Combined Zinc and Selenium Biofortification of Durum Wheat in the South-West of Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Climatic and Soil Conditions
2.2. Experimental Design
2.3. Crop Management
2.4. Soil and Plant Sampling and Analysis
2.5. Statistical Analysis
3. Results
3.1. DTPA-Zn Evolution During the Experiment
3.2. Grain and Straw Yields
3.3. Zinc and Se Concentrations and Their Uptake in Grain and Straw
3.4. Yield Components and Quality Parameters of Grain and Straw
4. Discussion
4.1. Effect of Biofortification on Yield of Durum Wheat
4.2. Effect of Biofortification on Zn and Se Concentrations in Durum Wheat
4.3. Effect of Biofortification on Quality Traits in Durum Wheat
4.4. Evolution of the Concentration of Zn in the Soil
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruel-Bergeron, J.C.; Stevens, G.A.; Sugimoto, J.D.; Roos, F.F.; Ezzati, M.; Black, R.E.; Kraemer, K. Global update and trends of hidden hunger, 1995–2011: The hidden hunger Index. PLoS ONE 2015, 10, e0143497. [Google Scholar] [CrossRef] [PubMed]
- Younas, N.; Fatima, I.; Ahmad, I.A.; Ayyaz, M.K. Alleviation of zinc deficiency in plants and humans through an effective technique; biofortification: A detailed review. Acta Ecol. Sin. 2023, 43, 419–425. [Google Scholar] [CrossRef]
- Minich, W.B. Selenium Metabolism and Biosynthesis of Selenoproteins in the Human Body. Biochemistry 2022, 87, S168–S177. [Google Scholar] [CrossRef] [PubMed]
- Kabbaj, H.; Sall, A.T.; Al-Abdallat, A.; Geleta, M.; Amri, A.; Filali-Maltouf, A.; Belkadi, B.; Ortiz, R.; Bassi, F.M. Genetic Diversity within a Global Panel of Durum Wheat (Triticum durum) Landraces and Modern Germplasm Reveals the History of Alleles Exchange. Front. Plant Sci. 2017, 8, 1277. [Google Scholar] [CrossRef]
- Szerement, J.; Szatanik-Kloc, A.; Mokrzycki, J.; Mierzwa-Hersztek, M. Agronomic Biofortification with Se, Zn, and Fe: An Effective Strategy to Enhance Crop Nutritional Quality and Stress Defense—A Review. J. Soil Sci. Plant Nutr. 2022, 22, 1129–1159. [Google Scholar] [CrossRef]
- Suganya, A.; Saravanan, A.; Manivannan, N. Role of Zinc Nutrition for Increasing Zinc Availability, Uptake, Yield, and Quality of Maize (Zea mays L.) Grains: An Overview. Commun. Soil Sci. Plant Anal. 2020, 51, 2001–2021. [Google Scholar]
- Sobolev, O.I.; Gutyj, B.V.; Soboleva, S.V. Selenium in natural environment and food chains. A Review. Ukr. J. Ecol. 2020, 10, 148–158. [Google Scholar] [CrossRef]
- Gomez-Coronado, F.; Poblaciones, M.J.; Almeida, A.S.; Cakmak, I. Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant Soil 2016, 401, 331–346. [Google Scholar] [CrossRef]
- Poblaciones, M.J.; Rodrigo, S.; Santamaria, O.; Chen, Y.; McGrath, S.P. Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum L.) under Mediterranean conditions. J. Sci. Food Agric. 2014, 94, 1101–1106. [Google Scholar] [CrossRef]
- WHO. Keep Fit for Life: Meeting the Nutritional Needs of Older Persons; World Health Organization: Geneva, Switzerland, 2002.
- Kipp, A.P.; Strohm, D.; Brigelius-Flohé, R.; Schomburg, L.; Bechthold, A.; Leschik-Bonnet, E.; Heseker, H. Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 2015, 32, 195–199. [Google Scholar] [CrossRef]
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Winkel, L.H.E.; Vriens, B.; Jones, G.D.; Schneider, L.S.; Pilon-Smits, E.; Bañuelos, G.S. Selenium cycling across soil-plant-atmosphere interfaces: A critical review. Nutrients 2015, 7, 4199–4239. [Google Scholar] [CrossRef]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of Zinc absorption in plants: Uptake, transport, translocation and accumulation. Rev. Environ. Sci. Bio/Technol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Schiavon, M.; Pilon-Smits, E.A.H. The fascinating facets of plant selenium accumulation—Biochemistry, physiology, evolution and ecology. New Phytol. 2017, 213, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Aslam, M.; Ahmad, M.; Asif, M.; Yazici, M.A.; Cakmak, I.; Rashid, A. Biofortification of Diverse Basmati Rice Cultivars with Iodine, Selenium, and Zinc by Individual and Cocktail Spray of Micronutrients. Agronomy 2022, 12, 49. [Google Scholar] [CrossRef]
- Consentino, B.B.; Ciriello, M.; Sabatino, L.; Vultaggio, L.; Baldassano, S.; Vasto, S.; Rouphael, Y.; La Bella, S.; De Pascale, S. Current Acquaintance on Agronomic Biofortification to Modulate the Yield and Functional Value of Vegetable Crops: A Review. Horticulturae 2023, 9, 219. [Google Scholar] [CrossRef]
- Duborská, E.; Šebesta, M.; Matulová, M.; Zvěřina, O.; Urík, M. Current Strategies for Selenium and Iodine Biofortification in Crop Plants. Nutrients 2022, 14, 4717. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Rodrigo, S.; Santamaria, O.; Poblaciones, M.J. Selenium Application Timing: Influence in Wheat Grain and Flour Selenium Accumulation Under Mediterranean Conditions. J. Agric. Sci. 2014, 6, 23. [Google Scholar] [CrossRef]
- Reynolds-Marzal, D.; Rivera-Martin, A.; Santamaria, O.; Poblaciones, M.J. Combined selenium and zinc biofortification of bread-making wheat under mediterranean conditions. Plants 2021, 10, 1209. [Google Scholar] [CrossRef]
- De Vita, P.; Platani, C.; Fragasso, M.; Ficco, D.B.M.; Colecchia, S.A.; Del Nobile, M.A.; Padalino, L.; Di Gennaro, S.; Petrozza, A. Selenium-enriched durum wheat improves the nutritional profile of pasta without altering its organoleptic properties. Food Chem. 2017, 214, 374–382. [Google Scholar] [CrossRef]
- Reynolds-Marzal, D.; Rivera-Martin, A.; Rodrigo, S.M.; Santamaria, O.; Poblaciones, M.J. Biofortification of Forage Peas with Combined Application of Selenium and Zinc Under Mediterranean Conditions. J. Soil Sci. Plant Nutr. 2021, 21, 286–300. [Google Scholar] [CrossRef]
- Ning, P.; Fei, P.; Wu, T.; Li, Y.Y.; Qu, C.; Li, Y.Y.; Shi, J.; Tian, X. Combined foliar application of zinc sulphate and selenite affects the magnitude of selenium biofortification in wheat (Triticum aestivum L.). Food Energy Secur. 2022, 11, e342. [Google Scholar] [CrossRef]
- Germ, M.; Pongrac, P.; Regvar, M.; Vogel-Mikus, K.; Stibilj, V.; Jacimovic, R.; Kreft, I.; Vogel-Mikuš, K.; Stibilj, V.; Jaćimović, R.; et al. Impact of double Zn and Se biofortification of wheat plants on the element concentrations in the grain. Plant Soil Environ. 2013, 59, 316–321. [Google Scholar] [CrossRef]
- Drissi, S.; Houssa, A.A.; Bamouh, A.; Coquant, J.-M.; Benbella, M. Effect of Zinc-Phosphorus Interaction on Corn Silage Grown on Sandy Soil. Agriculture 2015, 5, 1047–1059. [Google Scholar] [CrossRef]
- Requena-Ramírez, M.D.; Rodríguez-Suárez, C.; Ávila, C.M.; Palomino, C.; Hornero-Méndez, D.; Atienza, S.G. Bread Wheat Biofortification for Grain Carotenoid Content by Inter-Specific Breeding. Foods 2023, 12, 1365. [Google Scholar] [CrossRef] [PubMed]
- Sieber, A.-N.; Würschum, T.; Longin, C.F.H. Vitreosity, its stability and relationship to protein content in durum wheat. J. Cereal Sci. 2015, 61, 71–77. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; IUSS Working Group WRB: Vienna, Austria, 2022. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degthareff method for determining soil organica matter, and proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Poblaciones, M.J.; Santamaría, O.; García-White, T.; Rodrigo, S.M. Selenium biofortification in bread-making wheat under Mediterranean conditions: Influence on grain yield and quality parameters. Crop Pasture Sci. 2014, 65, 362–369. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2006. [Google Scholar]
- Adams, M.L.; Lombi, E.; Zhao, F.J.; McGrath, S.P. Evidence of low selenium concentrations in UK bread-making wheat grain. J. Sci. Food Agric. 2002, 82, 1160–1165. [Google Scholar] [CrossRef]
- Radawiec, A.; Szulc, W.; Rutkowska, B. Selenium biofortification of wheat as a strategy to improve human nutrition. Agriculture 2021, 11, 144. [Google Scholar] [CrossRef]
- Sims, J.T.; Johnson, G.V. Micronutrient Soil Tests. In Micronutrients in Agriculture; SSSA Book Series; SSSA: Madison, WI, USA, 1991; pp. 427–476. ISBN 9780891188780. [Google Scholar]
- Dwivedi, R.; Srivastva, P.C. Effect of zinc sulphate application and the cyclic incorporation of cereal straw on yields, the tissue concentration and uptake of Zn by crops and availability of Zn in soil under rice–wheat rotation. Int. J. Recycl. Org. Waste Agric. 2014, 3, 53. [Google Scholar] [CrossRef]
- Shaver, T.M.; Westfall, D.G.; Ronaghi, M. Zinc Fertilizer Solubility and Its Effects on Zinc Bioailability Over Time. J. Plant Nutr. 2007, 30, 123–133. [Google Scholar] [CrossRef]
- Djouadi, K.; Mekliche, A.; Dahmani, S.; Ladjiar, N.I.; Abid, Y.; Silarbi, Z.; Hamadache, A.; Pisante, M. Durum Wheat Yield and Grain Quality in Early Transition from Conventional to Conservation Tillage in Semi-Arid Mediterranean Conditions. Agriculture 2021, 11, 711. [Google Scholar] [CrossRef]
- De Santis, M.A.; Soccio, M.; Laus, M.N.; Flagella, Z. Influence of Drought and Salt Stress on Durum Wheat Grain Quality and Composition: A Review. Plants 2021, 10, 2599. [Google Scholar] [CrossRef]
- Wang, M.M.; Ali, F.; Wang, M.M.; Dinh, Q.T.; Zhou, F.; Bañuelos, G.S.; Liang, D. Understanding boosting selenium accumulation in Wheat (Triticum aestivum L.) following foliar selenium application at different stages, forms, and doses. Environ. Sci. Pollut. Res. 2020, 27, 717–728. [Google Scholar] [CrossRef]
- Nawaz, F.; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.; Shabbir, R.N.; Bukhari, M.A. Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem. 2015, 175, 350–357. [Google Scholar] [CrossRef]
- Poblaciones, M.J.; Rengel, Z. Combined foliar selenium and zinc biofortification in field pea (Pisum sativum): Accumulation and bioavailability in raw and cooked grains. Crop Pasture Sci. 2017, 68, 265–271. [Google Scholar] [CrossRef]
- Suttle, N. Mineral Nutrition of Livestock, 5th ed.; CABI: Cambridge, UK, 2022. [Google Scholar]
- D’Oria, A.; Courbet, G.; Billiot, B.; Jing, L.; Pluchon, S.; Arkoun, M.; Maillard, A.; Roux, C.P.-L.; Trouverie, J.; Etienne, P.; et al. Drought specifically downregulates mineral nutrition: Plant ionomic content and associated gene expression. Plant Direct 2022, 6, e402. [Google Scholar] [CrossRef]
- Rezzouk, F.Z.; de Lima, V.J.; Diez-Fraile, M.C.; Aparicio, N.; Serret, M.D.; Araus, J.L. Assessing performance of European elite bread wheat cultivars under Mediterranean conditions: Breeding implications. Field Crops Res. 2023, 302, 109089. [Google Scholar] [CrossRef]
- Na, G.; Salt, D.E. The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ. Exp. Bot. 2011, 72, 18–25. [Google Scholar] [CrossRef]
- Galić, L.; Vinković, T.; Ravnjak, B.; Lončarić, Z. Agronomic biofortification of significant cereal crops with selenium—A review. Agronomy 2021, 11, 1015. [Google Scholar] [CrossRef]
- Gui, J.Y.; Rao, S.; Huang, X.; Liu, X.; Cheng, S.; Xu, F. Interaction between selenium and essential micronutrient elements in plants: A systematic review. Sci. Total Environ. 2022, 853, 158673. [Google Scholar] [CrossRef]
- Kong, L.; Tao, Y.; Xu, Y.; Zhou, X.; Fu, G.; Zhao, L.; Wang, Q.; Li, H.; Wan, Y. Simultaneous Biofortification: Interaction between Zinc and Selenium Regarding Their Accumulation in Wheat. Agronomy 2024, 14, 1513. [Google Scholar] [CrossRef]
- Carucci, F.; Moreno-Martín, G.; Madrid-Albarrán, Y.; Gatta, G.; De Vita, P.; Giuliani, M.M. Selenium Agronomic Biofortification of Durum Wheat Fertilized with Organic Products: Se Content and Speciation in Grain. Agronomy 2022, 12, 2492. [Google Scholar] [CrossRef]
- Fradgley, N.S.; Gardner, K.; Kerton, M.; Swarbreck, S.M.; Bentley, A.R. Trade-offs in the genetic control of functional and nutritional quality traits in UK winter wheat. Heredity 2022, 128, 420–433. [Google Scholar] [CrossRef]
- Kutman, U.B.; Yildiz, B.; Cakmak, I. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J. Cereal Sci. 2011, 53, 118–125. [Google Scholar] [CrossRef]
- Feng, R.; Wei, C.; Tu, S. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 2013, 87, 58–68. [Google Scholar] [CrossRef]
Parameter | Part | Year (Y) | Zn Soil (S) | Foliar (F) | Y × S | Y × F | S × F | Y × S × F |
---|---|---|---|---|---|---|---|---|
df | 1 | 1 | 3 | 1 | 3 | 3 | 3 | |
Yield | Straw | 812.28 *** | 35.41 *** | 1.69 | 0.02 | 0.62 | 0.15 | 2.06 |
Grain | 1839.09 *** | 82.28 *** | 9.12 *** | 0.39 | 0.36 | 1.02 | 1.78 | |
Zn | Straw | 8.48 | 9.34 * | 1.57.05 *** | 0.91 | 15.14 *** | 0.51 | 1.48 |
Grain | 35.17 ** | 0.01 | 190.27 *** | 2.94 | 1.27 | 2.28 | 1.53 | |
Se | Straw | 61.33 ** | 0.47 | 59.10 *** | 1.43 | 1.76 | 0.24 | 0.44 |
Grain | 68.4 ** | 0.14 | 234.58 *** | 1.24 | 6.66 ** | 0.7 | 1.14 | |
Zn uptake | Straw | 21.74 ** | 17.94 * | 160.53 *** | 0.37 | 5.7 ** | 1.24 | 0.39 |
Grain | 276.08 *** | 18.17 ** | 71.18 *** | 4.45 | 4.53 * | 0.43 | 1.42 | |
Se uptake | Straw | 90.21 ** | 8.84 * | 65.77 *** | 2.87 | 1.77 | 0.72 | 0.54 |
Grain | 331.35 *** | 8.23 * | 245.48 *** | 2.5 | 39.86 *** | 0.52 | 0.93 | |
1000 gw | Grain | 695.93 *** | 0.07 | 6.04 ** | 16.09 ** | 3.10 * | 3.40 * | 0.95 |
Hect. W. | Grain | 253.82 *** | 13.07 * | 1.38 | 5.98 * | 0.83 | 2.74 | 1.52 |
Protein | Grain | 441.72 *** | 1.97 | 6.79 *** | 0.25 | 2.39 | 2.92 * | 0.39 |
Vitreosity | Grain | 77.57 ** | 1.37 | 3.01 * | 1.13 | 0.44 | 2.04 | 0.77 |
NDF | Straw | 518.85 *** | 0.01 | 0.1 | 0.71 | 5.26 ** | 2.36 | 0.5 |
AFD | Straw | 1625.65 *** | 0.01 | 0.34 | 0.12 | 4.32 * | 1.87 | 0.59 |
ADL | Straw | 17.73 * | 3.06 | 0.45 | 2.74 | 2.92 * | 0.48 | 0.23 |
Ash | Straw | 28.01 | 1.11 | 1.77 | 0.12 | 2.12 | 0.73 | 1.26 |
1000 gw (g) | Hect. Weight (kg hL−1) | Protein (%) | Vitreosity (%) | ||
---|---|---|---|---|---|
Year | 2017/2018 | 46.99 ± 0.32 a | 81.43 ± 0.19 a | 11.95 ± 0.08 b | 87.25 ± 0.73 b |
2018/2019 | 36.91 ± 0.50 b | 78.21 ± 0.52 b | 15.58 ± 0.15 a | 95.47 ± 0.60 a | |
Soil | S0Zn | 41.88 ± 0.88 A | 79.23 ± 0.48 B | 13.64 ± 0.35 A | 92.03 ± 0.89 A |
S50Zn | 42.01 ± 1.11 A | 80.41 ± 0.47 A | 13.89 ± 0.34 A | 90.69 ± 1.08 A | |
Foliar | 0 F | 40.83 ± 1.39 β | 79.30 ± 0.99 α | 13.41 ± 0.45 β | 89.81 ± 1.47 β |
SeF | 41.61 ± 1.63 β | 79.76 ± 0.62 α | 13.57 ± 0.45 β | 90.44 ± 1.53 β | |
ZnF | 41.90 ± 1.38 β | 79.51 ± 0.54 α | 13.97 ± 0.50 α | 92.13 ± 1.24 α β | |
ZnF + SeF | 43.46 ± 1.22 α | 80.72 ± 0.45 α | 14.11 ± 0.55 α | 93.06 ± 1.30 α |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Latorre, C.; Rivera-Martín, A.; Reynolds-Marzal, M.D.; Poblaciones, M.J. Combined Zinc and Selenium Biofortification of Durum Wheat in the South-West of Spain. Agronomy 2025, 15, 1038. https://doi.org/10.3390/agronomy15051038
García-Latorre C, Rivera-Martín A, Reynolds-Marzal MD, Poblaciones MJ. Combined Zinc and Selenium Biofortification of Durum Wheat in the South-West of Spain. Agronomy. 2025; 15(5):1038. https://doi.org/10.3390/agronomy15051038
Chicago/Turabian StyleGarcía-Latorre, Carlos, Angélica Rivera-Martín, María Dolores Reynolds-Marzal, and Maria J. Poblaciones. 2025. "Combined Zinc and Selenium Biofortification of Durum Wheat in the South-West of Spain" Agronomy 15, no. 5: 1038. https://doi.org/10.3390/agronomy15051038
APA StyleGarcía-Latorre, C., Rivera-Martín, A., Reynolds-Marzal, M. D., & Poblaciones, M. J. (2025). Combined Zinc and Selenium Biofortification of Durum Wheat in the South-West of Spain. Agronomy, 15(5), 1038. https://doi.org/10.3390/agronomy15051038