How Much Phosphorus Uptake Is Required for Achieving Maximum Maize Grain Yield? Part 2: Impact of Phosphorus Uptake on Grain Quality and Partitioning of Nutrients
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Nutrient Partitioning in Response to Phosphorus Uptake
Nutrient | Plant Part | Model | P Uptake Breakpoint | Intercept | Slope | Slope2 | Joint Level | R2 |
---|---|---|---|---|---|---|---|---|
(mg P plant−1) | mg or g plant−1 | mg or g mg P−1 | mg or g mg P−1 | mg or g plant−1 | ||||
K (g) | Leaf | Linear-linear | 628 | 0.63 | 0.001 | 0.0007 | 1.41 | 0.98 *** |
Stem | Linear-linear | 664 | 0.12 | 0.003 | 0.0018 | 2.16 | 0.99 *** | |
Roots | Linear-linear | 832 | −0.36 | 0.002 | 0.0009 | 1.33 | 0.99 *** | |
Grain | Linear-plateau | 595 | 0.094 | 0.001 | NA | 0.66 | 0.99 *** | |
Total | Linear-linear | 679 | 0.50 | 0.007 | 0.0036 | 5.44 | 0.99 ** | |
Mg (g) | Leaf | Linear-linear | 533 | −89 | 0.71 | 0.16 | 288 | 0.99 *** |
Stem | Linear-plateau | 840 | −54 | 0.36 | NA | 245 | 0.99 *** | |
Roots | Linear-plateau | 1041 | −37 | 0.22 | NA | 192 | 0.97 ** | |
Grain | Linear-plateau | 630 | −0.81 | 0.27 | NA | 170 | 0.99 *** | |
Total | Linear-plateau | 760 | −139 | 1.4 | NA | 950 | 0.99 *** | |
B (mg) | Leaf | Linear-linear | 612 | 0.50 | 0.014 | 0.0035 | 8.78 | 0.98 *** |
Stem | Linear-plateau | 823 | −0.77 | 0.008 | NA | 5.53 | 0.90 ** | |
Roots | Linear-plateau | 800 | 0.16 | 0.0008 | NA | 0.85 | 0.82 * | |
Grain | Linear-plateau | 527 | 0.31 | 0.002 | NA | 1.31 | 0.84 * | |
Total | Linear-plateau | 734 | 0.33 | 0.024 | NA | 17.7 | 0.97 ** | |
Mn (mg) | Leaf | Linear-linear | 583 | −0.79 | 0.007 | 0.002 | 3.14 | 0.99 *** |
Stem | Linear-plateau | 890 | 0.16 | 0.004 | NA | 4.15 | 0.90 ** | |
Roots | Linear-plateau | 742 | −0.13 | 0.001 | NA | 0.79 | 0.98 *** | |
Grain | Linear-plateau | 647 | −0.120 | 0.002 | NA | NA | 0.99 *** | |
Total | Linear-plateau | 747 | −1.10 | 0.011 | NA | NA | 0.97 ** |
Nutrient | Plant Part | Model | P Uptake Breakpoint | Intercept | Slope | Slope2 | Joint Level | R2 |
---|---|---|---|---|---|---|---|---|
(mg P plant−1) | mg or g plant−1 | mg or g mg P−1 | mg or g mg P−1 | mg or g plant−1 | ||||
N (g) | Leaf | Linear-plateau | 926 | 0.38 | 0.001 | NA | 1.32 | 0.93 ** |
Stem | Linear-linear | 864 | −0.34 | 0.003 | 0.002 | 2.33 | 0.99 ** | |
Roots | Linear-plateau | 758 | −0.27 | 0.002 | NA | 1.27 | 0.97 *** | |
Grain | Linear-linear | 523 | 0.503 | 0.006 | −0.001 | 3.64 | 0.95 * | |
Total | Linear-plateau | 718 | 0.82 | 0.010 | NA | 7.71 | 0.98 ** | |
S (g) | Leaf | Linear-plateau | 526 | −45.6 | 0.77 | NA | 390 | 0.96 *** |
Stem | Linear-linear | 757 | −48.9 | 0.37 | 0.15 | 229 | 0.99 ** | |
Roots | Linear-plateau | 828 | −126 | 0.72 | NA | 470 | 0.99 *** | |
Grain | Linear-linear | 570 | 32.2 | 0.41 | −0.075 | 264 | 0.98 * | |
Total | Linear-plateau | 703 | −145 | 2.1 | NA | 1355 | 0.99 *** | |
Fe (mg) | Leaf | Linear-plateau | 855 | 0.47 | 0.006 | NA | 5.57 | 0.99 *** |
Stem | Linear-linear | 885 | −1.39 | 0.008 | 0.006 | 5.83 | 0.99 *** | |
Roots | Linear-plateau | 745 | −5.31 | 0.062 | NA | 2.62 | 0.94 ** | |
Grain | Linear-linear | 589 | 0.16 | 0.006 | −0.0014 | 3.58 | 0.96 * | |
Total | Linear-plateau | 758 | −5.7 | 0.08 | NA | 56 | 0.97 ** |
Nutrient | Grain or Total Content | Model | P Uptake Breakpoint | Intercept | Slope | Slope2 | Joint Level | R2 |
---|---|---|---|---|---|---|---|---|
(mg P plant−1) | mg plant−1 | mg mg P−1 | mg mg P−1 | mg plant−1 | ||||
Zn (mg) | Leaf | Linear-linear | 613 | 1.15 | 0.005 | −0.001 | 4.10 | 0.98 * |
Stem | Linear-linear | 864 | −0.46 | 0.004 | 0.002 | 2.97 | 0.99 *** | |
Roots | Linear-linear | 846 | −0.08 | 0.003 | 0.0009 | 2.49 | 0.98 * | |
Grain | Linear-linear | 612 | 0.29 | 0.005 | −0.00095 | 3.31 | 0.96 * | |
Total | Linear-plateau | 683 | 0.78 | 0.017 | NA | 12.5 | 0.99 *** | |
Cu (mg) | Leaf | Linear-linear | 674 | 0.8 | 0.003 | −0.001 | 2.59 | 0.88 * |
Stem | Linear-linear | 532 | −0.39 | 0.002 | 0.001 | 0.71 | 0.97 * | |
Roots | Linear-plateau | 731 | −0.14 | 0.003 | NA | 2.18 | 0.97 *** | |
Grain | Linear-linear | 612 | −0.13 | 0.0012 | −0.0007 | 0.58 | 0.80 * | |
Total | Linear-plateau | 643 | 0.094 | 0.0092 | NA | 6.0 | 0.97 ** |
3.1.1. Group 1 Nutrients: K, Mg, B, and Mn
3.1.2. Group 2 Nutrients: N, S, and Fe
3.1.3. Group 3 Nutrients: Zn and Cu
3.2. Nutrient Partitioning and the Decrease in Grain Yield with Excess P Uptake
4. Implications and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Penn, C.J.; Camberato, M.W. How Much Phosphorus Uptake is Required for Achieving Maximum Maize Grain Yield? Part 1: Luxury Consumption and Implications for Yield. Agronomy 2023, 13, 95. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Vyn, T.J. Nutrient sufficiency concepts for modern corn hybrids: Impacts of management practices and yield levels. Crop Manag. 2014, 13, 1–7. [Google Scholar] [CrossRef]
- Mathan, K.K.; Amberger, A. Influence of iron on the uptake of phosphorus by maize. Plant Soil 1977, 46, 413–422. [Google Scholar] [CrossRef]
- Awan, Z.I.; Abbasi, M.K. Interactive effect of phosphorus and copper on maize growth. Pakistan J. Agric. Res. 2000, 16, 105–108. [Google Scholar]
- Zhang, W.; Zou, C.; Chen, X.; Liu, Y.; Liu, D.; Yang, H.; Deng, Y.; Chen, X. Phosphorus application decreased copper concentration but not iron in maize grain. Agronomy 2020, 10, 1716. [Google Scholar] [CrossRef]
- Safaya, N.M. Phosphorus-zinc interaction in relation to absorption rates of phosphorus, zinc, copper, manganese, and iron in corn. Soil Sci. Soc. Am. J. 1976, 40, 719–722. [Google Scholar] [CrossRef]
- Izsáki, Z. Effects of phosphorus supplies on the nutritional status of maize (Zea mays L.). Commun. Soil Sci. Plant Anal. 2014, 45, 516–529. [Google Scholar] [CrossRef]
- Wiethorn, M.; Penn, C.; Camberato, J. A Research Method for Semi-Automated Large-Scale Cultivation of Maize to Full Maturity in an Artificial Environment. Agronomy 2021, 11, 1898. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.-X.; Liu, Y.-M.; Liu, D.-Y.; Chen, X.-P.; Zou, C.-Q. Zinc uptake by roots and accumulation in maize plants as affected by phosphorus application and arbuscular mycorrhizal colonization. Plant Soil 2017, 413, 59–71. [Google Scholar] [CrossRef]
- Loneragan, J.F. The effect of applied phosphate on the uptake of zinc by flax. Aust. J. Biol. Sci. 1951, 4, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Bingham, F.T. Relation between phosphorus and micronutrients in plants. Soil Sci. Soc. Am. J. 1963, 27, 389–391. [Google Scholar] [CrossRef]
- Olsen, S.R. Micronutrient interactions. In Micronutrients in Agriculture; Dinauer, R.C., Ed.; Soil Science Society of America: Madison, WI, USA, 1972; pp. 243–264. [Google Scholar]
- Tagwira, F.; Piha, M.; Mugwira, L. Effect of pH, and phosphorus and organic matter contents on zinc availability and distribution in two Zimbabwean soils. Commun. Soil Sci. Plant Anal. 1992, 23, 1485–1500. [Google Scholar] [CrossRef]
- Tagwira, F.; Piha, M.; Mugwira, L. Zinc studies in Zimbabwean soils: Effect of lime and phosphorus on growth, yield, and zinc status of maize. Commun. Soil Sci. Plant Anal. 1993, 24, 717–736. [Google Scholar] [CrossRef]
- Hamilton, M.A.; Westermann, D.T.; James, D.W. Factors affecting zinc uptake in cropping systems. Soil Sci. Soc. Am. J. 1993, 57, 1310–1315. [Google Scholar] [CrossRef]
- Burleson, C.A.; Dacus, A.D.; Gerard, C.J. Effect of Phosphorus Fertilization on the Zinc Nutrition of Several Irrigated Crops. Soil Sci. Soc. Am. J. 1961, 5, 365–368. [Google Scholar] [CrossRef]
- Langin, E.J.; Ward, R.C.; Olson, R.A.; Rhoades, H.F. Factors responsible for poor response of corn and grain sorghum to phosphorus fertilization: II. Lime and P placement effects on P-Zn relations. Soil Sci. Soc. Am. J. 1962, 26, 574–578. [Google Scholar] [CrossRef]
- Stukenholtz, D.D.; Olsen, R.J.; Gogan, G.; Olson, R.A. On the mechanism of phosphorus-zinc interaction in corn nutrition. Soil Sci. Soc. Am. J. 1966, 30, 759–763. [Google Scholar] [CrossRef]
- Sharma, K.C.; Krantz, B.A.; Brown, A.L.; Quick, J. Interaction of Zn and P in Top and Root of Corn and Tomato 1. Agron. J. 1968, 60, 453–456. [Google Scholar] [CrossRef]
- Warnock, R.E. Micronutrient uptake and mobility within corn plants (Zea mays L.) in relation to phosphorus-induced zinc deficiency. Soil Sci. Soc. Am. J. 1970, 34, 765–769. [Google Scholar] [CrossRef]
- Adriano, D.C.; Paulsen, G.M.; Murphy, L.S. Phosphorus-Iron and Phosphorus-Zinc Relationships in Corn (Zea mays L.) Seedlings as Affected by Mineral Nutrition 1. Agron. J. 1971, 63, 36–39. [Google Scholar] [CrossRef]
- Orabi, A.A.; Abdallah, A.; Mashadi, H.; Barakat, A.H. Zinc-phosphorus relationship in the nutrition of corn plants (Zea mays L.) grown on some calcareous soils. Plant Soil 1981, 59, 51–59. [Google Scholar] [CrossRef]
- Loneragan, J.F.; Grove, T.S.; Robson, A.D.; Snowball, K. Phosphorus toxicity as a factor in zinc-phosphorus interactions in plants. Soil Sci. Soc. Am. J. 1979, 43, 966–972. [Google Scholar] [CrossRef]
- Moraghan, J.T.; Mascagni, H.J., Jr. Environmental and soil factors affecting micronutrient deficiencies and toxicities. Micronutr. Agric. 1991, 4, 371–425. [Google Scholar]
- Shulka, U.C.; Morris, H.D. Relative efficiency of several zinc sources for corn. Agron. J 1967, 59, 200–202. [Google Scholar]
- Allison, J.D.; Brown, D.S.; Novo-Gradac, K.J. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User’s Manual; Environmental Research Laboratory; Office of Research and Development; US Environmental Protection Agency: Washington, DC, USA, 1991.
- Campbell, C. Reference Sufficiency Ranges for Plant Analysis in the Southern Region of the United States; Southern Region Agricultural Experiment Station: Fayetteville, AR, USA, 2000. [Google Scholar]
- Karimian, N. Effect of nitrogen and phosphorus on zinc nutrition of corn in a calcareous soil. J. Plant Nutr. 1995, 18, 2261–2271. [Google Scholar] [CrossRef]
- Drissi, S.; Aït Houssa, A.; Bamouh, A.; Coquant, J.-M.; Benbella, M. Effect of zinc-phosphorus interaction on corn silage grown on sandy soil. Agriculture 2015, 5, 1047–1059. [Google Scholar] [CrossRef]
- Bogdanovic, D.; Ubavic, M.; Cuvardic, M. Effect of phosphorus fertilization on Zn and Cd contents in soil and corn plants. Nutr. Cycl. Agroecosystems 1999, 54, 49–56. [Google Scholar] [CrossRef]
- Lönnerdal, B. Phytic acid–trace element (Zn, Cu, Mn) interactions. Int. J. Food Sci. Technol. 2002, 37, 749–758. [Google Scholar] [CrossRef]
- Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53, S330–S375. [Google Scholar] [CrossRef]
- Shukla, R.; Cheryan, M. Zein: The industrial protein from corn. Ind. Crops Prod. 2001, 13, 171–192. [Google Scholar] [CrossRef]
- Sharma, A.; Patni, B.; Shankhdhar, D.; Shankhdhar, S.C. Zinc–an indispensable micronutrient. Physiol. Mol. Biol. Plants 2013, 19, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Clemens, S. Metal ligands in micronutrient acquisition and homeostasis. Plant. Cell Environ. 2019, 42, 2902–2912. [Google Scholar] [CrossRef] [PubMed]
- Talib, E.A.; Outten, C.E. Iron-sulfur cluster biogenesis, trafficking, and signaling: Roles for CGFS glutaredoxins and BolA proteins. Biochim. Biophys. Acta BBA-Mol. Cell Res. 2021, 1868, 118847. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, S.; Verbruggen, N.; Cuypers, A.; Meyer, A.J. Essential trace metals in plant responses to heat stress. J. Exp. Bot. 2022, 73, 1775–1788. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; Pfeiffer, W.H.; McClafferty, B. Biofortification of durum wheat with zinc and iron. Cereal Chem. 2010, 87, 10–20. [Google Scholar] [CrossRef]
- Peterson, C.J.; Johnson, V.A.; Mattern, P.J. Inluence of Cultivar and Environment on Mineral and Protein Concentrations of Wheat Flour, Bran, and Grain. Cereal Chem. 1986, 63, 183–186. [Google Scholar]
P Treatment (mg L−1) | Leaf (mg) | Stem (mg) | Roots (mg) | Grain (mg) | Total Biomass (mg) | Root:Shoot | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | ||||||||||||
Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | |
4 | 664 | 165 | 556 | 357 | 299 | 192 | 2182 | 560 | 3700 | 774 | 0.09 | 0.05 |
8 | 943 | 164 | 1366 | 584 | 801 | 240 | 3467 | 668 | 6576 | 696 | 0.14 | 0.04 |
12 | 960 | 142 | 1410 | 403 | 976 | 306 | 3732 | 541 | 7078 | 688 | 0.16 | 0.06 |
15 | 1262 | 456 | 2456 | 1536 | 1271 | 335 | 3336 | 1436 | 8325 | 982 | 0.18 | 0.05 |
20 | 1205 | 398 | 2495 | 1486 | 1166 | 471 | 3070 | 1274 | 7937 | 1402 | 0.17 | 0.05 |
22 | 1426 | 440 | 2970 | 1012 | 1368 | 517 | 2956 | 951 | 8721 | 1089 | 0.18 | 0.07 |
K | ||||||||||||
Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | |
4 | 970 | 312 | 985 | 147 | 237 | 229 | 360 | 66 | 2552 | 593 | 0.09 | 0.08 |
8 | 1345 | 514 | 1734 | 289 | 623 | 321 | 599 | 118 | 4301 | 893 | 0.17 | 0.08 |
12 | 1357 | 374 | 2015 | 597 | 966 | 341 | 670 | 64 | 5008 | 726 | 0.24 | 0.08 |
15 | 1545 | 470 | 2606 | 924 | 1399 | 463 | 651 | 279 | 6202 | 961 | 0.30 | 0.12 |
20 | 1657 | 694 | 2565 | 850 | 1398 | 651 | 642 | 249 | 6263 | 1511 | 0.29 | 0.12 |
22 | 1743 | 550 | 3069 | 614 | 1652 | 921 | 676 | 230 | 7140 | 1242 | 0.30 | 0.16 |
P | ||||||||||||
Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg * | Std | |
4 | 30 | 6 | 19 | 6 | 13 | 5 | 218 | 25 | 280 | 28 | 0.05 | 0.02 |
8 | 50 | 4 | 47 | 23 | 34 | 14 | 401 | 54 | 532 | 55 | 0.07 | 0.03 |
12 | 55 | 12 | 56 | 22 | 44 | 16 | 458 | 147 | 613 | 146 | 0.10 | 0.10 |
15 | 90 | 52 | 164 | 151 | 79 | 28 | 532 | 213 | 864 | 65 | 0.10 | 0.04 |
20 | 94 | 39 | 216 | 173 | 87 | 41 | 547 | 246 | 943 | 108 | 0.10 | 0.05 |
22 | 158 | 83 | 315 | 111 | 119 | 59 | 548 | 263 | 1140 | 182 | 0.13 | 0.08 |
S | ||||||||||||
Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg * | Std | Avg ** | Std | Avg ** | Std | |
4 | 171 | 52 | 52 | 19 | 80 | 50 | 146 | 29 | 448 | 117 | 0.21 | 0.12 |
8 | 366 | 101 | 155 | 45 | 237 | 89 | 248 | 50 | 1006 | 178 | 0.32 | 0.12 |
12 | 395 | 65 | 169 | 52 | 330 | 133 | 255 | 87 | 1150 | 166 | 0.41 | 0.18 |
15 | 363 | 94 | 254 | 107 | 460 | 142 | 254 | 121 | 1331 | 195 | 0.54 | 0.20 |
20 | 384 | 91 | 244 | 137 | 467 | 363 | 233 | 116 | 1327 | 447 | 0.52 | 0.34 |
22 | 417 | 79 | 290 | 99 | 483 | 283 | 218 | 108 | 1408 | 362 | 0.51 | 0.25 |
Mg | ||||||||||||
Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg * | Std | |
4 | 109 | 31 | 43 | 17 | 30 | 26 | 75 | 13 | 257 | 66 | 0.13 | 0.10 |
8 | 287 | 65 | 146 | 46 | 63 | 34 | 145 | 19 | 640 | 101 | 0.11 | 0.06 |
12 | 300 | 53 | 156 | 50 | 104 | 45 | 165 | 15 | 726 | 114 | 0.17 | 0.07 |
15 | 344 | 111 | 252 | 101 | 164 | 103 | 171 | 70 | 931 | 192 | 0.22 | 0.16 |
20 | 353 | 93 | 237 | 137 | 163 | 107 | 173 | 67 | 927 | 256 | 0.20 | 0.10 |
22 | 385 | 121 | 247 | 78 | 192 | 91 | 167 | 48 | 991 | 224 | 0.24 | 0.08 |
Fe | ||||||||||||
Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg | Std | |
4 | 2.1 | 0.6 | 1.0 | 0.8 | 11 | 10 | 1.8 | 0.5 | 16 | 11 | 2.1 | 1.23 |
8 | 3.8 | 1.2 | 2.8 | 1.3 | 31 | 13 | 3.3 | 0.8 | 41 | 14 | 3.1 | 0.97 |
12 | 4.0 | 0.6 | 3.5 | 1.4 | 30 | 15 | 3.6 | 1.0 | 41 | 16 | 2.6 | 1.20 |
15 | 5.4 | 1.8 | 5.7 | 3.2 | 43 | 11 | 3.2 | 1.4 | 57 | 40 | 3.2 | 3.09 |
20 | 5.5 | 1.4 | 6.1 | 3.3 | 42 | 22 | 2.9 | 1.6 | 57 | 23 | 2.9 | 1.28 |
22 | 5.8 | 1.4 | 7.2 | 2.2 | 37 | 18 | 2.9 | 1.1 | 53 | 19 | 2.3 | 0.98 |
Zn | ||||||||||||
Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | |
4 | 2.5 | 0.5 | 0.7 | 0.4 | 0.8 | 0.4 | 1.7 | 0.3 | 6 | 1.2 | 0.16 | 0.06 |
8 | 3.7 | 1.0 | 1.6 | 0.9 | 1.4 | 0.5 | 2.9 | 0.5 | 10 | 2.0 | 0.18 | 0.06 |
12 | 4.2 | 0.9 | 1.9 | 1.0 | 1.9 | 0.9 | 3.5 | 0.3 | 12 | 2.5 | 0.19 | 0.08 |
15 | 3.8 | 1.6 | 3.1 | 2.5 | 2.6 | 0.8 | 2.9 | 1.2 | 12 | 3.1 | 0.29 | 0.11 |
20 | 3.6 | 1.3 | 3.1 | 2.1 | 2.4 | 1.0 | 3.0 | 1.1 | 12 | 2.8 | 0.25 | 0.08 |
22 | 3.6 | 1.2 | 3.6 | 1.4 | 2.8 | 1.5 | 2.9 | 1.1 | 13 | 2.8 | 0.28 | 0.14 |
B | ||||||||||||
Avg ** | Std | Avg ** | Std | Avg | Std | Avg | Std | Avg ** | Std | Avg | Std | |
4 | 4.4 | 1.2 | 1.4 | 0.8 | 0.38 | 0.27 | 0.8 | 0.3 | 7 | 1.5 | 0.06 | 0.04 |
8 | 7.2 | 1.4 | 3.3 | 2.5 | 0.72 | 0.62 | 1.4 | 0.6 | 13 | 4.0 | 0.06 | 0.03 |
12 | 9.2 | 1.7 | 3.9 | 2.1 | 0.61 | 0.29 | 1.4 | 0.3 | 15 | 3.2 | 0.04 | 0.02 |
15 | 9.6 | 2.2 | 4.7 | 2.8 | 0.91 | 0.30 | 1.2 | 0.6 | 16 | 3.5 | 0.06 | 0.02 |
20 | 9.8 | 2.0 | 6.5 | 5.8 | 0.74 | 0.22 | 1.4 | 0.7 | 18 | 6.2 | 0.05 | 0.02 |
22 | 10.7 | 3.3 | 5.4 | 3.1 | 0.90 | 0.95 | 1.3 | 0.6 | 18 | 5.2 | 0.05 | 0.04 |
Cu | ||||||||||||
Avg | Std | Avg ** | Std | Avg ** | Std | Avg * | Std | Avg ** | Std | Avg | Std | |
4 | 1.6 | 0.64 | 0.2 | 0.07 | 0.8 | 0.36 | 0.19 | 0.09 | 2.7 | 0.7 | 0.44 | 0.25 |
8 | 2.0 | 0.63 | 0.8 | 0.73 | 1.5 | 0.73 | 0.48 | 0.48 | 4.8 | 1.5 | 0.50 | 0.24 |
12 | 2.6 | 0.80 | 0.8 | 0.36 | 1.9 | 1.02 | 0.65 | 0.63 | 5.8 | 2.2 | 0.49 | 0.26 |
15 | 2.4 | 1.13 | 1.1 | 0.48 | 2.2 | 0.84 | 0.24 | 0.15 | 6.0 | 1.4 | 0.62 | 0.24 |
20 | 2.3 | 0.89 | 1.1 | 0.51 | 2.0 | 1.04 | 0.38 | 0.43 | 5.8 | 1.3 | 0.56 | 0.31 |
22 | 2.1 | 0.90 | 1.5 | 0.51 | 2.3 | 1.38 | 0.23 | 0.13 | 6.1 | 1.9 | 0.60 | 0.37 |
Mn | ||||||||||||
Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg ** | Std | Avg | Std | |
4 | 1.1 | 0.31 | 0.24 | 0.12 | 0.21 | 0.11 | 0.31 | 0.09 | 1.9 | 0.5 | 0.12 | 0.05 |
8 | 2.8 | 0.77 | 0.69 | 0.45 | 0.55 | 0.26 | 0.67 | 0.19 | 4.7 | 1.2 | 0.13 | 0.05 |
12 | 3.3 | 0.77 | 0.70 | 0.21 | 0.61 | 0.24 | 0.82 | 0.14 | 5.4 | 1.0 | 0.13 | 0.05 |
15 | 3.7 | 1.07 | 1.14 | 0.57 | 0.84 | 0.53 | 0.86 | 0.43 | 6.5 | 1.5 | 0.15 | 0.08 |
20 | 3.8 | 0.87 | 1.20 | 0.66 | 0.75 | 0.30 | 0.88 | 0.36 | 6.7 | 1.3 | 0.13 | 0.04 |
22 | 4.5 | 1.02 | 1.46 | 0.55 | 0.77 | 0.44 | 0.84 | 0.33 | 7.6 | 1.3 | 0.11 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penn, C.J.; Camberato, J.J.; Wiethorn, M.A. How Much Phosphorus Uptake Is Required for Achieving Maximum Maize Grain Yield? Part 2: Impact of Phosphorus Uptake on Grain Quality and Partitioning of Nutrients. Agronomy 2023, 13, 258. https://doi.org/10.3390/agronomy13010258
Penn CJ, Camberato JJ, Wiethorn MA. How Much Phosphorus Uptake Is Required for Achieving Maximum Maize Grain Yield? Part 2: Impact of Phosphorus Uptake on Grain Quality and Partitioning of Nutrients. Agronomy. 2023; 13(1):258. https://doi.org/10.3390/agronomy13010258
Chicago/Turabian StylePenn, Chad J., James J. Camberato, and Matthew A. Wiethorn. 2023. "How Much Phosphorus Uptake Is Required for Achieving Maximum Maize Grain Yield? Part 2: Impact of Phosphorus Uptake on Grain Quality and Partitioning of Nutrients" Agronomy 13, no. 1: 258. https://doi.org/10.3390/agronomy13010258
APA StylePenn, C. J., Camberato, J. J., & Wiethorn, M. A. (2023). How Much Phosphorus Uptake Is Required for Achieving Maximum Maize Grain Yield? Part 2: Impact of Phosphorus Uptake on Grain Quality and Partitioning of Nutrients. Agronomy, 13(1), 258. https://doi.org/10.3390/agronomy13010258