium Ratio in Nutrient Solution Improves Quality Attributes and Mineral Composition of Solanum lycopersicum var. cerasiforme" Agronomy 15, no. 6: 1380. https://doi.org/10.3390/agronomy15061380
APA StyleHe, Y., Su, K., Wang, L., Zhou, J., Sun, S., Wang, J., & Xing, G. (2025). Modulation of Potassium-to-Calcium Ratio in Nutrient Solution Improves Quality Attributes and Mineral Composition of Solanum lycopersicum var. cerasiforme. Agronomy, 15(6), 1380. https://doi.org/10.3390/agronomy15061380