Effects of Species-Rich Perennial Inter-Row Cover on Weed Flora and Soil Coverage in an Apple Orchard: A Case Study of Opportunities and Limitations in a Dry Continental Climate
Abstract
1. Introduction
2. Materials and Methods
2.1. The Experimental Area
2.2. Experimental Arrangement
2.3. Evaluation of Experimental Mixtures
2.4. Data Analysing
3. Results
Characterisation of the Inter-Row Cover Crop Plant Community
4. Discussion
4.1. Average Coverages
4.2. Naturalness and Changes in Species Composition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Species | SBT (Social Behaviour Types) | SBT Value Nr. | Life Forms | Family |
---|---|---|---|---|
Achillea millefolium L. | Disturbance tolerant | 2 | He | Asteraceae |
Acer pseudoplatanus L. | Specialists | 6 | MM | Aceraceae |
Agrimonia eupatoria L. | Disturbance tolerant | 2 | He | Rosaceae |
Agropyron intermedium (Host) Beauv. | Disturbance tolerant | 2 | He | Poaceae |
Agropyron repens (L.) Gould. | Ruderal competitors | −2 | Ge | Poaceae |
Alopecurus myosuroides Huds. | Weeds | 1 | Th | Poaceae |
Amaranthus blitoides S. Watson | Weeds | 1 | Th | Amaranthaceae |
Amaranthus retroflexus L. | Ruderal competitors | −2 | Th | Amaranthaceae |
Ambrosia artemisiifolia L. | Alien competitors | −3 | Th | Asteraceae |
Anethum graveolens L. | Introduced aliens | −1 | Th | Apiaceae |
Anthemis sp. | Asteraceae | |||
Anthemis tinctoria L. | Generalists | 4 | He | Asteraceae |
Anthyllis vulneraria L. subsp. vulneraria | Generalists | 4 | He | Fabaceae |
Apera spica-venti (L.) P. Beauv. | Weeds | 1 | Th | Poaceae |
Arenaria serpyllifolia L. | Natural pioneers | 3 | Th | Caryophyllaceae |
Asclepias syriaca L. | Alien competitors | −3 | Ge | Asclepiadaceae |
Ballota nigra L. | Weeds | 1 | He | Lamiaceae |
Bromus inermis Leiss. | Competitors | 5 | He | Poaceae |
Bromus hordaceaus L. subsp. hordaceaus | Disturbance tolerants | 2 | Th | Poaceae |
Bromus sp. | Poaceae | |||
Bromus sterilis L. | Ruderal competitors | −2 | Th | Poaceae |
Bromus tectorum L. | Disturbance tolerant | 2 | Th | Poaceae |
Bryophyta | Bryophyta | |||
Camelina sativa (L.) Cr. | Weeds | 1 | Th | Brassicaceae |
Capsella bursa-pastoris (L.) Medic. | Weeds | 1 | Th-HT | Brassicaceae |
Carduus acanthoides L. | Weeds | 1 | Th-HT | Asteraceae |
Centaurea cyanus L. | Weeds | 1 | Th | Asteraceae |
Cerastium brachypetalum Desp. ex Pers. | Natural pioneers | 3 | Th | Caryophyllaceae |
Chenopodium album L. | Ruderal competitors | −2 | Th | Chenopodiaceae |
Chondrilla juncea L. | Disturbance tolerant | 2 | He | Asteraceae |
Cirsium arvense (L.) Scop. | Ruderal competitors | −2 | Ge | Asteraceae |
Convolvulus arvensis L. | Ruderal competitors | −2 | He | Convolvulaceae |
Conyza canadensis (L.) Cronqu. | Alien competitors | −3 | Th | Asteraceae |
Coronilla (Securigera) varia (L.) Lassen | Disturbance tolerant | 2 | He | Fabaceae |
Crepis setosa Hall. f. | Weeds | 1 | Th | Asteraceae |
Cynodon dactylon (L.) Pers. | Ruderal competitors | −2 | He-Ge | Poaceae |
Dactylis glomerata L. | Disturbance tolerant | 2 | He | Poaceae |
Datura stramonium L. | Weeds | 1 | Th | Solanaceae |
Daucus carota L. subsp. carota | Disturbance tolerant | 2 | HT | Apiaceae |
Descurainia sophia (L.) Webb. | Weeds | 1 | Th-HT | Brassicaceae |
Dianthus pontederae A.Kern. | Generalists | 4 | He(-Ch) | Caryophyllaceae |
Digitaria sanguinalis (L.) Scop. | Alien competitors | −3 | Th | Poaceae |
Echinochloa crus-galli (L.) P.Beauv. | Alien competitors | −3 | Th | Poaceae |
Echium vulgare L. | Weeds | 1 | He(-HT) | Boraginaceae |
Erodium cicutarium (L.) L’Hér. | Weeds | 1 | Th-(He) | Geraniaceae |
Fagopyrum esculentum Moench | Introduced aliens | −1 | Th | Polygonaceae |
Fallopia convolvulus (L.) A. Löve | Weeds | 1 | Th | Polygonaceae |
Festuca rubra L. | Competitors | 5 | He | Poaceae |
Geranium molle L. | Disturbance tolerant | 2 | Th | Geraniaceae |
Holosteum umbellatum L. | Weeds | 1 | Th | Caryophyllaceae |
Hordeum murinum L. | Weeds | 1 | Th | Poaceae |
Lamium amplexicaule L. | Weeds | 1 | Th | Lamiaceae |
Lamium purpureum L. | Weeds | 1 | Th | Lamiaceae |
Cardaria draba (L.)Desv. | Weeds | 1 | He | Brassicaceae |
Linum perenne L. | Disturbance tolerant | 2 | He | Linaceae |
Lolium perenne L. | Disturbance tolerant | 2 | He | Poaceae |
Lotus corniculatus L. | Disturbance tolerant | 2 | He | Fabaceae |
Medicago lupulina L. | Disturbance tolerant | 2 | Th(-HT) | Fabaceae |
Silene alba (Mill.) E.H.L. Krause | Weeds | 1 | Th(-HT) | Caryophyllaceae |
Onobrychis viciifolia Scop. | Disturbance tolerants | 2 | He | Fabaceae |
Oxalis dillenii Jacq. | Adventives | −1 | HT-He | Oxalidaceae |
Papaver rhoeas L. | Weeds | 1 | Th | Papaveraceae |
Phaecelia tanacetifolia Benth. | Introduced aliens | −1 | Th | Hydrophyllaceae |
Plantago lanceolata L. | Disturbance tolerants | 2 | He | Plantaginaceae |
Poa annua L. | Ruderal competitors | −2 | HT-He | Poaceae |
Poa pratensis L. | Generalists | 4 | He | Poaceae |
Poaceae | Poaceae | |||
Portulaca oleracea L. | Weeds | 1 | Th | Portulacaceae |
Potentilla anserina L. | Weeds | 1 | He | Rosaceae |
Potentilla arenaria Borkh. | Generalists | 4 | He | Rosaceae |
Potentilla reptans L. | Disturbance tolerants | 2 | He | Rosaceae |
Potentilla sp. | Rosaceae | |||
Rorippa sylvestris (L.) Besser | Weeds | 1 | He | Brassicaceae |
Rumex acetosa L. | Disturbance tolerant | 2 | He | Polygonaceae |
Salvia nemorosa L. | Disturbance tolerant | 2 | He | Lamiaceae |
Senecio vernalis Waldst. et Kit. | Weeds | 1 | Th-HT | Asteraceae |
Setaria pumila (Poir.) Schult. | Weeds | 1 | Th | Poaceae |
Setaria viridis (L.) P.Beauv. | Weeds | 1 | Th | Poaceae |
Silene vulgaris (Moench) Garcke | Disturbance tolerant | 2 | Th | Caryophyllaceae |
Sinapis alba L. | Weeds | 1 | Th | Brassicaceae |
Sonchus oleraceus L. | Weeds | 1 | Th | Asteraceae |
Sorghum halepense (L.) Pers. | Introduced aliens | −1 | Ge | Poaceae |
Stellaria holostea L. | Competitors | 5 | He(-Ch) | Caryophyllaceae |
Stellaria media (L.) Vill. | Disturbance tolerant | 2 | Th | Caryophyllaceae |
Erigeron annuus (L.) Pers. | Alien competitors | −3 | HT-He | Asteraceae |
Taraxacum officinale Weber | Ruderal competitors | −2 | He | Asteraceae |
Tragopogon dubius Scop. | Disturbance tolerant | 2 | HT-He | Asteraceae |
Tragopogon sp. | HT-He | Asteraceae | ||
Trifolium incarnatum L. | Introduced aliens | −1 | Th | Fabaceae |
Trifolium repens L. | Disturbance tolerant | 2 | He | Fabaceae |
Valerianella locusta (L.) Laterr. | Disturbance tolerant | 2 | Th | Valerianaceae |
Verbascum sp. | HT | Scrophulariaceae | ||
Veronica hederifolia (L.) | Weeds | 1 | Th | Scrophulariaceae |
Veronica persica Poir. | Weeds | 1 | Th(-He) | Scrophulariaceae |
Veronica polita Fr. | Weeds | 1 | Th | Scrophulariaceae |
Veronika prostrata L. | Generalists | 4 | Th | Scrophulariaceae |
Veronica triphyllos L. | Natural pioneers | 3 | He | Scrophulariaceae |
Vicia cracca L. | Disturbance tolerants | 2 | He | Fabaceae |
Vicia lathyroides L. | Natural pioneers | 3 | Th | Fabaceae |
Vicia sativa L. | Weeds | 1 | Th | Fabaceae |
Viola arvensis Murray | Weeds | 1 | Th | Violaceae |
References
- Varga, C.; Fekete, I.; Piskolczi, M.; Dorka, D.; Helmeczi, B. The Effect of Different Mulching Materials on Quantitative Changes of Microbes in the Soil of an Integrated Apple Plantation. Sci. Bull. Ser. C Fascicle Mech. Tribol. Mach. Manuf. Technol. 2007, 21, 725. [Google Scholar]
- Médiène, S.; Valantin-Morison, M.; Sarthou, J.-P.; de Tourdonnet, S.; Gosme, M.; Bertrand, M.; Roger-Estrade, J.; Aubertot, J.-N.; Rusch, A.; Motisi, N.; et al. Agroecosystem Management and Biotic Interactions: A Review. Agron. Sust. Developm. 2011, 31, 491–514. [Google Scholar] [CrossRef]
- Markó, V.; Jenser, G.; Kondorosy, E.; Ábrahám, L.; Balázs, K. Flowers for Better Pest Control? The Effects of Apple Orchard Ground Cover Management on Green Apple Aphids (Aphis Spp.) (Hemiptera: Aphididae), Their Predators and the Canopy Insect Community. Biocontrol Sci. Technol. 2013, 23, 126–145. [Google Scholar] [CrossRef]
- Mia, M.J.; Furmanczyk, E.M.; Golian, J.; Kwiatkowska, J.; Malusá, E.; Neri, D. Living Mulch with Selected Herbs for Soil Management in Organic Apple Orchards. Horticulturae 2021, 7, 59. [Google Scholar] [CrossRef]
- Sanchez, J.E.; Edson, C.E.; Bird, G.W.; Whalon, M.E.; Willson, T.C.; Harwood, R.R.; Kizilkaya, K.; Nugent, J.E.; Klein, W.; Middleton, A. Orchard Floor and Nitrogen Management Influences Soil and Water Quality and Tart Cherry Yields. J. Am. Soc. Hortic. Sci. 2003, 128, 277–284. [Google Scholar] [CrossRef]
- Granatstein, D.; Kirby, E.; Davenport, J. Direct Seeding Legumes into Orchard Alleys for Nitrogen Production. In Proceedings of the II International Organic Fruit Symposium 1001, Leavenworth, WA, USA, 19–21 June 2012; pp. 329–334. [Google Scholar]
- Mia, M.J.; Monaci, E.; Murri, G.; Massetani, F.; Facchi, J.; Neri, D. Soil Nitrogen and Weed Biodiversity: An Assessment under Two Orchard Floor Management Practices in a Nitrogen Vulnerable Zone in Italy. Horticulturae 2020, 6, 96. [Google Scholar] [CrossRef]
- Krohn, N.G.; Ferree, D.C. Effects of Low-Growing Perennial Ornamental Ground Covers on the Growth and Fruiting of ‘Seyval Blanc’ grapevines. HortScience 2005, 40, 561–568. [Google Scholar] [CrossRef]
- Granatstein, D.; Mullinix, K. Mulching Options for Northwest Organic and Conventional Orchards. HortScience 2008, 43, 45–50. [Google Scholar] [CrossRef]
- Atucha, A.; Merwin, I.A.; Brown, M.G. Long-Term Effects of Four Groundcover Management Systems in an Apple Orchard. HortScience 2011, 46, 1176–1183. [Google Scholar] [CrossRef]
- Pfiffner, L.; Cahenzli, F.; Steinemann, B.; Jamar, L.; Bjørn, M.C.; Porcel, M.; Tasin, M.; Telfser, J.; Kelderer, M.; Lisek, J. Design, Implementation and Management of Perennial Flower Strips to Promote Functional Agrobiodiversity in Organic Apple Orchards: A Pan-European Study. Agric. Ecosyst. Environ. 2019, 278, 61–71. [Google Scholar] [CrossRef]
- Bakker, J.P.; Poschlod, P.; Strykstra, R.J.; Bekker, R.M.; Thompson, K. Seed Banks and Seed Dispersal: Important Topics in Restoration Ecology. Acta Bot. Neerl. 1996, 45, 461–490. [Google Scholar] [CrossRef]
- Symonides, E.; Silvertown, J.; Andreasen, V. Population Cycles Caused by Overcompensating Density-Dependence in an Annual Plant. Oecologia 1986, 71, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, A.; Klein, A.; Schumacher, J.; Weisser, W.W.; Tscharntke, T. How Does Plant Richness Affect Pollinator Richness and Temporal Stability of Flower Visits? Oikos 2008, 117, 1808–1815. [Google Scholar] [CrossRef]
- Földesi, R.; Kovács-Hostyánszki, A.; Kőrösi, Á.; Somay, L.; Elek, Z.; Markó, V.; Sárospataki, M.; Bakos, R.; Varga, Á.; Nyisztor, K.; et al. Relationships between Wild Bees, Hoverflies and Pollination Success in Apple Orchards with Different Landscape Contexts. Agric. For. Entomol. 2016, 18, 68–75. [Google Scholar] [CrossRef]
- Miglécz, T.; Valkó, O.; Török, P.; Deák, B.; Kelemen, A.; Donkó, Á.; Drexler, D.; Tóthmérész, B. Establishment of Three Cover Crop Mixtures in Vineyards. Sci. Hortic. 2015, 197, 117–123. [Google Scholar] [CrossRef]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of Agricultural Productivity Loss Due to Soil Erosion in the European Union: From Direct Cost Evaluation Approaches to the Use of Macroeconomic Models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef]
- Madarász, B.; Jakab, G.; Szalai, Z.; Juhos, K.; Kotroczó, Z.; Tóth, A.; Ladányi, M. Long-Term Effects of Conservation Tillage on Soil Erosion in Central Europe: A Random Forest-Based Approach. Soil Tillage Res. 2021, 209, 104959. [Google Scholar] [CrossRef]
- Merwin, I.A.; Ray, J.A.; Curtis, P.D. Orchard Groundcover Management Systems Affect Meadow Vole Populations and Damage to Apple Trees. HortScience 1999, 34, 271–274. [Google Scholar] [CrossRef]
- Thompson, K.; Bakker, J.P.; Bekker, R.M. The Soil Seed Banks of North West Europe: Methodology, Density and Longevity; Cambridge University Press: Cambridge, UK, 1997; ISBN 978-0-521-49519-6. [Google Scholar]
- Manchester, S.J.; McNally, S.; Treweek, J.R.; Sparks, T.H.; Mountford, J.O. The Cost and Practicality of Techniques for the Reversion of Arable Land to Lowland Wet Grassland—An Experimental Study and Review. J. Environ. Manag. 1999, 55, 91–109. [Google Scholar] [CrossRef]
- Nugroho, P.A.; Prettl, N.; Madarász, B.; Kotroczó, Z.; Juhos, K. Soil Chemical Properties under 16 Years Conservation Tillage Practise in Hungary. In Proceedings of the 17th Carpathian Basin Conference for Environmental Sciences, Cluj Napoca, Romania, 6–9 April 2022; pp. 272–278. [Google Scholar]
- Kariminejad, N.; Biglarfadafan, M.; Kumar, V.; Jamir, I.; Shafaie, V.; Pourghasemi, H.R. Review of Multihazards Research with the Basis of Soil Erosion. In Advanced Tools for Studying Soil Erosion Processes; Elsevier: Amsterdam, The Netherlands, 2024; pp. 295–306. [Google Scholar]
- Toy, T.J.; Foster, G.R.; Renard, K.G. Soil Erosion: Processes, Prediction, Measurement, and Control; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Zi, H.B.; Ade, L.J.; Liu, M.; Hu, L.; Chen, Y.; Yang, Y.F.; Wang, C.T. Difference of Community Characteristics and Niche of Dominant Species in Different Grassland Types of Alpine Meadow. Chin. J. Appl. Environ. Biol. 2016, 22, 546–554. [Google Scholar]
- Hábenczyus, A.A.; Weiterová, I.; Foremnik, K.; Jakob, A.; Khopkar, S.; Kumar, A.; Lazăr, A.; Paganeli, B.; Samraoui, K.R.; Sidwell, J.; et al. Long-term Effects of Meadow Management on Seed Bank Diversity and Composition. J. Veg. Sci. 2024, 35, e13282. [Google Scholar] [CrossRef]
- Furquim, F.F.; Scasta, J.D.; Overbeck, G.E. Interactive Effects of Fire and Grazing on Vegetation Structure and Plant Species Composition in Subtropical Grasslands. Appl. Veg. Sci. 2024, 27, e12800. [Google Scholar] [CrossRef]
- Török, P.; Lindborg, R.; Eldridge, D.; Pakeman, R. Grazing Effects on Vegetation: Biodiversity, Management, and Restoration. Appl. Veg. Sci. 2024, 27, e12794. [Google Scholar] [CrossRef]
- Török, P.; Matus, G.; Papp, M.; Tothmeresz, B. Secondary Succession of Overgrazed Pannonian Sandy Grasslands. Preslia 2008, 80, 73–85. [Google Scholar]
- Janečková, P.; Tichý, L.; Walker, L.R.; Prach, K. Global Drivers Influencing Vegetation during Succession: Factors and Implications. J. Veg. Sci. 2024, 35, e13297. [Google Scholar] [CrossRef]
- Zeiter, M.; Stampfli, A.; Newbery, D.M. RECRUITMENT LIMITATION CONSTRAINS LOCAL SPECIES RICHNESS AND PRODUCTIVITY IN DRY GRASSLAND. Ecology 2006, 87, 942–951. [Google Scholar] [CrossRef]
- Pereira, S.M.; Hoffman, M.R.; Salemi, L.F. Soil Physical Properties in an Oxisol under a Syntropic Agroforestry System: Row versus Inter-Row. Rev. Bras. De Geogr. Física 2024, 17, 838–844. [Google Scholar] [CrossRef]
- Deák, B.; Valkó, O.; Kelemen, A.; Török, P.; Miglécz, T.; Ölvedi, T.; Lengyel, S.; Tóthmérész, B. Litter and Graminoid Biomass Accumulation Suppresses Weedy Forbs in Grassland Restoration. Plant Biosyst.—Int. J. Deal. All Asp. Plant Biol. 2011, 145, 730–737. [Google Scholar] [CrossRef]
- Donkó, Á.; Miglécz, T.; Tótmérész, B.; Valkó, O.; Deák, B.; Kelemen, A.; Török, P.; Zanathy, G.; Zsigrai, G.; Drexler, D. Intercropping Experiments in Hungarian Vineyards. Acta Fytotech. et Zootech. 2016, 18, 128–130. [Google Scholar] [CrossRef]
- Király, G.; Virók, V.; Szmorad, F.; Molnár, V.A. Új Magyar Füvészkönyv: Magyarország Hajtásos Növényei: Határozókulcsok; Aggteleki Nemzeti Park Igazgatóság: Jósvafő, Hungary, 2009. [Google Scholar]
- Simon, T. A Magyarországi Edényes Flóra Határozója: Harasztok-Virágos Növények; Nemzeti Tankönyvkiadó: Budapest, Hungary, 2000. [Google Scholar]
- Török, P.; Lukács, B.; Tóthmérész, B. Terepi Módszerek a Vegetáció Vizsgálatához; Debreceni Egyetemi Kiadó–Debrecen University Press: Debrecen, Hungary, 2010. [Google Scholar]
- Borhidi, A.; Fernandez, M.Z. The Genus Stenostomum CF Gaertn. (Rubiaceae) or the Reconsideration of the New World Antirhea Species. Acta Bot. Hung 1993, 94, 157–166. [Google Scholar]
- Andrade, B.O.; Menezes, L.d.S.; Boldrini, I.I.; Pillar, V.D.; Overbeck, G.E. Grassland Plant Community Composition and Dynamics: Disturbance as Determinants of Grassland Diversity. In South Brazilian Grasslands; Overbeck, G.E., Pillar, V.D.P., Müller, S.C., Bencke, G.A., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 177–204. ISBN 978-3-031-42579-0. [Google Scholar]
- Meier, T.; Hensen, I.; Kühn, I. Functional Approach to Xerothermic Grasslands in Central Germany: Trait Composition, Dominant Grasses and Soil Factors. Preslia 2024, 96, 183–208. [Google Scholar] [CrossRef]
- Thyll, S. Talajvédelem És Vízrendezés Dombvidéken; Mezőgazda Kiadó: Budapest, Hungary, 1992; Available online: https://library.hungaricana.hu/hu/view/VizugyiKonyvek_226/?pg=1&layout=s (accessed on 4 May 2024).
- Zhao, H.; Feng, S.; Li, W.; Gao, Y. Study on the Effect and Enhancement of Near-Natural Integrated Plant Positioning Configuration in the Hilly Gully Region, China. Forests 2024, 15, 841. [Google Scholar] [CrossRef]
- Bručienė, I.; Buragienė, S.; Šarauskis, E. Weeding Effectiveness and Changes in Soil Physical Properties Using Inter-Row Hoeing and a Robot. Agronomy 2022, 12, 1514. [Google Scholar] [CrossRef]
- Restuccia, A.; Scavo, A.; Lombardo, S.; Pandino, G.; Fontanazza, S.; Anastasi, U.; Abbate, C.; Mauromicale, G. Long-Term Effect of Cover Crops on Species Abundance and Diversity of Weed Flora. Plants 2020, 9, 1506. [Google Scholar] [CrossRef]
- Medrano Narvaez, E. Monitoreo de La Tasa de Deforestación y Su Impacto Sobre Las Poblaciones de Abejas Silvestres (Apidae: Meliponini) En La Ecoregión Del Chaco Serrano Comunidad Itapochi Del Parque Nacional y Área Natural de Manejo Integrado Serranía Del Iñao. Master’s Thesis, Universidad Andina Simón Bolívar, Sucre, BO, Bolivia, 2020. [Google Scholar]
- Peltzer, S.C.; Hashem, A.; Osten, V.A.; Gupta, M.L.; Diggle, A.J.; Riethmuller, G.P.; Douglas, A.; Moore, J.M.; Koetz, E.A. Weed Management in Wide-Row Cropping Systems: A Review of Current Practices and Risks for Australian Farming Systems. Crop Pasture Sci. 2009, 60, 395–406. [Google Scholar] [CrossRef]
- Kalamees, R.; Zobel, M. Soil Seed Bank Composition in Different Successional Stages of a Species Rich Wooded Meadow in Laelatu, Western Estonia. Acta Oecol. 1998, 19, 175–180. [Google Scholar] [CrossRef]
- Valkó, O.; Török, P.; Tóthmérész, B.; Matus, G. Restoration Potential in Seed Banks of Acidic Fen and Dry-Mesophilous Meadows: Can Restoration Be Based on Local Seed Banks? Restor. Ecol. 2011, 19, 9–15. [Google Scholar] [CrossRef]
Soil Parameters | Measured Values |
---|---|
pHH2O | 7.72 |
C:N (A horizon) | 9.92 |
NO2 + NO3 − N | 8.5 mg kg−1 soil |
P (CAL) | 43 mg (100 g−1 soil) |
K (CAL) | 17 (100 g−1 soil) |
Soil Organic Matter | 1.9% |
Soil type | Arenosol |
Mean annual temperature | 11 °C |
Mean annual precipitation | 500 mm |
Year | Annual Mean Temperature (°C) | Annual Average Minimum Temperature (°C) | Annual Average Maximum Temperature (°C) | Annual Absolute Minimum Temperature (°C) | Annual Absolute Maximum Temperature (°C) | Precipitation (mm) |
---|---|---|---|---|---|---|
2016 | 12.2 | 7.2 | 17.2 | −11 | 35.3 | 741.4 |
2017 | 12.3 | 7.3 | 17.4 | −15.6 | 39.1 | 713.9 |
2018 | 13.2 | 8.4 | 18.1 | −12.5 | 34.5 | 694.5 |
2019 | 13.4 | 9.1 | 17.7 | −8.8 | 34.2 | 658.9 |
2020 | 12.9 | 9.1 | 13.8 | −4.7 | 32.7 | 505.7 |
2021 | 12.3 | 8.3 | 16.3 | −9 | 35.9 | 449.3 |
Notation | Name | Treatment | Sowing Year |
---|---|---|---|
Control | Native weed flora | the inter-row vegetation was created by mowing the local weed flora | - |
W1 | Wildflower mix 1 | predominantly perennial species—with a 30:50% Legumes: Grass ratio, with additional species. Germ count 5000 seeds/m2 | 2015 |
W2 | Wildflower mix 1 | predominantly perennial species—with a 30:50% Legumes: Grass ratio, with additional species. Germ count 10,000 seeds/m2 | 2015 |
W3 | Wildflower mix 2 | predominantly perennial species—with a 50:30% Legumes: Grass ratio, with additional species. Germ count 5000 seeds/m2 | 2016 |
W4 | Wildflower mix 2 | predominantly perennial species—with a 50:30% Legumes: Grass ratio, with additional species. Germ count 10,000 seeds/m2 | 2016 |
E1/E3 | Ecovin 2.0 | commercial mixture developed for covering vineyard rows. Seed norm: 4 g/m2 | 2016 |
E2/E4 | Ecovin 2.0 | commercial mixture developed for covering vineyard rows. Seed norm: 4 g/m2 | 2016 |
G1/G3 | Grass–clover mix | Germ count: 5000 seeds/m2 | 2016 |
G2/G4 | Grass–clover mix | Germ count: 10,000 seeds/m2 | 2016 |
(a) | ||
Wildflower Mix 1. (2015) | ||
Species | Germ % | Family |
Festuca rubra | 30 | Poaceae |
Agropyron intermedium | 15 | Poaceae |
Medicago lupulina | 13 | Fabaceae |
Lotus corniculatus | 10 | Fabaceae |
Achillea millefolium | 5 | Asteraceae |
Anethum graveolens | 5 | Apiaceae |
Bromus inermis | 5 | Poaceae |
Trifolium repens | 5 | Fabaceae |
Agrimonia eupatoria | 3 | Rosaceae |
Anthyllis vulneraria | 2 | Fabaceae |
Fagopyrum sagittatum | 2 | Polygonaceae |
Sinapis alba | 2 | Brassicaceae |
Ajuga genevensis | 1 | Lamiaceae |
Anthemis tinctoria | 1 | Asteraceae |
Knautia arvensis | 1 | Dipsacaceae |
(b) | ||
Wildflower Mix 2. (2016) | ||
Species | Germ % | Family |
Festuca rubra | 20 | Poaceae |
Anthyllis vulneraria | 15 | Fabaceae |
Lotus corniculatus | 15 | Fabaceae |
Medicago lupulina | 15 | Fabaceae |
Fagopyrum sagittatum | 10 | Polygonaceae |
Agropyron intermedium | 5 | Poaceae |
Bromus inermis | 5 | Poaceae |
Trifolium repens | 5 | Fabaceae |
Achillea millefolium | 1 | Asteraceae |
Agrimonia eupatoria | 1 | Rosaceae |
Ajuga genevensis | 1 | Lamiaceae |
Anethum graveolens | 1 | Apiaceae |
Anthemis tinctoria | 1 | Asteraceae |
Centaurea cyanus wild | 1 | Asteraceae |
Linum perenne | 1 | Linaceae |
Salvia nemorosa | 1 | Lamiaceae |
Silene vulgaris | 1 | Caryophyllaceae |
Sinapis alba | 1 | Brassicaceae |
(c) | ||
Ecovin Mix (2015–2016) | ||
Species | Weight % | Family |
Trifolium repens | 38 | Fabaceae |
Camelina sativa | 13 | Brassicaceae |
Trifolium incarnatum | 8 | Fabaceae |
Medicago lupulina | 8 | Fabaceae |
Lotus corniculatus | 6 | Fabaceae |
Onobrychis viciaefolia | 6 | Fabaceae |
Coronilla varia | 5 | Fabaceae |
Phacelia tanacetifolia | 5 | Boraginaceae |
Daucus carota | 3 | Apiaceae |
Anthyllis vulneraria | 3 | Fabaceae |
Plantago lanceolata | 2 | Plantaginaceae |
Vicia sativa | 1 | Fabaceae |
Fagopyrum sagittatum | 1 | Polygonaceae |
(d) | ||
Grass–Clover Mix (2015–2016) | ||
Species | Germ % | |
Festuca rubra | 40 | |
Lolium perenne | 40 | |
Trifolium repens | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferschl, B.; Szalai, M.Z.; Gere, A.; Kocsis, T.; Kotroczó, Z. Effects of Species-Rich Perennial Inter-Row Cover on Weed Flora and Soil Coverage in an Apple Orchard: A Case Study of Opportunities and Limitations in a Dry Continental Climate. Agronomy 2024, 14, 2716. https://doi.org/10.3390/agronomy14112716
Ferschl B, Szalai MZ, Gere A, Kocsis T, Kotroczó Z. Effects of Species-Rich Perennial Inter-Row Cover on Weed Flora and Soil Coverage in an Apple Orchard: A Case Study of Opportunities and Limitations in a Dry Continental Climate. Agronomy. 2024; 14(11):2716. https://doi.org/10.3390/agronomy14112716
Chicago/Turabian StyleFerschl, Barbara, Magdolna Zita Szalai, Attila Gere, Tamás Kocsis, and Zsolt Kotroczó. 2024. "Effects of Species-Rich Perennial Inter-Row Cover on Weed Flora and Soil Coverage in an Apple Orchard: A Case Study of Opportunities and Limitations in a Dry Continental Climate" Agronomy 14, no. 11: 2716. https://doi.org/10.3390/agronomy14112716
APA StyleFerschl, B., Szalai, M. Z., Gere, A., Kocsis, T., & Kotroczó, Z. (2024). Effects of Species-Rich Perennial Inter-Row Cover on Weed Flora and Soil Coverage in an Apple Orchard: A Case Study of Opportunities and Limitations in a Dry Continental Climate. Agronomy, 14(11), 2716. https://doi.org/10.3390/agronomy14112716