Increasing Planting Density and Optimizing Irrigation to Improve Maize Yield and Water-Use Efficiency in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Field Management
2.4. Sampling and Measurements
2.5. Statistical Analysis
3. Results
3.1. Grain Yield, Evapotranspiration, and Water-Use Efficiency
3.2. Correlation of Grain Yield with Evapotranspiration and Irrigation Amount
3.3. Correlation of Water-Use Efficiency with Evapotranspiration and Irrigation Amount
3.4. Change in Daily Water Consumption Intensity
3.5. Dynamics of the Phase Water-Consumption Coefficient
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.D.; Schroeder, J.I. Genetic strategies for improving crop yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Kumar, P.; Long, S.P. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Glob. Change Biol. 2016, 23, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Z.; Zhang, L.; Trout, T. Improving agricultural water productivity to ensure food security under changing environments. Agric. Water Manag. 2017, 179, 1–4. [Google Scholar] [CrossRef]
- Hong, D.F.; Ma, J.F.; Ma, Y.; Wei, F.; Wei, X.Y.; Wang, J.X.; Zhang, X.S. High yield characteristics and density tolerance of different genotypes of maize under high-density conditions. J. Maize Sci. 2019, 27, 41–47. [Google Scholar]
- Assefa, Y.; Prasad, P.V.V.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewica, S.; Ciampitti, I.A. Yield responses to planting density for US modern corn hybrids: A synthesis-analysis. Crop Sci. 2016, 56, 2802–2817. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Zhang, C.R.; Sun, P.; Jiang, X.W.; Xu, G.H.; Yang, J.Z. Optimizing planting density and nitrogen application to enhance profit and nitrogen use of summer maize in Huanghua Hai region of China. Sci. Rep. 2022, 12, 2704–2705. [Google Scholar] [CrossRef]
- Li, J.; Man, W.; Wang, K.R.; Ming, B.; Chang, X.; Wang, X.B.; Yang, Z.S.; Xie, R.Z.; Li, S.K. Identifying Ways to Narrow Maize Yield Gaps Based on Plant Density Experiments. Agronomy 2020, 10, 281. [Google Scholar] [CrossRef]
- Friedman, S.P. Relationships between combined and individual field crops’ biomass and planting density. Field Crop. Res. 2024, 305, 157845. [Google Scholar] [CrossRef]
- Du, X.B.; Wang, Z.; Lei, W.X.; Kong, L.C. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Sci. Rep. 2021, 11, 358. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.D.; Xiao, J.F.; Yu, J.C.; Liu, Z.G.; Nan, J.Q. The influence of spring maize varieties and planting density on plant traits and water consumption characteristics. J. Agric. Eng. 2012, 28, 125–131. [Google Scholar]
- Jiang, X.L.; Tong, L.; Kang, S.Z.; Li, F.S.; Li, D.H.; Qin, Y.H.; Shi, R.H.; Li, J.B. Planting density affected biomass and grain yield of maize for seed production in an arid region of Northwest China. J. Arid Land 2018, 10, 292–303. [Google Scholar] [CrossRef]
- Du, Z.H.; Yang, L.; Zhang, D.X.; Cui, T.; He, X.T.; Xiao, T.P.; Li, H.S.; Xing, S.L.; Xie, C.J. Optimizing maize planting density based on soil organic matter to achieve synergistic improvements of yield, economic benefits, and resource use efficiency. Sci. Total Environ. 2024, 906, 167597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Luo, C.L.; Mo, F.; Ren, F.X.; David, M.; Levis, K.; Dai, R.Z.; Kiprotich, W.; Ren, A.T.; Aggrey, B.N.; et al. Density-dependent maize (Zea mays L.) yield increase in trade-off in reproductive allocation and water use under ridge-furrow plastic-mulching. Field Crop. Res. 2021, 264, 108102. [Google Scholar] [CrossRef]
- Wang, Q.M.; Fan, Z.L.; Zhao, Y.H.; Yin, W.; Chai, Q. Effect of Plant Density on Water Consumption Characteristics of Maize in Oasis Irrigation Area. Acta Agron. Sin. 2017, 43, 1347–1356. [Google Scholar] [CrossRef]
- Payero, J.O.; Tarkalson, D.D.; Irmak, S.; Davison, D.; Petersen, J.L. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate. Agric. Water Manag. 2008, 95, 895–908. [Google Scholar] [CrossRef]
- Trout, T.J.; DeJonge, K.C. Water productivity of maize in the US high plains. Irrig. Sci. 2017, 35, 251–266. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Wang, L.M.; He, X.H.; Zhang, X.Y.; Chen, S.Y.; Chen, J.; Yang, Y.H. Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain. Agric. For. Meteorol. 2008, 148, 1848–1859. [Google Scholar] [CrossRef]
- Shen, Q.X.; Ding, R.S.; Du, T.S.; Tong, L.; Li, S.E. Water Use Effectiveness Is Enhanced Using Film Mulch through Increasing Transpiration and Decreasing Evapotranspiration. Water 2019, 11, 1153. [Google Scholar] [CrossRef]
- Hou, S.Y.; Wang, X.J.; Zhang, C.; Chen, H.T.; Zhou, Z. Experiments on the Influence of Corn Straw Morphological Combinations on Timely No-Tillage Sowing Soil Temperature and Moisture in Cold Regions. Agriculture 2022, 12, 1425. [Google Scholar] [CrossRef]
- Soranj, M.; Sadraddini, A.A.; Nazemi, A.H.; Majnooni-Heris, A.; Bolandnazar, S.; Lampurlanés, J. Effects of Different Mulches and Fertilizers under Two Irrigation Methods on Garlic Yield and Soil Properties. Commun. Soil Sci. Plant Anal. 2022, 53, 814–825. [Google Scholar] [CrossRef]
- Cetin, O.; Bilge, L. Effects of different irrigation methods on shedding and yield of cotton. Agric. Water Manag. 2002, 54, 1–15. [Google Scholar] [CrossRef]
- Yang, H.S.; Xue, X.W.; Zhang, R.F.; Li, J.Q.; Wang, Y.F.; Tai, J.C.; Liu, J. The effect of irrigation methods on maize yield and water use efficiency in the West Liao he Plain. J. Agric. Eng. 2019, 35, 69–77. [Google Scholar]
- Chen, R.; Cheng, W.H.; Cui, J.; Liao, J.; Fan, H.; Zheng, Z.; Ma, F.Y. Lateral spacing in drip–irrigated wheat: The effects on soil moisture, yield and water use efficiency. Field Crop. Res. 2015, 179, 52–62. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Li, R.F.; Wang, K.R.; Xie, R.Z.; Hou, P.; Ming, B.; Xun, J.; Zhang, G.Q.; Liu, G.Z.; Li, S.K. Creation and Reflection on High Yield Records of Spring Maize in China. J. Maize Sci. 2021, 29, 56–59. [Google Scholar]
- Duvick, D.N. The contribution of breeding to yield advances in maize. Adv. Agron. 2005, 86, 83–145. [Google Scholar]
- Huang, S.B.; Gao, Y.B.; Li, Y.B.; Tao, H.B.; Wang, P. Influence of plant architecture on maize physiology and yield in the Heilonggang River valley. Crop J. 2017, 5, 52–62. [Google Scholar] [CrossRef]
- Tollenaar, M.; Lee, E.A. Yield potential, yield stability and stress tolerance in maize. Field Crop Res. 2002, 75, 161–169. [Google Scholar] [CrossRef]
- Boomsma, C.R.; Santini, J.B.; Tollenaar, M.; Vn, T.J. Maize morphophysiological response to intense crowding and low nitrogen availability: Analysis and review. Agron. J. 2000, 101, 1426–1452. [Google Scholar] [CrossRef]
- Lucas, O.; María, E.B. Maize Kernel Weight Response to Post flowering Source Sink Ratio. Crop Sci. 2001, 41, 1816–1822. [Google Scholar]
- Assefa, Y.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewicz, S.; Smith, S.; Ciampitti, I.A. Analysis of long-term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to Yield Gain. Sci. Rep. 2018, 8, 4937. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.H.; Guan, M.; Guo, Y.L.; Zhang, M.C.; Zhou, Y.Y.; Duan, L.S. Optimizing irrigation and planting density of spring maize under mulch drip irrigation system in the arid region of Northwest China. Field Crop. Res. 2021, 266, 234–241. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- Yang, H.S.; Zhang, M.W.; Zhang, R.F.; Tai, J.C.; Li, W.M.; Zhang, Y.S.; Ma, R.L.; Bai, B. The effects of drip irrigation amount, nitrogen application rate, and planting density on spring maize yield. J. Irrig. Darina 2021, 40, 16–22. [Google Scholar]
- Zhang, G.; Ming, B.; Shen, D.; Xie, R.; Hou, P.; Xue, J.; Wang, K.; Li, S. Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration. Agriculture 2021, 11, 313. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, J.F.; Ming, B.; Xie, R.Z.; Wang, K.R.; Hou, P.; Liu, G.Z.; Zhang, G.Q.; Chen, J.L.; Liu, W.M.; et al. Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates. Agric. Water Manag. 2021, 247, 106726. [Google Scholar] [CrossRef]
Month | Precipitation (mm) | Average Temperature (°C) | Sunshine Hours (h) | |||
---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
May | 4.8 | 46.4 | 19.5 | 17.2 | 7.4 | 7.6 |
June | 28.8 | 168.9 | 21.8 | 21 | 7.8 | 7.6 |
July | 105.4 | 75.5 | 25.6 | 24.4 | 7.4 | 7.4 |
August | 154.6 | 64.9 | 21.4 | 22.1 | 14.3 | 14.3 |
September | 32.8 | 10.1 | 16.9 | 17.5 | 12.9 | 12.6 |
Total or average | 326.4 | 365.8 | 21 | 20.4 | 10 | 9.9 |
Year | Variety | Density | Treatments | Yield (t/ha) | ETc (mm) | WUE (kg/m3) | IWUE (kg/m3) | PUE (kg/m3) |
---|---|---|---|---|---|---|---|---|
2021 | DK159 | D1 | W90 | 11.16 b | 485.13 e | 2.51 a | 5.51 a | 3.44 b |
W180 | 13.92 a | 594.40 d | 2.44 b | 3.44 b | 4.47 a | |||
W270 | 13.94 a | 625.03 c | 2.30 c | 2.29 c | 4.48 a | |||
W360 | 13.93 a | 706.80 b | 2.05 d | 1.72 d | 4.47 a | |||
W450 | 13.91 a | 788.67 a | 1.84 e | 1.43 e | 4.47 a | |||
D2 | W90 | 12.20 c | 494.43 e | 2.54 a | 6.02 a | 3.77 c | ||
W180 | 14.85 b | 568.30 d | 2.51 b | 3.67 b | 4.39 b | |||
W270 | 17.39 a | 694.23 c | 2.48 c | 2.86 c | 5.35 a | |||
W360 | 17.33 a | 756.1 b | 2.29 d | 2.14 d | 5.34 a | |||
W450 | 17.33 a | 796.13 | 2.18 e | 1.71 e | 5.34 a | |||
ZD958 | D1 | W90 | 10.62 b | 478.13 e | 2.43 a | 5.24 a | 3.27 b | |
W180 | 13.17 a | 557.87 d | 2.36 b | 3.25 b | 4.07 a | |||
W270 | 13.24 a | 633.30 c | 2.09 c | 2.18 c | 4.08 a | |||
W360 | 13.26 a | 691.80 b | 1.92 d | 1.64 d | 4.08 a | |||
W450 | 13.22 a | 776.82 a | 1.70 e | 1.31 e | 4.08 a | |||
D2 | W90 | 11.13 c | 478.43 e | 2.54 a | 5.50 a | 3.44 c | ||
W180 | 14.2 b | 564.30 d | 2.47 b | 3.51 b | 4.29 b | |||
W270 | 16.01 a | 657.23 c | 2.44 c | 2.64 c | 4.94 a | |||
W360 | 16.01 a | 705.10 b | 2.27 d | 1.98 d | 4.94 a | |||
W450 | 15.95 a | 784.13 a | 2.03 e | 1.58 e | 4.92 a | |||
2022 | DK159 | D1 | W90 | 11.63 b | 513.72 e | 2.37 a | 5.75 a | 3.18 b |
W180 | 13.44 a | 599.88 d | 2.24 b | 3.32 b | 3.67 a | |||
W270 | 13.37 a | 659.12 c | 2.03 c | 2.20 c | 3.66 a | |||
W360 | 13.41 a | 695.43 b | 1.96 d | 1.66 d | 3.66 a | |||
W450 | 13.43 a | 754.73 a | 1.78 e | 1.33 e | 3.67 a | |||
D2 | W90 | 12.31 c | 497.04 e | 2.57 a | 6.08 a | 3.36 c | ||
W180 | 14.73 b | 561.23 d | 2.54 b | 3.54 b | 3.92 b | |||
W270 | 16.62 a | 640.47 c | 2.49 c | 2.64 c | 4.38 a | |||
W360 | 16.67 a | 728.09 b | 2.30 d | 1.98 d | 4.39 a | |||
W450 | 16.65 a | 770.04 | 2.19 e | 1.58 e | 4.38 a | |||
ZD958 | D1 | W90 | 11.22 b | 501.33 e | 2.23 a | 5.54 a | 3.08 b | |
W180 | 12.90 a | 588.88 d | 2.19 b | 3.18 b | 3.53 a | |||
W270 | 13.00 a | 663.82 c | 1.96 c | 2.14 c | 3.56 a | |||
W360 | 13.03 a | 715.27 b | 1.88 d | 1.61 d | 3.56 a | |||
W450 | 13.00 a | 765.44 a | 1.70 e | 1.28 e | 3.56 a | |||
D2 | W90 | 11.89 c | 472.04 e | 2.47 a | 5.78 a | 3.12 c | ||
W180 | 13.55 b | 560.23 d | 2.41 b | 3.35 b | 3.71 b | |||
W270 | 15.54 a | 649.47 c | 2.38 c | 2.56 c | 4.25 a | |||
W360 | 15.41 a | 722.09 b | 2.10 d | 1.90 d | 4.22 a | |||
W450 | 15.47 a | 774.04 a | 2.00 e | 1.53 e | 4.23 a |
Variation Source | Yield (t/ha) | ETc (mm) | WUE (kg/m3) | IWUE (kg/m3) | PUE (kg/m3) |
---|---|---|---|---|---|
Year (Y) | ** | ** | ** | ** | ** |
Varieties (V) | ** | ** | ** | ** | ** |
Density (D) | ** | ** | ** | ** | ** |
Irrigation (I) | ** | ** | ** | ** | ** |
Y × V | ** | ** | ** | ** | ** |
Y × D | * | ** | ** | * | ** |
Y × I | ** | ** | ** | ** | ** |
V × D | ** | ** | * | ns | ns |
V × I | ** | ** | ** | ** | ** |
D × I | ** | ** | ** | ** | ** |
Y × V × D | ** | ** | ** | ns | ** |
Y × V × I | ** | ** | ** | ** | ** |
Y × D × I | ** | ** | ** | ** | ** |
V × D × I | ** | ** | ** | ** | ** |
Y × V × D × I | ** | ** | ** | ** | ** |
Year | Variety | Density | Fitting Equation | Determination Coefficient R2 |
---|---|---|---|---|
2021 | ZD958 | D1 | y = 0.067x + 8.07, x < 182.47; y = 13.24, x ≥ 182.47 | 0.99 ** |
D2 | y = 0.077x + 8.06, x < 234.48; y = 15.99, x ≥ 234.48 | 0.99 ** | ||
DK159 | D1 | y = 0.034x + 8.40, x < 180.22; y = 13.93, x ≥ 180.22 | 0.99 ** | |
D2 | y = 0.077x + 9.55, x < 264.91; y =17.35, x ≥ 264.91 | 0.98 ** | ||
2022 | ZD958 | D1 | y = 0.019x + 9.54, x < 185.89; y = 13.01, x ≥ 185.89 | 0.99 ** |
D2 | y = 0.020x +10.02, x < 269.59; y = 15.45, x ≥ 269.59 | 0.99 ** | ||
DK159 | D1 | y = 0.020x + 9.80, x < 178.04; y = 13.41, x ≥ 178.04 | 0.99 ** | |
D2 | y = 0.027x + 9.89, x < 251.28; y = 16.65, x ≥ 251.28 | 0.91 ** |
Year | Variety | Density | Fitting Equation | Determination Coefficient R2 |
---|---|---|---|---|
2021 | ZD958 | D1 | y = 0.043x − 10.67, x < 559.39; y = 13.24, x ≥ 559.39 | 0.99 ** |
D2 | y = 0.036x − 6.10, x < 613.31; y = 15.99, x ≥ 613.31 | 0.99 ** | ||
DK159 | D1 | y = 0.025x − 1.13, x < 595.66; y = 13.96, x ≥ 595.66 | 0.99 ** | |
D2 | y = 0.036x − 5.52, x < 638.20; y =17.35, x ≥ 638.20 | 0.98 ** | ||
2022 | ZD958 | D1 | y = 0.019x + 1.6, x < 594.61; y = 16.65, x ≥ 594.61 | 0.99 ** |
D2 | y = 0.020x + 2.19, x < 648.62; y = 13.41, x ≥ 648.62 | 0.99 ** | ||
DK159 | D1 | y = 0.021x + 0.72, x < 597.60; y = 15.46, x ≥ 597.60 | 0.99 ** | |
D2 | y = 0.038x − 6.43, x < 612.07; y = 16.65, x ≥ 612.07 | 0.99 ** |
Year | Variety | Density | Fitting Equation | Determination Coefficient R2 |
---|---|---|---|---|
2021 | ZD958 | D1 | y = −0.001x + 2.84 | 0.94 ** |
D2 | y = −0.002x + 2.92 | 0.97 ** | ||
DK159 | D1 | y = −0.002x + 3.12 | 0.92 ** | |
D2 | y = −0.002x + 3.07 | 0.98 ** | ||
2022 | ZD958 | D1 | y = −0.002x + 2.92 | 0.97 ** |
D2 | y = −0.001x + 2.84 | 0.94 ** | ||
DK159 | D1 | y = −0.002x + 3.07 | 0.98 ** | |
D2 | y = −0.002x + 3.12 | 0.92 ** |
Year | Variety | Density | Fitting Equation | Determination Coefficient R2 |
---|---|---|---|---|
2021 | ZD958 | D1 | y = −0.003x + 3.73 | 0.92 ** |
D2 | y = −0.001x + 3.25 | 0.77 ** | ||
DK159 | D1 | y = −0.003x + 4.18 | 0.94 ** | |
D2 | y = −0.002x + 3.62 | 0.81 ** | ||
2022 | ZD958 | D1 | y = −0.002x + 3.37 | 0.94 ** |
D2 | y = −0.002x + 3.27 | 0.85 ** | ||
DK159 | D1 | y = −0.002x + 3.41 | 0.91 ** | |
D2 | y = −0.002x + 3.45 | 0.86 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, D.; Wang, K.; Zhou, L.; Fang, L.; Wang, Z.; Fu, J.; Zhang, T.; Liang, Z.; Xie, R.; Ming, B.; et al. Increasing Planting Density and Optimizing Irrigation to Improve Maize Yield and Water-Use Efficiency in Northeast China. Agronomy 2024, 14, 400. https://doi.org/10.3390/agronomy14020400
Shen D, Wang K, Zhou L, Fang L, Wang Z, Fu J, Zhang T, Liang Z, Xie R, Ming B, et al. Increasing Planting Density and Optimizing Irrigation to Improve Maize Yield and Water-Use Efficiency in Northeast China. Agronomy. 2024; 14(2):400. https://doi.org/10.3390/agronomy14020400
Chicago/Turabian StyleShen, Dongping, Keru Wang, Linli Zhou, Liang Fang, Zhen Wang, Jiale Fu, Tingting Zhang, Zhongyu Liang, Ruizhi Xie, Bo Ming, and et al. 2024. "Increasing Planting Density and Optimizing Irrigation to Improve Maize Yield and Water-Use Efficiency in Northeast China" Agronomy 14, no. 2: 400. https://doi.org/10.3390/agronomy14020400
APA StyleShen, D., Wang, K., Zhou, L., Fang, L., Wang, Z., Fu, J., Zhang, T., Liang, Z., Xie, R., Ming, B., Hou, P., Xue, J., Li, J., Kang, X., Zhang, G., & Li, S. (2024). Increasing Planting Density and Optimizing Irrigation to Improve Maize Yield and Water-Use Efficiency in Northeast China. Agronomy, 14(2), 400. https://doi.org/10.3390/agronomy14020400