Selenium Nanoparticles Improve Quality, Bioactive Compounds and Enzymatic Activity in Jalapeño Pepper Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Experimental Design and Treatment Application
2.3. Agronomic Indices
2.4. Photosynthetic Pigments
2.5. Physicochemical Analysis of the Fruit
2.6. Total Proteins
2.7. Antioxidant Status of Fruit
2.7.1. Sample Processing
2.7.2. Biomolecule Extraction
2.7.3. Non-Enzymatic Antioxidants
2.7.4. Enzymatic Activity
- CAT: a U is equivalent to the amount of mM of H2O2 consumed per milliliter per minute.
- APX: a U is equivalent to µM of oxidized ascorbate per milliliter per minute.
- GSH-Px: a U is equivalent to the amount of GSH in µM per milliliter per minute.
- PAL: a U is defined as the amount in mM of trans-cinnamic acid produced per milliliter per minute.
2.8. Se Content in Fruit
2.9. Statistical Analysis
3. Results
3.1. Agronomic Indices
3.1.1. Growth Dynamics
3.1.2. Crop Attributes
3.2. Photosynthetic Pigments
3.3. Fruit Quality
3.4. Antioxidant Status of Fruit
3.4.1. Non Enzymatic Antioxidants
3.4.2. Enzymatic Antioxidants
3.5. Se Content in Fruit
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rayman, M.P. Selenium and Human Health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Steinbrenner, H.; Duntas, L.H.; Rayman, M.P. The Role of Selenium in Type-2 Diabetes Mellitus and Its Metabolic Comorbidities. Redox. Biol. 2022, 50, 102236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chu, C. Selenium Uptake, Transport, Metabolism, Reutilization, and Biofortification in Rice. Rice 2022, 15, 1–15. [Google Scholar] [CrossRef]
- El-Ramady, H.; El-Sakhawy, T.; Omara, A.E.-D.; Prokisch, J.; Brevik, E.C. Selenium and Nano-Selenium for Plant Nutrition and Crop Quality. In Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement; Hossain, M.A., Ahammed, G.J., Kolbert, Z., El-Ramady, H., Islam, T., Schiavon, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 55–78. ISBN 978-3-031-07063-1. [Google Scholar]
- Pilon-Smits, E.A.H.; Quinn, C.; Quinn, C.F. Selenium Metabolism in Plants. Cell Biol. Met. Nutr. 2010, 17, 225–241. [Google Scholar] [CrossRef]
- Lanza, M.G.D.B.; dos Reis, A.R. Roles of Selenium in Mineral Plant Nutrition: ROS Scavenging Responses against Abiotic Stresses. Plant Physiol. Biochem. 2021, 164, 27–43. [Google Scholar] [CrossRef]
- López-Bellido, F.J.; Sanchez, V.; Rivas, I.; López-Bellido, R.J.; López-Bellido, L. Wheat Grain Selenium Content as Affected by Year and Tillage System in a Rainfed Mediterranean Vertisol. Field Crops Res. 2019, 233, 41–48. [Google Scholar] [CrossRef]
- Rios-Lugo, M.J.; Palos-Lucio, A.G.; Victoria-Campos, C.I.; Lugo-Trampe, A.; Trujillo-Murillo, K.D.C.; López-García, M.A.; Espinoza-Ruiz, M.; Romero-Guzmán, E.T.; Hernández-Mendoza, H.; Chang-Rueda, C. Sex-Specific Association between Fasting Plasma Glucose and Serum Selenium Levels in Adults from Southern Mexico. Healthcare 2022, 10, 1665. [Google Scholar] [CrossRef]
- Díaz-Zarco, S.; Montes-de-Oca-Jiménez, R.; Rodríguez-Domínguez, M.C. Selenium Levels in Soil, Pasture and Sheep: Influence of Selenium Supplementation on IgG Concentration in Pregnant Sheep and Lambs. Terra Latinoam. 2022, 40, 1–14. [Google Scholar]
- Schiavon, M.; Nardi, S.; Dalla Vecchia, F.; Ertani, A. Selenium Biofortification in the 21st Century: Status and Challenges for Healthy Human Nutrition. Plant Soil 2020, 453, 245–270. [Google Scholar] [CrossRef] [PubMed]
- El-Ramady, H.; Faizy, S.E.-D.; Abdalla, N.; Taha, H.; Domokos-Szabolcsy, É.; Fari, M.; Elsakhawy, T.; Omara, A.E.-D.; Shalaby, T.; Bayoumi, Y. Selenium and Nano-Selenium Biofortification for Human Health: Opportunities and Challenges. Soil Syst. 2020, 4, 57. [Google Scholar] [CrossRef]
- Garza-García, J.J.O.; Hernández-Díaz, J.A.; Zamudio-Ojeda, A.; León-Morales, J.M.; Guerrero-Guzmán, A.; Sánchez-Chiprés, D.R.; López-Velázquez, J.C.; García-Morales, S. The Role of Selenium Nanoparticles in Agriculture and Food Technology. Biol. Trace. Elem. Res. 2022, 200, 2528–2548. [Google Scholar] [CrossRef] [PubMed]
- El-Bialy, S.M.; El-Mahrouk, M.E.; Elesawy, T.; Omara, A.E.-D.; Elbehiry, F.; El-Ramady, H.; Áron, B.; Prokisch, J.; Brevik, E.C.; Solberg, S.Ø. Biological Nanofertilizers to Enhance Growth Potential of Strawberry Seedlings by Boosting Photosynthetic Pigments, Plant Enzymatic Antioxidants, and Nutritional Status. Plants 2023, 12, 302. [Google Scholar] [CrossRef] [PubMed]
- du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Juárez-Maldonado, A.; Ortega-Ortíz, H.; Morales-Díaz, A.B.; González-Morales, S.; Morelos-Moreno, Á.; Cabrera-De la Fuente, M.; Sandoval-Rangel, A.; Cadenas-Pliego, G.; Benavides-Mendoza, A. Nanoparticles and Nanomaterials as Plant Biostimulants. Int. J. Mol. Sci. 2019, 20, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valerino-Perea, S.; Lara-Castor, L.; Armstrong, M.E.G.; Papadaki, A. Definition of the Traditional Mexican Diet and Its Role in Health: A Systematic Review. Nutrients 2019, 11, 2803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Fernández, S.D.; Moreno-Velázquez, D.; Jesús, T.-D.; Vázquez-Cruz, F.; Ibáñez-Martínez, A.; Tobar-Reyes, J.R. Phenology and Content of Capsaicinoids in Chili Produced under Greenhouse Conditions. Rev. Mex. De Cienc. Agric. 2020, 11, 663–675. [Google Scholar]
- Arce-Rodríguez, M.L.; Ochoa-Alejo, N. Biochemistry and Molecular Biology of Capsaicinoid Biosynthesis: Recent Advances and Perspectives. Plant Cell Rep. 2019, 38, 1017–1030. [Google Scholar] [CrossRef]
- Añibarro-Ortega, M.; Pinela, J.; Alexopoulos, A.; Petropoulos, S.A.; Ferreira, I.; Barros, L. The Powerful Solanaceae: Food and Nutraceutical Applications in a Sustainable World. In Advances in Food and Nutrition Research; Toldra, F., Ed.; Elsevier: London, UK, 2022; Volume 100, pp. 131–172. ISBN 978-0-323-99082-0. [Google Scholar]
- Campos-Hernández, N.; Jaramillo-Flores, M.E.; Téllez-Medina, D.I.; Alamilla-Beltrán, L. Effect of Traditional Dehydration Processing of Pepper Jalapeno Rayado (Capsicum annuum) on Secondary Metabolites with Antioxidant Activity. CyTA-J. Food 2018, 16, 316–324. [Google Scholar] [CrossRef] [Green Version]
- de la Cruz-Ricardez, D.D.; Ortiz-García, C.F.C.F.; del Lagunes-Espinoza, L.C.; Torres-de la Cruz, M.; Hernández-Nataren, E. Phenolic Compounds, Carotenoids and Capsaicinoids in Fruits of Capsicum Spp. from Tabasco, Mexico. Agrociencia 2020, 54, 505–519. [Google Scholar] [CrossRef]
- Antonio, A.S.; Wiedemann, L.S.M.; Veiga Junior, V.F. The Genus Capsicum: A Phytochemical Review of Bioactive Secondary Metabolites. RSC Adv. 2018, 8, 25767–25784. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Pérez, T.; del Gómez-García, M.R.; Valverde, M.E.; Paredes-López, O. Capsicum annuum (Hot Pepper): An Ancient Latin-American Crop with Outstanding Bioactive Compounds and Nutraceutical Potential. A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2972–2993. [Google Scholar] [CrossRef]
- Steiner, A.A. A Universal Method for Preparing Nutrient Solutions of a Certain Desired Composition. Plant Soil. 1961, 15, 134–154. [Google Scholar] [CrossRef] [Green Version]
- Quiterio-Gutiérrez, T.; Ortega-Ortiz, H.; Cadenas-Pliego, G.; Hernández-Fuentes, A.D.; Sandoval-Rangel, A.; Benavides-Mendoza, A.; Cabrera-de la Fuente, M.; Juárez-Maldonado, A. The Application of Selenium and Copper Nanoparticles Modifies the Biochemical Responses of Tomato Plants under Stress by Alternaria solani. Int. J. Mol. Sci. 2019, 20, 1950. [Google Scholar] [CrossRef] [Green Version]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; AOAC International: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, H.; González-Morales, S.; Benavides-Mendoza, A.; Ortega-Ortiz, H.; Cadenas-Pliego, G.; Juárez-Maldonado, A. Effects of Chitosan–PVA and Cu Nanoparticles on the Growth and Antioxidant Capacity of Tomato under Saline Stress. Molecules 2018, 23, 178. [Google Scholar] [CrossRef] [Green Version]
- Garza-Alonso, C.A.; Gonzalez-Garcia, Y.; Cadenas-Pliego, G.; Olivares-Saenz, E.; Trejo-TéLlez, L.I.; Benavides-Mendoza, A. Seed Priming with ZnO Nanoparticles Promotes Early Growth and Bioactive Compounds of Moringa oleifera. Not. Bot. Horti. Agrobot. Cluj. Napoca. 2021, 49, 12546. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin–Ciocalteu Reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of Total Flavonoid Content by Aluminum Chloride Assay: A Critical Evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Xue, T.; Hartikainen, H.; Piironen, V. Antioxidative and Growth-Promoting Effect of Selenium on Senescing Lettuce. Plant Soil 2001, 237, 55–61. [Google Scholar] [CrossRef]
- Elavarthi, S.; Martin, B. Spectrophotometric Assays for Antioxidant Enzymes in Plants. In Plant Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2010; pp. 273–280. [Google Scholar]
- Chen, J.; Zou, X.; Liu, Q.; Wang, F.; Feng, W.; Wan, N. Combination Effect of Chitosan and Methyl Jasmonate on Controlling Alternaria alternata and Enhancing Activity of Cherry Tomato Fruit Defense Mechanisms. Crop. Prot. 2014, 56, 31–36. [Google Scholar] [CrossRef]
- Pedrero, Z.; Madrid, Y.; Cámara, C. Selenium Species Bioaccessibility in Enriched Radish (Raphanus sativus): A Potential Dietary Source of Selenium. J. Agric Food Chem. 2006, 54, 2412–2417. [Google Scholar] [CrossRef] [PubMed]
- White, P.J. Selenium Accumulation by Plants. Ann. Bot. 2016, 117, 217–235. [Google Scholar] [CrossRef] [Green Version]
- Puccinelli, M.; Malorgio, F.; Pezzarossa, B. Selenium Enrichment of Horticultural Crops. Molecules 2017, 22, 933. [Google Scholar] [CrossRef]
- Chauhan, R.; Awasthi, S.; Srivastava, S.; Dwivedi, S.; Pilon-Smits, E.A.H.; Dhankher, O.P.; Tripathi, R.D. Understanding Selenium Metabolism in Plants and Its Role as a Beneficial Element. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1937–1958. [Google Scholar] [CrossRef]
- Kang, L.; Wu, Y.; Zhang, J.; An, Q.; Zhou, C.; Li, D.; Pan, C. Nano-Selenium Enhances the Antioxidant Capacity, Organic Acids and Cucurbitacin B in Melon (Cucumis melo L.) Plants. Ecotoxicol. Environ. Saf. 2022, 241, 113777. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Hosseini, M.S.; Meybodi, N.D.H.; da Silva, J.A.T. Foliar Application of Selenium and Nano-Selenium Affects Pomegranate (Punica granatum Cv. Malase Saveh) Fruit Yield and Quality. South Afr. J. Bot. 2019, 124, 350–358. [Google Scholar] [CrossRef]
- Hernández-Hernández, H.; Quiterio-Gutiérrez, T.; Cadenas-Pliego, G.; Ortega-Ortiz, H.; Hernández-Fuentes, A.D.; Cabrera de la Fuente, M.; Valdés-Reyna, J.; Juárez-Maldonado, A. Impact of Selenium and Copper Nanoparticles on Yield, Antioxidant System, and Fruit Quality of Tomato Plants. Plants 2019, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Zahedi, S.M.; Abdelrahman, M.; Hosseini, M.S.; Hoveizeh, N.F.; Tran, L.-S.P. Alleviation of the Effect of Salinity on Growth and Yield of Strawberry by Foliar Spray of Selenium-Nanoparticles. Environ. Pollut. 2019, 253, 246–258. [Google Scholar] [CrossRef]
- Azcón-Bieto, J.; Talón, M. Fundamentals of Plant Physiology; Edicions Universitat de Barcelona: Barcelona, Spain, 2000; ISBN 8483381826. [Google Scholar]
- Medrano-Macías, J.; Narvaéz-Ortiz, W.A. Selenium and Nano-Selenium as a New Frontier of Plant Biostimulant. In Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement; Springer: Berlin/Heidelberg, Germany, 2022; pp. 41–54. [Google Scholar]
- Shalaby, T.A.; Abd-Alkarim, E.; El-Aidy, F.; Hamed, E.S.; Sharaf-Eldin, M.; Taha, N.; El-Ramady, H.; Bayoumi, Y.; dos Reis, A.R. Nano-Selenium, Silicon and H2O2 Boost Growth and Productivity of Cucumber under Combined Salinity and Heat Stress. Ecotoxicol. Environ. Saf. 2021, 212, 111962. [Google Scholar] [CrossRef] [PubMed]
- López-Vicente, M.; Saffan, M.M.; Koriem, M.A.; El-Henawy, A.; El-Mahdy, S.; El-Ramady, H.; Elbehiry, F.; El-Dein Omara, A.; Bayoumi, Y.; Badgar, K. Sustainable Production of Tomato Plants (Solanum lycopersicum L.) under Low-Quality Irrigation Water as Affected by Bio-Nanofertilizers of Selenium and Copper. Sustainability 2022, 14, 3236. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium Intake, Status, and Health: A Complex Relationship. Hormones 2020, 19, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, D. Selenium in Horticultural Crops. Sci. Hortic. 2021, 289, 110441. [Google Scholar] [CrossRef]
- Zhang, X.; He, H.; Xiang, J.; Yin, H.; Hou, T. Selenium-Containing Proteins/Peptides from Plants: A Review on the Structures and Functions. J. Agric Food Chem. 2020, 68, 15061–15073. [Google Scholar] [CrossRef]
- Yadav, V.; Wang, Z.; Wei, C.; Amo, A.; Ahmed, B.; Yang, X.; Zhang, X. Phenylpropanoid Pathway Engineering: An Emerging Approach towards Plant Defense. Pathogens 2020, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- El-Ramady, H.; Abdalla, N.; Alshaal, T.; El-Henawy, A.; Faizy, S.E.-D.A.; Shams, M.S.; Shalaby, T.; Bayoumi, Y.; Elhawat, N.; Shehata, S.; et al. Selenium and Its Role in Higher Plants. In Pollutants in Buildings, Water and Living Organisms; Lichtfouse, E., Schwarzbauer, J., Robert, D., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 235–296. ISBN 978-3-319-19276-5. [Google Scholar]
- Pang, C.-H.; Wang, B.-S. Role of Ascorbate Peroxidase and Glutathione Reductase in Ascorbate–Glutathione Cycle and Stress Tolerance in Plants. In Ascorbate-Glutathione Pathway and Stress Tolerance in Plants; Anjum, N.A., Chan, M.-T., Umar, S., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 91–113. ISBN 978-90-481-9404-9. [Google Scholar]
- Zhang, F.; Li, X.; Wu, Q.; Lu, P.; Kang, Q.; Zhao, M.; Wang, A.; Dong, Q.; Sun, M.; Yang, Z.; et al. Selenium Application Enhances the Accumulation of Flavones and Anthocyanins in Bread Wheat (Triticum aestivum L.) Grains. J. Agric. Food Chem. 2022, 70, 13431–13444. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Rashmi, R.; Ulhas, R.S.; Sudheer, W.N.; Banadka, A.; Nagella, P.; Aldaej, M.I.; Rezk, A.A.-S.; Shehata, W.F.; Almaghasla, M.I. The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels. Plants 2023, 12, 292. [Google Scholar] [CrossRef]
- White, P.J. Selenium Metabolism in Plants. Biochim. Et Biophys. Acta BBA—Gen. Subj. 2018, 1862, 2333–2342. [Google Scholar] [CrossRef]
- Sariñana-Navarrete, M.Á.; Hernández-Montiel, L.G.; Sánchez-Chavez, E.; Reyes-Perez, J.J.; Murillo-Amador, B.; Reyes-González, A.; Preciado-Rangel, P. Foliar Fertilization of Sodium Selenite and Its Effects on Yield and Nutraceutical Quality in Grapevine. Rev. De La Fac. De Agron. De La Univ. Del Zulia 2021, 38, 806–824. [Google Scholar] [CrossRef]
- Rahim, F.P.; Rocio, C.G.; Adalberto, B.M.; Lidia Rosaura, S.C.; Maginot, N.H. Agronomic Biofortification with Selenium in Tomato Crops (Solanum lycopersicon L. Mill). Agriculture 2020, 10, 486. [Google Scholar] [CrossRef]
Treatments nSe (mg L−1) | SD (mm) | FWAP (g) | FWR (g) | DWAP (g) | FWR (g) |
---|---|---|---|---|---|
Control | 13.82 ± 1.02 ns,* | 360.00 ± 47.94 ns | 222.00 ± 54.66 ns | 104.40 ± 17.87 ns | 41.80 ± 8.93 ns |
1 | 13.94 ± 0.79 | 369.40 ± 26.28 | 203.60 ± 27.04 | 104.00 ± 22.46 | 54.60 ± 13.56 |
15 | 13.80 ± 1.20 | 372.00 ± 39.86 | 269.00 ± 56.13 | 102.00 ± 11.47 | 43.80 ± 8.56 |
30 | 13.76 ± 0.32 | 375.00± 29.07 | 254.00 ± 56.56 | 109.40 ± 9.07 | 47.00 ± 9.75 |
45 | 14.52 ± 0.83 | 395.80 ± 47.11 | 276.80 ± 45.89 | 106.60 ± 14.01 | 46.40 ± 5.41 |
nSe (mg L−1) | TSS (°Brix) | Firmness (kg cm−2) | L (mm) | ED (mm) | TA (% CA) |
---|---|---|---|---|---|
Control | 5.20 ± 0.48 ab,* | 4.87 ± 0.54 b | 72.24 ± 10.45 ns | 27.51 ± 2.45 ns | 0.28 ± 0.036 ab |
1 | 5.17 ± 0.36 ab | 5.83 ± 0.73 b | 81.88 ± 3.91 | 30.10 ± 2.05 | 0.24 ± 0.008 b |
15 | 5.85 ± 0.51 a | 5.14 ± 0.67 b | 84.85 ± 6.66 | 28.44 ± 2.52 | 0.25 ± 0.031 b |
30 | 5.70 ± 0.37 a | 7.76 ± 1.01 a | 81.73 ± 7.79 | 28.19 ± 2.03 | 0.31 ± 0.044 a |
45 | 4.75 ± 0.25 b | 5.93 ± 0.69 b | 85.06 ± 4.37 | 30.68 ± 1.90 | 0.23 ± 0.020 b |
nSe (mg L−1) | Vitamin C mg AAE g−1 DW | FT mg GAE 100 g−1 DW | FLV mg CE 100 g−1 DW | ABTS+ % Inhibition | GSH µM EGSH g−1 DW |
---|---|---|---|---|---|
Control | 7.02 ± 2.27 b,* | 572.27 ± 32.84 c | 190.90 ± 69.98 b | 43.50 ± 4.70 c | 5.14 ± 0.28 a |
1 | 9.16 ± 1.32 ab | 1002.49 ± 52.77 a | 186.77 ± 18.41 b | 51.14 ± 1.71 b | 4.59 ± 0.35 a |
15 | 8.81 ± 0.35 ab | 1000.06 ± 20.73 a | 247.69 ± 44.09 ab | 49.84 ± 2.64 b | 4.62 ± 0.33 a |
30 | 8.67 ± 0.84 ab | 780.32 ± 91.41 b | 319.18 ± 51.76 a | 59.01 ± 1.93 a | 4.57 ± 0.43 a |
45 | 10.01 ± 0.46 a | 680.44 ± 56.09 b | 241.01 ± 30.03 ab | 58.82 ± 2.35 a | 3.57 ± 0.43 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sariñana-Navarrete, M.d.l.Á.; Morelos-Moreno, Á.; Sánchez, E.; Cadenas-Pliego, G.; Benavides-Mendoza, A.; Preciado-Rangel, P. Selenium Nanoparticles Improve Quality, Bioactive Compounds and Enzymatic Activity in Jalapeño Pepper Fruits. Agronomy 2023, 13, 652. https://doi.org/10.3390/agronomy13030652
Sariñana-Navarrete MdlÁ, Morelos-Moreno Á, Sánchez E, Cadenas-Pliego G, Benavides-Mendoza A, Preciado-Rangel P. Selenium Nanoparticles Improve Quality, Bioactive Compounds and Enzymatic Activity in Jalapeño Pepper Fruits. Agronomy. 2023; 13(3):652. https://doi.org/10.3390/agronomy13030652
Chicago/Turabian StyleSariñana-Navarrete, María de los Ángeles, Álvaro Morelos-Moreno, Esteban Sánchez, Gregorio Cadenas-Pliego, Adalberto Benavides-Mendoza, and Pablo Preciado-Rangel. 2023. "Selenium Nanoparticles Improve Quality, Bioactive Compounds and Enzymatic Activity in Jalapeño Pepper Fruits" Agronomy 13, no. 3: 652. https://doi.org/10.3390/agronomy13030652
APA StyleSariñana-Navarrete, M. d. l. Á., Morelos-Moreno, Á., Sánchez, E., Cadenas-Pliego, G., Benavides-Mendoza, A., & Preciado-Rangel, P. (2023). Selenium Nanoparticles Improve Quality, Bioactive Compounds and Enzymatic Activity in Jalapeño Pepper Fruits. Agronomy, 13(3), 652. https://doi.org/10.3390/agronomy13030652