Grafting and Soil with Drought Stress Can Increase the Antioxidant Status in Cucumber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Plant Material for Graft and Rootstock
2.3. Making of the Graft
2.4. Healing Chamber and Acclimatization
2.5. Experimental Design
2.6. Average Weight of Cucumber Fruits
2.7. Fruits Firmness
2.8. Total Soluble Solids
2.9. Minerals
2.10. Extraction of Biomolecules for Enzymatic Activity
2.11. Total Proteins
2.12. Catalase EC 1.11.1.6
2.13. Ascorbate Peroxidase EC 1.11.1.11
2.14. Glutathione Peroxidase EC 1.11.1.9
2.15. Superoxide Dismutase EC 1.15.1.1
2.16. Statistical Analysis
3. Results
3.1. Variables of Commercial Quality of Cucumber Fruit
3.2. Minerals
3.3. Enzymatic Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luan, Q.; Chen, C.; Liu, M.; Li, Q.; Wang, L.; Ren, Z. CsWRKY50 mediates defense responses to Pseudoperonospora cubensis infection in Cucumis sativus. Plant Sci. 2019, 279, 59–69. [Google Scholar] [CrossRef]
- Wang, Y.; Bo, K.; Gu, X.; Pan, J.; Li, Y.; Chen, J.; Wen, C.; Ren, Z.; Ren, H.; Chen, X.; et al. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Hortic. Res. 2020, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Chen, B.; Qiao, L.; Chen, F.; Zhao, J.; Cheng, Z.; Weng, Y. Phenotypic characterization and fine mapping of a major-effect fruit shape QTL FS5.2 in cucumber, Cucumis sativus L., with Near-Isogenic Line-Derived Segregating Populations. Int. J. Mol. Sci. 2022, 23, 13384. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Zhao, P.; Chen, H.; Wang, L.; Huang, G.; Cao, L.; Huang, Q. Natural green-peel orange essential oil enhanced the deposition, absorption and permeation of prochloraz in cucumber. RSC Adv. 2019, 9, 20395–20401. [Google Scholar] [CrossRef] [Green Version]
- Alsaeedi, A.; El-Ramady, H.; Alshaal, T.; El-Garawany, M.; Elhawat, N.; Al-Otaibi, A. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol. Biochem. 2019, 139, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Simbeye, D.S.; Mkiramweni, M.E.; Karaman, B.; Taskin, S. Plant water stress monitoring and control system. Smart Agric. Technol. 2023, 3, 100066. [Google Scholar] [CrossRef]
- Vélez-Sánchez, J.E.; Balaguera-López, H.E.; Rodríguez Hernández, P. The water status of pear (Pyrus communis L.) under application of regulated deficit irrigation in high tropical latitudinal conditions. J. Saudi Soc. Agric. Sci. 2022, 21, 460–468. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. 2017, 8, 1130. [Google Scholar] [CrossRef] [Green Version]
- Aslam, W.; Noor, R.S.; Hussain, F.; Ameen, M.; Ullah, S.; Chen, H. Evaluating Morphological growth, yield, and postharvest fruit quality of cucumber (Cucumis sativus L.) grafted on cucurbitaceous rootstocks. Agriculture 2020, 10, 101. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, J.; Tian, L.; Shen, Z.; Amby, D.B.; Liu, F.; Gao, Q.; Wang, Y. Seedling-Stage Deficit irrigation with nitrogen application in tree-year field study provides guidance for improving maize yield, water and nitrogen use efficiencies. Plants 2022, 11, 3007. [Google Scholar] [CrossRef]
- López-Serrano, L.; Calatayud, Á.; Cardarelli, M.; Colla, G.; Rouphael, Y. Improving bell pepper crop performance and fruit quality under suboptimal calcium conditions by grafting onto tolerant rootstocks. Agronomy 2022, 12, 1644. [Google Scholar] [CrossRef]
- Cruz, F.G. Injerto en cuña. Un nuevo método de injerto para cucurbitaáceas. In Horticultura: Revista de Industria, Distribución y Socioeconomίa Hortίcola: Frutas, Hortalizas, Flores, Plantas, Árboles Ornamentales y Viveros; University of La Rioja: Logroño, Spain, 1990; Volume 56, pp. 81–90. [Google Scholar]
- Jang, Y.; Goto, E.; Ishigami, Y.; Mun, B.; Chun, C. Effects of light intensity and relative humidity on photosynthesis, growth and graft-take of grafted cucumber seedlings during healing and acclimatization. Hortic. Environ. Biotechnol. 2011, 52, 331–338. [Google Scholar] [CrossRef]
- Peralta-Manjarrez, R.M.; la Fuente, M.C.-D.; Morelos-Moreno, A.; Mendoza, A.B.; Ramírez-Godina, F.; Fuentes, J.A.G. Micromorfología del pepino obtenido mediante injerto y desarrollado en dos sistemas de fertilización. Rev. Mex. Cienc. Agrícolas 2016, 17, 3453–3463. [Google Scholar]
- Juárez, O.G.; Hernández, Á.M.S.; Vargas-Hernández, E.A.; Peña, L.D.C.; Zamorano, L.A.M. Concentración de nutrientes en hoja y calidad de pepino en plantas injertadas bajo condiciones salinas. Idesia 2020, 38, 41–48. [Google Scholar] [CrossRef]
- Steiner, A.A. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 1961, 15, 134–154. [Google Scholar] [CrossRef] [Green Version]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Fresenius’ Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Murphy, J.; Riley, J. Determrnation single solution method for the in natural. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Plumb-Dhindsa, P.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 1987, 28, 131–140. [Google Scholar] [CrossRef]
- Xue, T.; Hartikainen, H.; Piironen, V. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 2001, 237, 55–61. [Google Scholar] [CrossRef]
- Lu, D.; Wang, W.; Bao, E.; Wang, S.; Wu, X.; Bai, Z.; Tang, Y. Cutting mechanical properties of pumpkin grafted seedling investigated by finite element simulation and experiment. Agriculture 2022, 12, 1354. [Google Scholar] [CrossRef]
- Devi, P.; Lukas, S.; Miles, C. Advances in watermelon grafting to increase efficiency and automation. Horticulturae 2020, 6, 88. [Google Scholar] [CrossRef]
- Shivran, M.; Sharma, N.; Dubey, A.K.; Singh, S.K.; Sharma, N. Scion-rootstock relationship: Molecular mechanism and quality fruit production. Agriculture 2022, 12, 2036. [Google Scholar] [CrossRef]
- Davoudi, M.; Chen, J.; Lou, Q. Genome-wide identification and expression analysis of heat shock protein 70 (HSP70) gene family in pumpkin (Cucurbita moschata) rootstock under drought stress suggested the potential role of these chaperones in stress tolerance. Int. J. Mol. Sci. 2022, 23, 1918. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, Y.; Yang, X.; Deng, X.; Dang, J.; Wang, Z.; Yusop, M.R.; Abdullah, S. Characteristics of interspecific hybridization and inbred progeny of pumpkin (Cucurbita moschata Duch.) and winter squash (Cucurbita maxima Duch.). Horticulturae 2022, 8, 596. [Google Scholar] [CrossRef]
- Mauro, R.P.; Stazi, S.R.; Distefano, M.; Giuffrida, F.; Marabottini, R.; Sabatino, L.; Allevato, E.; Cannata, C.; Basile, F.; Leonardi, C. Yield and compositional profile of eggplant fruits as affected by phosphorus supply, genotype and grafting. Horticulturae 2022, 8, 304. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Z.; Xie, B.; Liang, X.; Huang, X. A study of shoot growth, leaf photosynthesis, and nutrients in ‘Lingfengjing’ litchi grafted onto seedlings of different cultivars. Horticulturae 2022, 8, 282. [Google Scholar] [CrossRef]
- De Antunes, L.F.S.; de Vaz, A.F.S.; Martelleto, L.A.P.; de Leal, M.A.A.; dos Alves, R.S.; dos Ferreira, T.S.; Rumjanek, N.G.; Correia, M.E.F.; Rosa, R.C.C.; Guerra, J.G.M. Sustainable organic substrate production using millicompost in combination with different plant residues for the cultivation of Passiflora edulis seedlings. Environ. Technol. Innov. 2022, 28, 102612. [Google Scholar] [CrossRef]
- De Sousa Antunes, L.F.; De Sousa Vaz, A.F.; da Silva, M.S.R.d.A.; Fernandes Correia, M.E.; Ferreira Cruvinel, F.; Peres Martelleto, L.A. Millicompost: Sustainable substrate for the production of dragon fruit seedlings (Selenicereus undatus). Clean. Eng. Technol. 2021, 4, 100107. [Google Scholar] [CrossRef]
- Yuan, H.; Tai, P.; Gustave, W.; Xue, F.; Sun, L. Grafting as a mitigation strategy to reduce root-to-shoot cadmium translocation in plants of Solanaceae family. J. Clean. Prod. 2021, 319, 128708. [Google Scholar] [CrossRef]
- Xu, A.; Cheng, F.; Zhou, S.; Hu, H.; Bie, Z. Chilling-induced H2O2 signaling activates the antioxidant enzymes in alleviating the photooxidative damage caused by loss of function of 2-Cys peroxiredoxin in watermelon. Plant Stress 2022, 6, 100108. [Google Scholar] [CrossRef]
- Singh, S. Salicylic acid elicitation improves antioxidant activity of spinach leaves by increasing phenolic content and enzyme levels. Food Chem. Adv. 2023, 2, 100156. [Google Scholar] [CrossRef]
- Salim, B.B.M.; Abou El-Yazied, A.; Salama, Y.A.M.; Raza, A.; Osman, H.S. Impact of silicon foliar application in enhancing antioxidants, growth, flowering and yield of squash plants under deficit irrigation condition. Ann. Agric. Sci. 2021, 66, 176–183. [Google Scholar] [CrossRef]
- Elsheery, N.I.; Helaly, M.N.; Omar, S.A.; John, S.V.S.; Zabochnicka-Swiątek, M.; Kalaji, H.M.; Rastogi, A. Physiological and molecular mechanisms of salinity tolerance in grafted cucumber. S. Afr. J. Bot. 2020, 130, 90–102. [Google Scholar] [CrossRef]
Treatments | Specification |
---|---|
1 | Without Graft–Soil irrigation 100% |
2 | Without Graft–Soil irrigation 75% |
3 | Without Graft–Substrate irrigation 100% |
4 | Without Graft–Substrate irrigation 75% |
5 | Graft–Soil irrigation 100% |
6 | Graft–Soil irrigation 75% |
7 | Graft–Substrate irrigation 100% |
8 | Graft–Substrate irrigation 75% |
Treatments | Average Fruits Weight (g) | Firmness (kg cm−1) | Total Soluble Solids (°Brix) |
---|---|---|---|
Without Graft-So-100% | 466.57 cd | 6.37 a | 5.00 a |
Without Graft-So-75% | 403.79 d | 5.53 a | 5.33 a |
Without Graft-Sub-100% | 715.86 ab | 6.83 a | 4.67 a |
Without Graft-Sub-75% | 544.07 cd | 5.10 a | 5.17 a |
Graft-Soil-100% | 578.21 bc | 6.93 a | 4.67 a |
Graft-Soil-75% | 499.93 cd | 6.33 a | 4.50 a |
Graft-Sub-100% | 795.50 a | 5.80 a | 4.00 a |
Graft-Sub-75% | 715.36 ab | 6.33 a | 4.50 a |
CV | 23.88 | 23.27 | 17.67 |
Treatment | Nitrogen % | Phosphorous % | Potassium % | Calcium % |
---|---|---|---|---|
Without Graft-So-100% | 1.30 c | 0.43 c | 3.98 ab | 2.42 a |
Without Graft-So-75% | 1.24 d | 0.37 de | 3.18 c | 2.09 a |
Without Graft-Sub-100% | 1.43 a | 0.55 b | 3.75 abc | 2.74 a |
Without Graft-Sub-75% | 1.36 b | 0.54 b | 3.93 ab | 1.85 a |
Graft-Soil-100% | 1.17 e | 0.35 e | 3.60 bc | 2.59 a |
Graft-Soil-75% | 1.19 e | 0.39 d | 3.90 ab | 2.68 a |
Graft-Sub-100% | 1.24 d | 0.52 b | 4.05 ab | 1.73 a |
Graft-Sub-75% | 1.36 b | 0.60 a | 4.30 a | 2.22 a |
CV | 1.62 | 3.29 | 6.70 | 23.09 |
Treatment | Catalase (U g−1 PT) | Ascorbate Peroxidase (U g−1 PT) | Glutathione Peroxidase (U g−1 PT) | Superoxide Dismutase (U g−1 PT) |
---|---|---|---|---|
Without Graft-So-100% | 1.94 bc | 1.06 a | 4.28 b | 1.19 b |
Without Graft-So-75% | 3.69 a | 0.56 b | 6.01 a | 2.18 a |
Without Graft-Sub-100% | 1.29 cd | 0.30 b | 2.93 c | 1.00 bc |
Without Graft-Sub-75% | 0.80 cd | 0.39 b | 1.79 d | 0.71 bc |
Graft-Soil-100% | 1.11 cd | 0.28 b | 1.44 d | 0.33 c |
Graft-Soil-75% | 2.57 ab | 0.30 b | 1.55 d | 0.46 c |
Graft-Sub-100% | 0.35 d | 0.32 b | 1.29 d | 0.33 c |
Graft-Sub-75% | 0.65 d | 1.26 a | 1.22 d | 0.35 c |
CV | 33.41 | 24.04 | 15.69 | 36.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera De la Fuente, M.; Felix Leyva, J.T.; Delgado Martinez, R.; Macías, J.M.; Peralta Manjarrez, R.M. Grafting and Soil with Drought Stress Can Increase the Antioxidant Status in Cucumber. Agronomy 2023, 13, 994. https://doi.org/10.3390/agronomy13040994
Cabrera De la Fuente M, Felix Leyva JT, Delgado Martinez R, Macías JM, Peralta Manjarrez RM. Grafting and Soil with Drought Stress Can Increase the Antioxidant Status in Cucumber. Agronomy. 2023; 13(4):994. https://doi.org/10.3390/agronomy13040994
Chicago/Turabian StyleCabrera De la Fuente, Marcelino, Jesus Tomas Felix Leyva, Rafael Delgado Martinez, Julia Medrano Macías, and Rocio Maricela Peralta Manjarrez. 2023. "Grafting and Soil with Drought Stress Can Increase the Antioxidant Status in Cucumber" Agronomy 13, no. 4: 994. https://doi.org/10.3390/agronomy13040994