Regulated Deficit Irrigation during Vegetative Growth Enhances Crop Water Productivity in Chickpea (Cicer arietinum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Condition
2.2. Experimental Plot Establishment
2.3. Treatments Description and Experimental Design
2.4. Irrigation Scheduling and System
2.5. Response Variables
2.6. Data Analysis
3. Results
3.1. Inter-Year Variability and Treatment Effect on Our Experimental Data
3.2. Grain Yield and Quality
3.3. Plant Growth
3.4. Crop Productivity
3.5. Multivariate Classification and Description for Irrigation Treatments
4. Discussion
4.1. Across-Year Differences in Productivity, Growth and Grain Yield, and Quality
4.2. Effects of RDI and SDI Treatments on Chickpea Grain Yield and Quality, Plant Growth, and Productivity
4.3. Synthetic Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, R.K.P., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; pp. 8–16. [Google Scholar]
- Ault, T.R.; Makin, J.S.; Cook, B.I.; Smerdon, J.E. Relative impact of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest. Sci. Adv. 2016, 2, e1600873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, S.; Coats, S.; Touma, D.; Cole, J.; Lehner, F.; Fasullo, J.; Otto-Bliesner, B. Twenty-first century hydroclimate: A continually changing baseline, with more frequent extremes. Proc. Natl. Acad. Sci. USA 2022, 119, e2108124119. [Google Scholar] [CrossRef]
- Woodhouse, C.A.; Meki, D.M.; MacDonald, G.M.; Stahle, D.W.; Cook, E.R. A 1,200-year perspective of 21st-century drought in southwestern North America. Proc. Natl. Acad. Sci. USA 2010, 107, 21283–21288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Water in Agriculture, The World Bank. Available online: http://www.worldbank.org/topic/water-in-agriculture (accessed on 7 March 2023).
- Heyari, N. Water productivity in agriculture: Challenges in concepts, terms, and values. Irrig. Drain. 2013, 63, 22–28. [Google Scholar] [CrossRef]
- Kilemo, D.B. The review of water use efficiency and water productivity metrics and their role in sustainable water resources management. Open Access Libr. J. 2022, 9, 1–21. [Google Scholar] [CrossRef]
- Ferere, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 98, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Abdelkhalik, A.; Pascual, B.; Nájera, I.; Baixauli, C.; Pascual-Seva, N. Deficit irrigation as a sustainable practice in improving irrigation water use efficiency in cauliflower under Mediterranean conditions. Agronomy 2019, 9, 732. [Google Scholar] [CrossRef] [Green Version]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.; Waskon, R.; Niu, Y.; Siddique, K.H.M. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. 2016, 36, 3. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Singh, P.; Sukhbir, S.; Saini, R.K.; Angadi, S.V. A global meta-analysis of yield and water productivity responses of vegetables to deficit irrigation. Nat. Sci. Rep. 2021, 11, 22095. [Google Scholar] [CrossRef]
- Yang, B.; Fu, P.; Lu, J.; Ma, F.; Sun, X.; Fang, Y. Regulated deficit irrigation: An effective way to solve the shortage of agriculture for horticulture. Stress Biol. 2022, 2, 28. [Google Scholar] [CrossRef]
- Endalu, L.; Temesgen, T. Systematic review: Effects of irrigation water quality and deficit irrigation on crop yield and water use efficiency. Turk. J. Agric. 2020, 8, 1201–1220. [Google Scholar] [CrossRef]
- Chalmers, Y.M. Influence of Sustained Deficit Irrigation on Physiology and Phenolic Compounds in Winegrapes and Wine. Ph.D. Thesis, Discipline of Wine and Horticulture, The University of Adelaide, Adelaide, School of Agriculture, Food and Wine, Australia, Adelaide, Australia, 2007. Available online: https://digital.library.adelaide.edu.au/dspace/bitstream/2440/50101/9/01front.pdf (accessed on 6 October 2022).
- Hassan, I.F.; Gaballah, M.S.; El-Hoseiny, H.M.; El-Sharnouby, M.E.; Alam-Eldein, S.M. Deficit Irrigation to Enhance Fruit Quality of the ‘African Rose’ Plum under the Egyptian Semi-Arid Conditions. Agronomy 2021, 11, 1405. [Google Scholar] [CrossRef]
- Parra, R.A.; Ortiz Franco, P.; Amado Álvarez, J.P.; Chávez Sánchez, N. Productividad y crecimiento de manzano bajo déficit de riego controlado. Terra Latinoam. 2009, 27, 337–343. [Google Scholar]
- Simsek, M.; Comlekcioglu, N.; Oztuk, I. The effects of the regulated deficit irrigation on yield and some yield components of common bean (Phaseolus vulgaris L.) under semi-arid conditions. Afr. J. Biotechnol. 2011, 10, 4057–4064. [Google Scholar]
- Hirick, A.; Choukr-Allah, R.; Jacobsen, S.E. Deficit irrigation and organic compost improve growth and yield of quinoa and pea. J. Agron. Crop Sci. 2014, 200, 390–398. [Google Scholar] [CrossRef]
- Hirich, A.; Choukr-Allah, R.; Fahmi, H.; Rami, A.; Laajaj, K.; Jacobsen, S.; El Omari, H. Using deficit irrigation to improve crop water productivity of sweet corn, chickpea, faba bean, and quinoa: A synthesis of several field trials. Rev. Mar. Sci. Agron. Vét. 2014, 2, 15–22. [Google Scholar]
- Hirich, A.; Choukr-allah, R.; Jacobsen, S.E.; Hamdy, A.; El Youssfi, L.; El Omari, H. Improving water productivity of chickpeas by the use of deficit irrigation with treated domestic wastewater. World Acad. Sci. Eng. Technol. 2011, 59, 1352–1357. Available online: https://www.researchgate.net/publication/282006481_Improving_water_productivity_of_chickpea_Cicer_arietinum_by_the_use_of_deficit_irrigation_with_treated_domestic_wastewater (accessed on 28 December 2022).
- Douh, B.; Mguidich, A.; Jar Allah Al-Marri, M.; Moussa, M.; Rjeb, H. Assessment of deficit irrigation impact on agronomic parameters and water use efficiency of six chickpeas (Cicer arietinum L.) cultivars under Mediterranean semi-arid climate. Ital. J. Agrometeorol. 2021, 2, 29–42. [Google Scholar] [CrossRef]
- Mekonnen, L. Effects of water stress applied at different phenological phases of chickpea (Cicer arietinum L.). Int. J. Agric. Res. Innov. Technol. 2020, 10, 13–21. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Noriega, C.A.; Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Álvarez-Bejar, A. The use of water in agriculture in Mexico and its sustainable management: A bibliometric review. Agronomy 2020, 10, 1957. [Google Scholar] [CrossRef]
- SEMARNAT (Secretaria de Medio Ambientes y Recursos Naturales). Acuerdo por el Que se Actualiza la Disponibilidad Media Anual de Agua Subterránea de os 653 Acuíferos de los Estados Unidos Mexicanos. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5600593&fecha=17/09/2020. (accessed on 24 October 2021).
- SMN (Servicio Meteorológico Nacional). Resúmenes Mensuales de Temperaturas y Lluvias. Available online: https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias (accessed on 24 October 2021).
- Murray-Tartarolo, G.N. Seven decades of climate change across México. Atmósfera 2021, 34, 217–226. [Google Scholar] [CrossRef]
- Ruíz Corral, J.A.; Medina García, G.; Meza Sánchez, R.; Díaz Padilla, G.; Serrano Altamirano, V. Estadísticas Climatológicas Básicas del Estado de Baja California Sur (Periodo 1961–2003), 1st ed.; Centro de Investigación Regional del Noroeste del INIFAP: Ciudad Obregón, México, 2006; pp. 220–221. [Google Scholar]
- INEGI. Anuario Estadístico y Geográfico de Baja California Sur. Available online: https://www.inegi.org.mx/contenido/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/anuarios_2017/702825094881.pdf (accessed on 18 September 2021).
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). Agenda Técnica Agrícola de Baja California Sur, 1st ed.; INIFAP: Ciudad de México, México, 2017; pp. 40–44. [Google Scholar]
- Kumar, M.S.; Luther, M.M.; Rao, C.P.; Rao, K.L.N.; Prasad, P.R. Growing Degree Days and Heat Use Efficiency Influenced by dates of Sowing and Irrigation Levels on Rainfed Chickpea. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3996–4002. [Google Scholar] [CrossRef]
- Raes, D. The ETo Calculator, Evapotranspiration from a Reference Surface, 1st ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; pp. 14–17. [Google Scholar]
- Meteoblue. Weather Close to You: Descargar Datos Históricos Todos Santos. 2022. Available online: https://www.meteoblue.com/es/tiempo/archive/export/todos-santos_m%c3%a9xico_3981432 (accessed on 22 October 2022).
- SAS (Statistical Analysis System). Procedure Guide, SAS Version 9.3; SAS Inc.: Cary, NC, USA, 2011; pp. 1–515. [Google Scholar]
- Devassirvatham, V.; Gaur, P.M.; Mallikarjuna, N.; Tokachichu, R.N.; Trethowan, R.M.; Tan, D.K.Y. Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct. Plant Biol. 2012, 39, 1009–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivakumar, M.V.K.; Singh, P. Response of chickpea cultivars to water stress in a semiarid environment. Exp. Agric. 2008, 23, 53–61. [Google Scholar] [CrossRef]
- Fierros, G.A.; Ortega, P.F.; Acosta, J.A.; Padilla, I.; Valenzuela, V.; Jiménez, Y.; López, J. Respuesta del rendimiento de genotipos de garbanzo blanco a sequía terminal. Rev. Mex. Cienc. Agrícolas 2017, 8, 1143–1154. [Google Scholar] [CrossRef] [Green Version]
- Singh, P. Influence of water–deficit on phenology, growth and dry-matter allocation in chickpea (Cicer arietinum L.). Field Crop Res. 1991, 28, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; McKenzie, B.A.; Hill, G.D. Effects of irrigation on growth and yield of Kabuli chickpea (Cicer arietinum L.) and narrow-leafed lupin (Lupinus angustifolious L.). Agron. N. Z. 2008, 38, 11–32. [Google Scholar]
- Sachdeva, S.; Bharadwaj, C.; Siddanagouda, B.; Pal, M.; Roorkiwai, M.; Varshney, R.K. Agronomic performance of chickpea affected by drought stress at different growth stages. Agronomy 2022, 12, 995. [Google Scholar] [CrossRef]
- Olson, M.E.; Soriano, D.; Rosell, J.A.; Andofillo, T.; Donaghue, M.J.; León-Gómez, C.; Dawson, T.; Martínez, J.J.C.; Castorena, M.; Echeverría, A. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl. Acad. Sci. USA 2018, 115, 7551–7556. [Google Scholar] [CrossRef] [Green Version]
- Ghassemi-Gplezani, K.; Ghaasemi, S.; Bandehhagh, A. Effects of water supply on field performance of chickpea (Cicer arietinum L.) cultivars. Int. J. Agron. Plant Prod. 2013, 4, 94–97. [Google Scholar]
- Dogan, E.; Kahraman, A.; Bucak, B. Varying irrigation rates effects on yield and yield components of chickpea. Irrig. Sci. 2013, 31, 903–909. [Google Scholar] [CrossRef]
Meteorological Parameter | Year 2020 | Year 2021 | ||||||
---|---|---|---|---|---|---|---|---|
January | February | March | April | January | February | March | April | |
Tmean * | 18.82 | 19.06 | 20.46 | 18.85 | 17.78 | 18.28 | 19.23 | 22.26 |
Tmax * | 27.81 | 27.57 | 29.49 | 28.08 | 27.50 | 27.83 | 29.43 | 32.34 |
Tmin * | 10.83 | 10.55 | 11.90 | 10.94 | 10.62 | 10.63 | 10.48 | 12.73 |
Wind speed † | 1.81 | 2.34 | 1.79 | 1.36 | 2.01 | 1.76 | 2.35 | 0.44 |
Rainfall events ‡ | 1.00 | 2.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
Rainfall magnitude § | 3.00 | 30.00 | 0.00 | 0.00 | 36.00 | 0.00 | 0.00 | 0.00 |
RHmean ~ | 62.00 | 64.30 | 61.52 | 67.99 | 59.10 | 61.51 | 51.89 | 48.32 |
RHmax ~ | 84.30 | 88.83 | 86.85 | 90.17 | 82.08 | 86.89 | 82.62 | 82.42 |
RHmin ~ | 37.84 | 39.77 | 36.77 | 40.40 | 33.82 | 34.99 | 24.27 | 20.00 |
Soil Property * | Irrigation Water Properties | ||
---|---|---|---|
Texture | Loamy sand | Salinity (dS m−1) | 1.07 |
Salinity (dS m−1) | 0.33 | pH | 7.62 |
pH | 8.08 | N-NO3 (mg kg−1) | 10.9 |
Field capacity (%) | 11.50 | K (mg kg−1) | 0.39 |
Wilting point (%) | 6.84 | Ca (mg kg−1) | 88.6 |
Bulk density (g cm−3) | 1.52 | Mg (mg kg−1) | 36.1 |
Organic matter (%) | 0.91 | Na (mg kg−1) | 78.2 |
Nitrogen NO3 (mg kg−1) | 11.70 | SAR | 1.92 |
Phosphorus-Bray (mg kg−1) | 47.60 | Classification of irrigation water | C2 S1 |
Potassium (mg kg−1) | 157.00 |
Treatments | Treatments Description | ||||
---|---|---|---|---|---|
G | VG | F | PF | S | |
FI | Irrigation for germination for all treatments | 100% ETc | 100% ETc | 100% ETc | No irrigation applied in all treatments |
VG50 | 50% ETc | 100% ETc | 100% ETc | ||
VG75 | 75% ETc | 100% ETc | 100% ETc | ||
F50 | 100% ETc | 50% ETc | 100% ETc | ||
F75 | 100% ETc | 75% ETc | 100% ETc | ||
PF50 | 100% ETc | 100% ETc | 50% ETc | ||
PF75 | 100% ETc | 100% ETc | 75% ETc | ||
SDI75 | 75% ETc | 75% ETc | 75% ETc | ||
Stage duration | 0–10 days 149 GDD | 10–33 days 149–506 GDD | 33–56 days 506–811GDD | 56–81 days 811–1189 GDD | 81–112 days 1189–1655 GDD |
Treatments | Treatment Irrigation Accumulated (m3 ha−1) by Growth Stage and Total | ||||||
---|---|---|---|---|---|---|---|
G | VG | F | PF | S | Total Irrigation Volume | % with Respect to FI | |
Year 2020 | |||||||
FI | 273.86 ‡ | 393.22 ‡ | 244.6 | 95.10 | 0.0 | 1006.78 | 100 |
VG50 | 273.86 | 346.61 | 244.6 | 95.10 | 0.0 | 960.17 | 95.3 |
VG75 | 273.86 | 369.91 | 244.6 | 95.10 | 0.0 | 983.41 | 97.6 |
F50 | 273.86 | 393.22 | 122.30 | 95.10 | 0.0 | 884.48 | 87.8 |
F75 | 273.86 | 393.22 | 183.45 | 95.10 | 0.0 | 945.63 | 93.9 |
PF50 | 273.86 | 393.22 | 244.60 | 47.55 | 0.0 | 959.23 | 95.2 |
PF75 | 273.86 | 393.22 | 244.60 | 71.32 | 0.0 | 983.00 | 97.6 |
SDI75 | 273.86 | 369.91 | 183.45 | 71.32 | 0.0 | 897.84 | 89.1 |
Year 2021 | |||||||
FI | 514.04 | 457.76 † | 353.31 | 172.43 | 0.0 | 1497.54 | 100 |
VG50 | 514.04 | 408.87 | 353.31 | 172.43 | 0.0 | 1448.65 | 96.7 |
VG75 | 514.04 | 433.31 | 353.31 | 172.43 | 0.0 | 1473.09 | 98.3 |
F50 | 514.04 | 457.76 | 176.65 | 172.43 | 0.0 | 1320.88 | 88.2 |
F75 | 514.04 | 457.76 | 265.25 | 172.43 | 0.0 | 1409.21 | 94.1 |
PF50 | 514.04 | 457.76 | 353.31 | 86.21 | 0.0 | 1411.32 | 94.2 |
PF75 | 514.04 | 457.76 | 353.31 | 129.38 | 0.0 | 1454.49 | 97.1 |
SDI75 | 514.04 | 433.31 | 265.25 | 129.38 | 0.0 | 1341.98 | 89.6 |
Stage duration | 0–10 days 149 GDD | 10–33 days 149–506 GDD | 33–56 days 506–811GDD | 56–81 days 811–1189 GDD | 81–112 days 1189–1655 GDD |
Variable | Symbol | Unit | Mean Value ± SD |
---|---|---|---|
Grain yield | GY | kg ha−1 | 903.33 ± 196.09 |
Grain caliber | Cal | grains in 30 g | 47.69 ± 3.38 |
Plant height | H | M | 0.40 ± 0.02 |
Plant dry weight | PDW | g plant−1 | 13.18 ± 1.94 |
Number of pods per plant | PP | - | 7.96 ± 1.23 |
Number of grains per plant | GP | - | 9.18 ± 1.65 |
Harvest index | HI | - | 0.44 ± 0.04 |
Crop water productivity | CWP | kg m−3 | 0.78 ± 0.17 |
Treatments | Grain Yield | |
---|---|---|
* kg ha−1 | % with Respect to FI | |
VG75 | 1124.8 ± 264.3 | 101.8 |
FI | 1104.3 ± 246.2 | 100.0 |
PF75 | 978.0 ± 150.9 | 88.5 |
F75 | 937.6 ± 265.0 | 84.9 |
SDI75 | 817.3 ± 162.2 | 74.0 |
PF50 | 799.6 ± 150.3 | 72.4 |
VG50 | 776.5 ± 221.2 | 70.3 |
F50 | 688.2 ± 167.1 | 62.3 |
Grain caliber | ||
* grain 30 g−1 | % with respect to FI | |
PF50 | 52.7 ± 6.7 | 113.0 |
F50 | 48.7 ± 3.6 | 104.5 |
F75 | 47.9 ± 5.2 | 102.7 |
SDI | 46.9 ± 2.1 | 100.6 |
VG75 | 46.7 ± 0.7 | 100.2 |
FI | 46.6 ± 2.8 | 100.0 |
PF75 | 46.5 ± 1.9 | 99.7 |
VG50 | 46.0 ± 3.5 | 98.7 |
Treatments | Plant Height | Treatments | Pods per Plant | ||
---|---|---|---|---|---|
m * | % with Respect to FI | Pods * | % with Respect to FI | ||
FI | 0.43 ± 0.04 | 100.0 | VG75 | 10.00 ± 1.88 | 121.2 |
PF75 | 0.43 ± 0.05 | 100.0 | FI | 8.25 ± 1.28 | 100.0 |
VG75 | 0.42 ± 0.06 | 97.6 | PF75 | 8.17 ± 1.35 | 99.0 |
F75 | 0.40 ± 0.03 | 93.0 | F75 | 8.10 ± 1.68 | 98.1 |
SDI75 | 0.40 ± 0.02 | 93.0 | SDI75 | 8.12 ± 1.55 | 98.4 |
PF50 | 0.39 ± 0.05 | 90.6 | VG50 | 7.90 ± 1.44 | 95.7 |
F50 | 0.39 ± 0.05 | 90.6 | PF50 | 6.73 ± 1.66 | 81.5 |
VG50 | 0.38 ± 0.02 | 88.3 | F50 | 6.45 ± 0.84 | 78.1 |
Treatments | Plant dry weight | Treatments | Grains per plant | ||
g * | % with respect to FI | grains * | % with respect to FI | ||
VG75 | 15.41 ± 2.62 | 107.9 | VG75 | 11.93 ± 1.99 | 125.1 |
FI | 14.27 ± 2.95 | 100.0 | FI | 9.53 ± 1.73 | 100.0 |
PF75 | 13.66 ± 2.94 | 95.7 | PF75 | 9.71 ± 1.77 | 101.8 |
VG50 | 13.48 ± 2.71 | 94.4 | SDI75 | 9.16 ± 2.05 | 96.1 |
F75 | 13.26 ± 3.64 | 92.9 | VG50 | 9.31 ± 1.85 | 97.6 |
SDI75 | 13.26 ± 2.30 | 92.9 | F75 | 8.75 ± 2.22 | 91.8 |
PF50 | 11.14 ± 3.84 | 78.0 | PF50 | 7.66 ± 2.27 | 80.3 |
F50 | 10.99 ± 2.20 | 77.0 | F50 | 7.37 ± 1.54 | 77.3 |
Treatments | Harvest Index | |
---|---|---|
% with Respect to FI | ||
VG75 | 0.50 ± 0.07 | 116.2 |
PF75 | 0.46 ± 0.05 | 106.9 |
VG50 | 0.45 ± 0.06 | 104.6 |
SDI75 | 0.45 ± 0.07 | 104.6 |
FI | 0.43 ± 0.03 | 100.0 |
F75 | 0.42 ± 0.05 | 97.6 |
F50 | 0.41 ± 0.06 | 95.3 |
PF50 | 0.40 ± 0.03 | 93.0 |
Crop water productivity | ||
* kg m−3 | % with respect to FI | |
VG75 | 0.95 ± 0.34 | 105.5 |
FI | 0.90 ± 0.22 | 100.0 |
F75 | 0.82 ± 0.29 | 91.1 |
PF75 | 0.82 ± 0.19 | 91.1 |
SDI | 0.74 ± 0.12 | 82.2 |
PF50 | 0.71 ± 0.23 | 78.0 |
VG50 | 0.65 ± 0.14 | 72.2 |
F50 | 0.64 ± 0.15 | 71.1 |
Variables | Principal Components | |
---|---|---|
PC1 | PC2 | |
Grain yield (GY) | 0.62 ** | 0.44 |
Caliber (Cal) | −0.85 ** | 0.02 |
Plant height (H) | −0.46 | 0.81 ** |
Plant dry weight (PDW) | 0.99 ** | −0.06 |
Pods per plant (PP) | 0.81 ** | 0.47 |
Grains per plant (GP) | 0.77 ** | 0.56 |
Crop Water productivity (CWP) | −0.19 | 0.91 ** |
Harvest index (HI) | −0.02 | 0.89 ** |
Total irrigation (IR) | 0.77 ** | −0.56 |
Eigenvalue | 4.22 | 3.36 |
Variance Eigenvalue, % | 47.00 | 37.40 |
Accumulated variance, % | 47.00 | 84.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osuna-Amador, J.D.; Méndez-Alonzo, R.; Trasviña-Castro, A.; Saldívar-Lucio, R.; Hernandez-Martinez, R.; Moore, G.W. Regulated Deficit Irrigation during Vegetative Growth Enhances Crop Water Productivity in Chickpea (Cicer arietinum L.). Agronomy 2023, 13, 917. https://doi.org/10.3390/agronomy13030917
Osuna-Amador JD, Méndez-Alonzo R, Trasviña-Castro A, Saldívar-Lucio R, Hernandez-Martinez R, Moore GW. Regulated Deficit Irrigation during Vegetative Growth Enhances Crop Water Productivity in Chickpea (Cicer arietinum L.). Agronomy. 2023; 13(3):917. https://doi.org/10.3390/agronomy13030917
Chicago/Turabian StyleOsuna-Amador, José Denis, Rodrigo Méndez-Alonzo, Armando Trasviña-Castro, Romeo Saldívar-Lucio, Rufina Hernandez-Martinez, and Georgianne W. Moore. 2023. "Regulated Deficit Irrigation during Vegetative Growth Enhances Crop Water Productivity in Chickpea (Cicer arietinum L.)" Agronomy 13, no. 3: 917. https://doi.org/10.3390/agronomy13030917