Selecting Fore and Succeeding Crops to Construct a Double-Cropping System That Increases the Forage Yields of Alpine Pastoral Areas on the Qinghai–Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Conditions
2.2. Experimental Genotypes
2.3. Experimental Design
2.4. Parameter Determination
2.4.1. Fore Crops
2.4.2. Succeeding Crops
2.4.3. Nutritional Quality
2.4.4. Interactions Between Fore and Succeeding Crops
2.5. Statistical Analysis
3. Results
3.1. Production Performance and Nutritional Qualities of Fore Crops
3.2. Production Performance and Nutritional Qualities of Succeeding Crops
3.3. Differences in the Fore and Succeeding Crop Interactions
3.4. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.J.; Yang, J.P.; Ding, Y.J.; He, Q.S.; Ji, Q.; Wang, Y.X.; Tang, F.; Ge, Q.L. Quantitative assessment of snow risk about livestock in the Qinghai-Tibet Plateau. J. Catastrophol. 2022, 37, 102–110. [Google Scholar] [CrossRef]
- Du, Z.Y.; Cong, N. Responses of vegetation and soil characterisitics to degraded grassland under different degrees on the Qinghai-Tibet Plateau. Acta Ecol. Sin. 2024, 44, 2504–2516. [Google Scholar] [CrossRef]
- Ji, Z.Y.; Shi, Y.; Jiang, L.Q.; Wang, X.S.; Zhu, G.L.; Zhou, G.S. Double-Cropping Systems Based on Maize, Sorghum, and Alfalfa: Impact of Annual Combination on Biomass and Nutritional Yield. Agronomy 2025, 15, 83. [Google Scholar] [CrossRef]
- Waha, K.; Dietrich, J.P.; Portmann, F.T.; Siebert, S.; Thornton, P.K.; Bondeau, A.; Herrero, M. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Change 2020, 64, 102131. [Google Scholar] [CrossRef]
- Pan, X.R. Study on the High-Yield Planting Model of Double Cropping Forage Grass in the Agricultural Area of Lhasa River Valley. Master’s Thesis, Northwest A&F University, Yangling, China, 2023. [Google Scholar] [CrossRef]
- Yin, X.G.; Song, Z.W. Multiple Cropping Systems for Improving Crop Yield and Reducing Environmental Costs. Agronomy 2024, 14, 2972. [Google Scholar] [CrossRef]
- González-Alcántara, F.d.J.; Estrada-Flores, J.G.; Morales-Almaraz, E.; López-González, F.; Gómez-Miranda, A.; Vega-García, J.I.; Arriaga-Jordán, C.M. Whole-crop triticale silage for dairy cows grazing perennial ryegrass (Lolium perenne) or tall fescue (Lolium arundinaceum) pastures in small-scale dairy systems during the dry season in the highlands of Mexico. Trop. Anim. Health Prod. 2020, 52, 1903–1910. [Google Scholar] [CrossRef]
- Bielski, S.; Romaneckas, K.; Šarauskis, E. Impact of nitrogen and boron fertilization on winter triticale productivity parameters. Agronomy 2020, 10, 279. [Google Scholar] [CrossRef]
- Bassu, S.; Asseng, S.; Giunta, F.; Motzo, R. Optimizing triticale sowing densities across the Mediterranean Basin. Field Crops Res. 2013, 144, 167–178. [Google Scholar] [CrossRef]
- Kselíková, V.; Vyhnánek, T.; Hanáček, P.; Martinek, P. Grain hardness in triticale: A physical and molecular evaluation. Czech J. Genet. Plant Breed. 2020, 56, 102–110. [Google Scholar] [CrossRef]
- Agudelo, R.; García-Aparicio, M.P.; Görgens, J.F. Impact of triticale cultivar (× Triticosecale sp. Wittmack) and location on pretreatment requirements and fermentable sugars yield. Biomass Convers. Biorefin. 2020, 10, 107–118. [Google Scholar] [CrossRef]
- Ren, Y.X.; Liu, H.C.; Tian, X.H.; Du, W.H. Response of the autumn sown triticale to the nitrogen fertilizing rate and seeding density in the alpine grazing area of Gannan. Acta Agrestia Sin. 2019, 27, 1044–1051. [Google Scholar] [CrossRef]
- Song, Q.; Tian, X.H.; Du, W.H. Studies on production performance of new triticale lines in alpine pastoral areas of Gansu. Pratacult. Sci. 2016, 33, 1367–1374. [Google Scholar] [CrossRef]
- Ren, Y.X.; Liu, H.C.; Tian, X.H.; Du, W.H. Selection of succeeding crops for a double-cropping system in alpine pastoral areas of the Qinghai–Tibetan plateau. Grass Forage Sci. 2023, 79, 47–55. [Google Scholar] [CrossRef]
- Pei, Y.B. Coupling Effect and Mechanism of Autumn Seeding Triticale and Double Crops in Gannan Alpine Pastoral Area. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 2020. [Google Scholar] [CrossRef]
- Olasantan, F.O. Effects of preceding maize (Zea mays) and cowpea (Vigna unguiculata) in sole cropping and intercropping on growth, yield and nitrogen requirement of okra (Abelmoschus esculentus). J. Agric. Sci. 1998, 131, 293–298. [Google Scholar] [CrossRef]
- Jeranyama, P.; Hesterman, O.B.; Waddington, S.R.; Harwood, R.R. Relay-Intercropping of Sunnhemp and Cowpea into a Smallholder Maize System in Zimbabwe. Agron. J. 2000, 92, 239–244. [Google Scholar] [CrossRef]
- Kazula, M.J.; Andrzejewska, J.; Conley, S.P.; Albrecht, K.A. Intercropping winter cereals in kura clover for spring forage production. Can. J. Plant Sci. 2019, 99, 740–750. [Google Scholar] [CrossRef]
- He, P.L.; Jie, H.D.; Adnan, R.; Zhao, L.; Lyu, X.Y.; Liu, X.C.; Xing, H.C.; Jie, Y.C. Comparative study on production performance of forage triticale and italian ryegrass in Hunan Province. Chin. J. Grassl. 2024, 46, 144–150. [Google Scholar] [CrossRef]
- Yang, S. Feed Analysis and Quality Test Technology; China Agricultural University Press: Beijing, China, 1998. [Google Scholar]
- Kellums, R.O.; Church, D.C. Livestock Feeds and Feeding, 5th ed.; Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Capstaff, N.M.; Miller, A.J. Improving the yield and nutritional quality of forage crops. Front. Plant Sci. 2018, 9, 535. [Google Scholar] [CrossRef]
- Li, T.F.; Peng, L.X.; Wang, H.; Zhang, Y.; Wang, Y.X.; Cheng, Y.X.; Hou, F.J. Multiple cutting increases forage productivity and enhances legume pasture stability in a rainfed agroecosystem. Ann. Agric. Sci. 2023, 68, 126–136. [Google Scholar] [CrossRef]
- Deng, J.X.; Deng, Y.; Cheong, K.H. Combining conflicting evidence based on pearson correlation coefficient and weighted graph. Int. J. Intell. Syst. 2021, 36, 7443–7460. [Google Scholar] [CrossRef]
- Lyons, S.E.; Ketterings, Q.M.; Godwin, G.S.; Cherney, J.H.; Cherney, D.J.; Meisinger, J.J.; Kilcer, T.F. Double-cropping with forage sorghum and forage triticale in New York. Agron. J. 2019, 111, 3374–3382. [Google Scholar] [CrossRef]
- Appelgate, S.R.; Lenssen, A.W.; Wiedenhoeft, M.H.; Kaspar, T.C. Cover crop options and mixes for upper Midwest corn-soybean systems. Agron. J. 2017, 109, 968–984. [Google Scholar] [CrossRef]
- Xiao, J.X.; Yin, X.H.; Ren, J.B.; Zhang, M.Y.; Tang, L.; Zheng, Y. Complementation drives higher growth rate and yield of wheat and saves nitrogen fertilizer in wheat and fada bean intercropping. Field Crops Res. 2018, 221, 119–129. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Ju, Z.L.; Chai, J.K.; Jiao, T.; Jia, Z.F.; Casper, D.P.; Zeng, L.; Wu, J.P. Effects of silage additives and varieties on fermentation quality, aerobic stability and nutritive value of oat silage. J. Anim. Sci. 2018, 96, 3151–3160. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.C. Discriminations of Triticale and Rye, and Studies on the High-Yield Cultivation Techniques in the Alpine Pastoral Area of the Northeastern Margin of Qinghai-Tibet Plateau, China. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2018. [Google Scholar] [CrossRef]
- Ma, X.; Xiao, A.P.; Wang, B.; Wang, T.F.; Ming, X.H.; Zhang, Y.Y.; Zhao, X.N.; Lan, J. Study on Production Performance and Nutritional Value of 10 Triticale Varieties (Lines) in Rainfed Area of Ningxia. Acta Agrestia Sin. 2023, 31, 3687–3696. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Tian, X.H.; Du, W.H. Studies on the optimal cutting period of forage triticale in Dingxi area. Pratacult. Sci. 2015, 32, 1143–1149. [Google Scholar] [CrossRef]
- Shi, Z.Q.; Pei, Y.B.; Xu, Q.; Liu, H.C.; Tian, X.H.; Du, W.H. Studies on the mixed effect of triticale variety Gannong No. 2 and vetch in alpine pastures of Gannan. Pratacult. Sci. 2021, 38, 1771–1781. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Liu, H.C.; Tian, X.H.; Du, W.H. Lodging resistance and feeding quality of triticale and cereal rye lines in an alpine pastoral area of P. R. China. Agron. J. 2022, 114, 1284–1297. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; ter Steege, H.; Morgan, H.D.; Van der Heijden, M.G.A.; et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Hu, X.H.; Wang, F.F.; Miao, H.R.; Ye, C.; Yang, W.Q.; Zhong, W.; Chen, J. Identification of QTLs for plant height and branching related traits in cultivated peanut. J. Integr. Agric. 2023, in press. [Google Scholar] [CrossRef]
- De Visser, C.L.M.; Schreuder, R.; Stoddard, F. The EU’s dependency on soya bean import for the animal feed industry and potential for EU produced alternatives. OCL 2014, 21, D407. [Google Scholar] [CrossRef]
- Kaithwas, M.; Singh, S.; Prusty, S.; Mondal, G.; Kundu, S.S. Evaluation of legume and cereal fodders for carbohydrate and protein fractions, nutrient digestibility, energy and forage quality. Range Manag. Agrofor. 2020, 41, 126–132. [Google Scholar]
- Diniz, W.P.S.; Santos, M.V.F.; Verás, A.S.C.; Cunha, M.V.; Simões Neto, D.E.; Souza, T.C.; Dubeux, J.C.B.; Abreu, D.S.; Ferreira, R.L.C. Morphological, productive, and nutritional characterization of Desmanthus spp. accessions under different cutting intensities. Agrofor. Syst. 2021, 95, 571–581. [Google Scholar] [CrossRef]
- Fu, X.N.; Pan, Z.W.; Men, X.J.; Cao, Y.L.; Li, C.T.; Zhang, Q.R. The study for Mix-Sowing of Secale cereale L. ‘ganyin No 1’ and Vicia sativa L. in Alpine Area. J. Anim. Sci. Vet. Med. 2016, 35, 15–17+20. [Google Scholar]
- Yang, C.F.; Zhang, F.; Jiang, X.Q.; Yang, X.J.; He, F.; Wang, Z.; Long, R.C.; Chen, L.; Yang, T.H.; Wang, C.; et al. Identification of genetic loci associated with crude protein content and fiber composition in Alfalfa (Medicago sativa L.) using QTL mapping. Front. Plant Sci. 2021, 12, 608940. [Google Scholar] [CrossRef]
Treatment | Sowing Time | Planting Method |
---|---|---|
Fore crops (A1–A8) | 10 September 2019 6 September 2020 | Unicast |
Succeeding crops (B1–B4) | 8 June 2020 10 June 2021 | Mixture sowing |
Seeding Amount (kg·ha−1) | Seeding Density (×104·ha−1) | |||||||
---|---|---|---|---|---|---|---|---|
Treatment | Triticale | Oat | Common Vetch | Forage Pea | Triticale | Oat | Common Vetch | Forage Pea |
B1 | 313 | — | — | 276 | 600 | — | — | 160 |
B2 | 313 | — | 106 | — | 600 | — | 160 | — |
B3 | — | 189 | — | 276 | — | 600 | — | 160 |
B4 | — | 189 | 106 | — | — | 600 | 160 | — |
Treatment | F-Value | ||||||
---|---|---|---|---|---|---|---|
Plant Height (cm) | Branch Number (×104·ha−1) | Hay Yield (t·ha−1) | CP (mg·g−1) | NDF (mg·g−1) | ADF (mg·g−1) | RFV | |
Fore crops | 1.004 | 8.959 ** | 13.711 ** | 3.974 ** | 4.049 ** | 1.102 | 2.363 * |
Succeeding crops | 60.487 ** | 62.956 ** | 191.654 ** | 18.597 ** | 34.675 ** | 57.629 ** | 55.430 ** |
Fore crops × Succeeding crops | 15.848 ** | 108.757 ** | 173.972 ** | 28.832 ** | 23.555 ** | 30.862 ** | 25.218 ** |
Treatment | Plant Height (cm) | Branch Number (×104·ha−1) | Hay Yield (t·ha−1) |
---|---|---|---|
B1 | 119.70 ± 1.71 a | 478.23 ± 4.09 a | 11.45 ± 0.11 a |
B2 | 120.98 ± 1.53 a | 490.57 ± 5.38 a | 9.89 ± 0.17 b |
B3 | 100.49 ± 1.03 b | 395.00 ± 5.35 c | 9.62 ± 0.15 b |
B4 | 99.47 ± 1.69 b | 432.24 ± 6.93 b | 6.46 ± 0.17 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Ren, Y.; Du, W.; Yang, Y. Selecting Fore and Succeeding Crops to Construct a Double-Cropping System That Increases the Forage Yields of Alpine Pastoral Areas on the Qinghai–Tibetan Plateau. Agronomy 2025, 15, 904. https://doi.org/10.3390/agronomy15040904
Yu Z, Ren Y, Du W, Yang Y. Selecting Fore and Succeeding Crops to Construct a Double-Cropping System That Increases the Forage Yields of Alpine Pastoral Areas on the Qinghai–Tibetan Plateau. Agronomy. 2025; 15(4):904. https://doi.org/10.3390/agronomy15040904
Chicago/Turabian StyleYu, Zhiqiang, Yuxin Ren, Wenhua Du, and Yongqiang Yang. 2025. "Selecting Fore and Succeeding Crops to Construct a Double-Cropping System That Increases the Forage Yields of Alpine Pastoral Areas on the Qinghai–Tibetan Plateau" Agronomy 15, no. 4: 904. https://doi.org/10.3390/agronomy15040904
APA StyleYu, Z., Ren, Y., Du, W., & Yang, Y. (2025). Selecting Fore and Succeeding Crops to Construct a Double-Cropping System That Increases the Forage Yields of Alpine Pastoral Areas on the Qinghai–Tibetan Plateau. Agronomy, 15(4), 904. https://doi.org/10.3390/agronomy15040904