Effects of Reducing Nitrogen Application Rate under Different Irrigation Methods on Grain Yield, Water and Nitrogen Utilization in Winter Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sampling and Measurements
2.3.1. Water Consumption and Use Efficiency
2.3.2. Leaf Area Index (LAI) and Chlorophyll Content of Flag Leaves
2.3.3. Dry Matter Accumulation (DM) and Grain Yield (GY)
2.3.4. Soil Nitrate Nitrogen (NO3−-N) Residue, Nitrogen Accumulation and Use
2.4. Data Analysis
3. Results
3.1. Grain Yield and Yield Components
3.2. Leaf Area Index (LAI) and Chlorophyll Content Flag Leaf
3.3. Dry Matter Accumulation and Translocation
3.4. Water Consumption and Utilization
3.5. Soil Water Utilization
3.6. Nitrogen Accumulation and Utilization in Plants
3.7. Soil Available Nitrogen Accumulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistic of China. China Statistical Year Book; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Wu, X.; Wang, P.J.; Huo, Z.G.; Wu, D.R.; Yang, J.Y. Crop drought identification index for winter wheat based on evapotranspiration in the Huang-Huai-Hai Plain, China. Agric. Ecosyst. Environ. 2018, 263, 18–30. [Google Scholar] [CrossRef]
- Ren, P.; Huang, F.; Li, B. Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction. Agric. Water Manag. 2022, 263, 107468. [Google Scholar] [CrossRef]
- Yang, X.L.; Chen, Y.Q.; Pacenka, S.; Gao, W.S.; Ma, L.; Wang, G.Y.; Yan, P.; Sui, P.; Steenhuis, T.S. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. J. Hydrol. 2015, 522, 428–438. [Google Scholar] [CrossRef]
- Yang, X.L.; Chen, Y.Q.; Pacenka, S.; Gao, W.S.; Zhang, M.; Sui, P.; Steenhuis, T.S. Recharge and groundwater use in the North China Plain for six irrigated crops for an eleven year period. PLoS ONE. 2015, 10, e0115269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, X.B.; Zhang, X.L.; Lal, R.; Zhang, F.R.; Chen, X.H.; Niu, Z.G.; Han, L.; Song, W. Groundwater depletion by agricultural intensification in China’s HHH Plains, Since 1980s. Adv. Agron. 2016, 135, 59–106. [Google Scholar]
- Yang, X.L.; Wang, G.Y.; Chen, Y.Q.; Sui, P.; Pacenka, S.; Steenhuis, T.S.; Siddique, K.H.M. Reduced groundwater use and increased grain production by optimized irrigation scheduling in winter wheat–summer maize double cropping system—A 16-year field study in North China Plain. Field Crops Res. 2022, 275, 108364. [Google Scholar] [CrossRef]
- Pei, H.W.; Scanlon, B.R.; Shen, Y.J.; Reedy, R.C.; Long, D.; Liu, C.M. Impacts of varying agricultural intensification on crop yield and groundwater resources: Comparison of the North China Plain and US High Plains. Environ. Res. Lett. 2015, 10, 044013. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Hu, K.L.; Li, B.G.; Liu, H.T. Coupled simulation of soil water-heat- carbon nitrogen process and crop growth at soil-plant-atmosphere continuum system. Trans. CSAE. 2014, 30, 54–66. [Google Scholar]
- Li, T.L.; Xie, Y.H.; Gao, Z.Q.; Hong, J.P.; Li, L.; Meng, H.S.; Ma, H.M.; Jia, J.X. Year-round film mulching system with monitored fertilization management improve grain yield and water and nitrogen use efficiencies of winter wheat in the dryland of the Loess Plateau, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 9524–9535. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.X.; Zhang, M.; Li, J.P.; Liu, Z.Q.; Zhao, Z.G.; Zhang, Y.H.; Zhou, S.L.; Wang, Z.M. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Res. 2018, 221, 219–227. [Google Scholar] [CrossRef]
- Ali, S.; Xu, Y.Y.; Ma, X.C.; Ahmad, I.; Manzoor Jia, Q.M.; Akmal, M.; Hussain, Z.; Arif, M.; Cai, T.; Zhang, J.H.; et al. Deficit irrigation strategies to improve winter wheat productivity and regulating root growth under different planting patterns. Agric. Water Manag. 2019, 219, 1–11. [Google Scholar] [CrossRef]
- Li, J.P.; Wang, Y.Q.; Zhang, M.; Liu, Y.; Xu, X.X.; Lin, G.; Wang, Z.M.; Yang, Y.M.; Zhang, Y.H. Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat. Agric. Water Manag. 2019, 211, 59–69. [Google Scholar] [CrossRef]
- Li, J.P.; Xu, X.X.; Lin, G.; Wang, Y.Q.; Liu, Y.; Zhang, M.; Zhou, J.Y.; Wang, Z.M.; Zhang, Y.H. Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain. Sci. Total Environ. 2018, 643, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.; Zhang, Z.; Liu, Y.; Yao, C.S.; Song, W.Y.; Xu, X.X.; Zhang, M.; Zhou, X.N.; Gao, Y.M.; Wang, Z.M.; et al. Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain. Agric. Water Manag. 2019, 224, 105736. [Google Scholar] [CrossRef]
- Liu, S.K.; Lin, X.; Wang, W.Y.; Zhang, B.J.; Wang, D. Supplemental irrigation increases grain yield, water productivity, and nitrogen utilization efficiency by improving nitrogen nutrition status in winter wheat. Agric. Water Manag. 2022, 264, 107505. [Google Scholar] [CrossRef]
- Man, J.G.; Wang, D.; White, P.J. Photosynthesis and drymass production of winter wheat in response to micro-sprinkling irrigation. Agron. J. 2017, 109, 549–561. [Google Scholar] [CrossRef]
- Li, J.P.; Wang, Z.M.; Yao, C.S.; Zhang, Z.; Liu, L.; Zhang, Y.H. Micro-sprinkling irrigation simultaneously improves grain yield and protein concentration of winter wheat in the North China Plain. Crop J. 2021, 9, 1397–1407. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhang, Y.T.; Chen, A.Q.; Liu, H.B.; Zhai, L.M.; Lei, B.K.; Ren, T.Z. An optimal regional nitrogen application threshold for wheat in the North China Plain considering yield and environmental effects. Field Crops Res. 2017, 207, 52–61. [Google Scholar] [CrossRef]
- Abdou, N.M.; Abdel-Razek, M.A.; Abd El-Mageed, S.A.; Semida, W.M.; Leilah, A.A.A.; Abd El-Mageed, T.A.; Ali, E.F.; Majrashi, A.; Rady, M.O.A. High nitrogen fertilization modulates morpho-physiological responses, yield, and water productivity of lowland rice under deficit irrigation. Agronomy 2021, 11, 1291. [Google Scholar] [CrossRef]
- Agami, R.A.; Alamri, S.A.M.; El-Mageed, T.A.A.; Abousekken, M.S.M.; Hashem, M. Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agric. Water Manag. 2018, 210, 261–270. [Google Scholar] [CrossRef]
- Si, Z.Y.; Zain, M.; Mehmood, F.; Wang, G.S.; Gao, Y.; Duan, A.W. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric. Water Manag. 2020, 231, 106002. [Google Scholar] [CrossRef]
- Zheng, X.J.; Yu, Z.W.; Zhang, Y.L.; Shi, Y. Nitrogen supply modulates nitrogen remobilization and nitrogen use of wheat under supplemental irrigation in the North China Plain. Sci. Rep. 2020, 10, 3305. [Google Scholar] [CrossRef]
- Wu, Y.C.; Zhou, S.L.; Wang, Z.M. Effect of nitrogen fertilizer applications on yield, water and nitrogen use efficiency under limited irrigation of winter wheat in North China Plain. J. Triticeae Crops 2008, 28, 1016–1620. [Google Scholar]
- Gu, B.J.; Ge, Y.; Chang, S.X.; Luo, W.D.; Chang, J. Nitrate in groundwater of China: Sources and driving forces. Glob. Environ. Chang. 2013, 23, 1112–1121. [Google Scholar] [CrossRef]
- Duan, J.Z.; Shao, Y.H.; He, L.; Li, X.; Hou, G.G.; Li, S.N.; Feng, W.; Zhu, Y.J.; Wang, Y.H.; Xie, Y.X. Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Sci. Total Environ. 2019, 697, 134088. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 6, 415–421. [Google Scholar] [CrossRef]
- Man, J.G.; Yu, J.S.; White, P.J.; Gu, S.B.; Zhang, Y.L.; Guo, Q.F.; Shi, Y.; Wang, D. Effects of supplemental irrigation with micro-sprinkling hoses on water distribution in soil and grain yield of winter wheat. Field Crops Res. 2014, 161, 26–37. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chen, S.Y.; Sun, H.Y.; Shao, L.W.; Wang, Y.Z. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades. Agric. Water Manag. 2011, 98, 1097–1104. [Google Scholar] [CrossRef]
- Gao, Z.; Liang, X.G.; Lin, S.; Zhao, X.; Zhang, L.; Zhou, L.L.; Shen, S.; Zhou, S.L. Supplemental irrigation at tasseling optimizes water and nitrogen distribution for high-yield production in spring maize. Field Crops Res. 2017, 209, 120–128. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, Z.W.; Man, J.G.; Ma, S.Y.; Gao, Z.Q.; Zhang, Y.L. Tillage practices affect dry matter accumulation and grain yield in winter wheat in the North China Plain. Soil Till. Res. 2016, 160, 73–81. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Y.; Guo, Z.J.; Zhang, Y.L.; Yu, Z.W. Water use and soil nitrate nitrogen changes under supplemental irrigation with nitrogen application rate in wheat field. Field Crops Res. 2015, 183, 117–125. [Google Scholar] [CrossRef]
- Zhang, J.T.; Wang, Z.M.; Zhou, S.L. Soil nitrate n accumulation under different N-fertilizer rates in summer maize and its residual effects on subsequent winter wheat. Sci. Agric. Sin. 2013, 46, 1182–1190. [Google Scholar]
- Dordas, C.A.; Sioulas, C. Dry matter and nitrogen accumulation, partitioning and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crops Res. 2009, 110, 35–43. [Google Scholar] [CrossRef]
- Ruisi, P.; Saia, S.; Badagliacca, G.; Amato, G.; Frenda, A.S.; Giambalvo, D.; Miceli, G.D. Long-term effects of no tillage treatment on soil N availability, N uptake, and 15N-fertilizer recovery of durum wheat differ in relation to crop sequence. Field Crops Res. 2016, 189, 51–58. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.H.; Chen, Z.J.; Xiong, Y.W.; Huang, Q.Z.; Xu, X.; Huo, Z.L. Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China. Agric. Water Manag. 2022, 260, 107277. [Google Scholar] [CrossRef]
- Wang, L.L.; Palta, J.A.; Chen, W.; Chen, Y.; Deng, X. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agric. Water Manag. 2018, 197, 41–53. [Google Scholar] [CrossRef]
- Li, W.Q.; Han, M.M.; Pang, D.W.; Chen, J.; Wang, Y.Y.; Dong, H.H.; Chang, Y.L.; Jin, M.; Luo, Y.L.; Li, Y.; et al. Characteristics of lodging resistance of high-yield winter wheat as affected by nitrogen rate and irrigation managements. J. Integr. Agr. 2022, 20, 2–21. [Google Scholar] [CrossRef]
- Rodriguez, D.; Andrade, F.H.; Goudriaan, J. Effects of phosphorus nutrition on tiller emergence in wheat. Plant Soil. 1999, 209, 283–295. [Google Scholar] [CrossRef]
- Longnecker, N.; Kirby, E.J.M.; Robson, A. Leaf emergence, tiller growth, and apical development of nitrogen-dificient spring wheat. Crop Sci. 1993, 33, 154–160. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Hu, Y.X.; Dang, T.H.; Guo, S.L. Divergent responses of tiller and grain yield to fertilization and fallow precipitation: Insights from a 28-year long-term experiment in a semiarid winter wheat system. J. Integr. Agric. 2021, 20, 3003–3011. [Google Scholar] [CrossRef]
- Wang, D.; Yu, Z.W.; White, P.J. The effect of supplemental irrigation after jointing on leaf senescence and grain filling in wheat. Field Crops Res. 2013, 151, 35–44. [Google Scholar] [CrossRef]
- Du, X.; Gao, Z.; Sun, X.N.; Bian, D.H.; Ren, J.H.; Yan, P.; Cui, Y.H. Increasing temperature during early spring increases winter wheat grain yield by advancing phenology and mitigating leaf senescence. Sci. Total Environ. 2022, 812, 152557. [Google Scholar] [CrossRef]
- Wu, J.D.; Li, J.C.; Wei, F.Z.; Wang, C.Y.; Zhang, Y.; Sun, G. Effects of nitrogen spraying on the post-anthesis stage of winter wheat under waterlogging stress. Acta Physiol. Plant. 2014, 36, 207–216. [Google Scholar] [CrossRef]
- Ma, S.Y.; Yu, Z.W.; Shi, Y.; Gao, Z.Q.; Luo, L.P.; Chu, P.F.; Guo, Z.J. Soil water use, grain yield and water use efficiency of winter wheat in a long-term study of tillage practices and supplemental irrigation on the North China Plain. Agric. Water Manag. 2015, 150, 9–17. [Google Scholar] [CrossRef]
- Moradi, L.; Siosemardeh, A.; Sohrabi, Y.; Bahramnejad, B.; Hosseinpanahi, F. Dry matter remobilization and associated traits, grain yield stability, N utilization, and grain protein concentration in wheat cultivars under supplemental irrigation. Agric. Water Manag. 2022, 263, 107449. [Google Scholar] [CrossRef]
- Zhang, H.B.; Han, K.; Gu, S.B.; Wang, D. Effects of supplemental irrigation on the accumulation, distribution and transportation of 13C-photosynthate, yield and water use efficiency of winter wheat. Agric. Water Manag. 2019, 214, 1–8. [Google Scholar] [CrossRef]
- Meng, W.W.; Yu, Z.W.; Zhao, J.Y.; Zhang, Y.L.; Shi, Y. Effects of supplemental irrigation based on soil moisture levels on photosynthesis, dry matter accumulation, and remobilization in winter wheat (Triticum aestivum L.) cultivars. Plant Product. Sci. 2017, 20, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.L.; Tao, H.B.; Tian, B.J.; Gao, Y.B.; Ren, J.H.; Wang, P. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat. Field Crops Res. 2016, 196, 268–275. [Google Scholar] [CrossRef]
- Gao, Y.M.; Zhang, M.; Yao, C.S.; Liu, Y.Q.; Wang, Z.M.; Zhang, Y.H. Increasing seeding density under limited irrigation improves crop yield and water productivity of winter wheat by constructing a reasonable population architecture. Agric. Water Manag. 2021, 253, 106951. [Google Scholar] [CrossRef]
- Li, H.R.; Mei, X.R.; Wang, J.D.; Huang, F.; Hao, W.P.; Li, B.G. Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China. Agric. Water Manag. 2021, 244, 106534. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liu, W.X.; Li, Q.X.; Ma, D.Y.; Lu, H.F.; Feng, W.; Xie, Y.X.; Zhu, Y.J.; Guo, T.C. Effects of different irrigation and nitrogen regimes on root growth and its correlation with aboveground plant parts in high-yielding wheat under field conditions. Field Crops Res. 2014, 165, 138–149. [Google Scholar] [CrossRef]
- Jha, S.K.; Gao, Y.; Liu, H.; Huang, Z.D.; Wang, G.S.; Liang, Y.P.; Duan, A.W. Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China. Agric. Water Manag. 2017, 182, 139–150. [Google Scholar] [CrossRef]
- Yan, F.L.; Shi, Y.; Yu, Z.W. Optimized border irrigation improved nitrogen accumulation, translocation of winter wheat and reduce soil nitrate nitrogen residue. Agronomy 2022, 12, 433. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, F.; Maucieri, C.; Zhang, Y.J. Efficient irrigation methods and optimal nitrogen dose to enhance wheat yield, inputs efficiency and economic benefits in the North China Plain. Agronomy 2022, 12, 273. [Google Scholar] [CrossRef]
- Xu, J.T.; Cai, H.J.; Wang, X.i.Y.; Ma, C.G.; Lu, Y.J.; Ding, Y.B.; Wang, X.W.; Chen, H.; Wang, Y.F.; Saddique, Q. Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching. Agric. Water Manag. 2020, 228, 105904. [Google Scholar] [CrossRef]
- Yang, X.L.; Lu, Y.L.; YDing Yin, X.F.; Raza, S.; Tong, Y.A. Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014). Field Crops Res. 2017, 206, 1–10. [Google Scholar] [CrossRef]
- Lemenkova, P. 117 Mapping environmental and climate variations by GMT: A case of Zambia, Central Africa. Zemljište i biljka 2021, 70, 117–136. [Google Scholar] [CrossRef]
- Stričević, R.; Vujadinović-Mandić, M.; Đurović, N.; Lipovac, A. Application of two measures of adaptation to climate change for assessment on the yield of wheat, corn and sunflower by the aquacrop model. Zemljište i biljka 2021, 70, 41–59. [Google Scholar] [CrossRef]
- Ljubičić, N.; Popović, V.; Ćirić, V.; Kostić, M.; Ivošević, B.; Popović, D.; Pandžić, M.; El Musafah, S.; Janković, S. Multivariate interaction analysis of winter wheat grown in environment of limited soil conditions. Plants 2021, 10, 604. [Google Scholar] [CrossRef] [PubMed]
- Ljubičić, N.; Popović, V.; Ivošević, B.; Rajičić, V.; Simić, D.; Kostić, M.; Pajić, M. Spike index stability of bread wheat grown on halomorphic soil. Selekcija i Semenarstvo 2022, 28, 1–8. [Google Scholar] [CrossRef]
- Popovic, V.; Ljubičić, N.; Kostić, M.; Radulović, M.; Blagojević, D.; Ugrenovic, V.; Popovic, D.; Ivosevic, B. Genotype × environment interaction for wheat yield traits suitable for selection in different seed priming conditions. Plants 2020, 9, 1804. [Google Scholar] [CrossRef] [PubMed]
Year | Treatment | GY (kg·ha−1) | SN (×104·ha−1) | GN (Grain·Spike−1) | TGW (g) |
---|---|---|---|---|---|
2016–2017 | CIN45 | 7769.6 ± 102.5 d | 819.0 ± 11.7 a | 27.6 ± 0.25 a | 42.3 ± 0.28 e |
CIN90 | 8503.7 ± 284.5 c | 826.0 ± 12.2 a | 27.7 ± 0.21 a | 43.6 ± 0.32 d | |
SIN45 | 8882.7 ± 102.9 c | 819.6 ± 2.2 a | 28.2 ± 0.26 a | 45.8 ± 0.18 bc | |
SIN90 | 9786.4 ± 120.3 a | 830.4 ± 10.4 a | 27.8 ± 0.28 a | 46.7 ± 0.32 a | |
DIN45 | 8366.0 ± 99.9 c | 818.6 ± 9.2 a | 27.6 ± 0.21 a | 45.5 ± 0.26 c | |
DIN90 | 9111.5 ± 87.8 b | 820.9 ± 5.5 a | 27.8 ± 0.21 a | 46.1 ± 0.09 b | |
2017–2018 | CIN45 | 6658.2 ± 35.3 d | 648.4 ± 5.8 a | 29.9 ± 0.15 a | 41.3 ± 0.73 e |
CIN90 | 6940.2 ± 35.2 c | 677.8 ± 2.5 a | 30.3 ± 0.13 a | 42.8 ± 0.19 d | |
SIN45 | 6905.0 ± 35.2 c | 665.6 ± 5.4 a | 30.4 ± 0.09 a | 43.7 ± 0.27 c | |
SIN90 | 7710.7 ± 34.9 a | 674.5 ± 6.7 a | 30.2 ± 0.02 a | 45.4 ± 0.68 a | |
DIN45 | 6881.5 ± 66.7 c | 666.9 ± 2.5 a | 30.0 ± 0.33 a | 43.5 ± 0.12 c | |
DIN90 | 7279.6 ± 89.9 b | 668.7 ± 14.2 a | 30.1 ± 0.39 a | 45.0 ± 1.1 b |
Year | Treatment | DMA (kg·ha−1) | DMM (kg·ha−1) | DMR (%) | DMPR (%) | HI |
---|---|---|---|---|---|---|
2016–2017 | CIN45 | 15395.6 ± 130.5 b | 20214.9 ± 10.3.3 e | 38.6 ± 0.63 a | 61.4 ± 0.63 d | 0.388 ± 0.002 c |
CIN90 | 15805.3 ± 81.4 a | 21684.0 ± 65.3 d | 32.7 ± 0.50 b | 67.3 ± 0.50 c | 0.403 ± 0.001 b | |
SIN45 | 15055.1 ± 105.1 c | 22507.8 ± 100.3 c | 17.5 ± 2.39 d | 82.5 ± 2.39 a | 0.401 ± 0.002 b | |
SIN90 | 15384.0 ± 108.6 b | 23794.7 ± 84.8 a | 15.7 ± 0.69 d | 84.3 ± 0.69 a | 0.419 ± 0.001 a | |
DIN45 | 14948.0 ± 87.6 c | 21800.4 ± 58.8 d | 22.3 ± 0.78 c | 77.7 ± 0.78 b | 0.405 ± 0.003 b | |
DIN90 | 15409.1 ± 32.9 b | 22926.0 ± 99.2 b | 22.0 ± 0.67 c | 78.0 ± 0.67 b | 0.420 ± 0.001 a | |
2017–2018 | CIN45 | 12402.7 ± 62.0 b | 16182.2 ± 71.1 e | 43.5 ± 1.39 a | 56.5 ± 1.39 d | 0.414 ± 0.001 d |
CIN90 | 12653.3 ± 67.7 a | 17488.9 ± 7.3 b | 32.9 ± 0.73 c | 67.1 ± 0.73 c | 0.412 ± 0.001 d | |
SIN45 | 12320.7 ± 99.3 bc | 17128.7 ± 91.9 c | 33.3 ± 1.01 c | 66.7 ± 1.01 c | 0.421 ± 0.002 bc | |
SIN90 | 12425.1 ± 53.0 b | 17962.4 ± 37.3 a | 28.6 ± 0.65 d | 71.4 ± 0.65 a | 0.432 ± 0.001 a | |
DIN45 | 12248.4 ± 49.6 c | 16627.3 ± 63.2 d | 37.1 ± 0.56 b | 62.9 ± 0.56 c | 0.419 ± 0.003 c | |
DIN90 | 12435.8 ± 22.1 b | 17476.0 ± 27.2 b | 32.0 ± 0.51 c | 68.0 ± 0.51 b | 0.424 ± 0.003 b |
Year | Treatment | Soil Water Consumption Amount (mm) | SW (mm) | ||||
---|---|---|---|---|---|---|---|
SW1 | Ratio (%) | SW2 | Ratio (%) | ||||
2016–2017 | CIN45 | 144.2 ± 1.35 b | 72.1 ± 0.61 a | 55.8 ± 2.19 d | 27.9 ± 0.61 b | 200.0 ± 3.51 c | |
CIN90 | 158.9 ± 0.43 a | 70.5 ± 0.89 a | 66.5 ± 2.69 c | 29.5 ± 0.89 b | 225.5 ± 2.40 a | ||
SIN45 | 134.3 ± 0.86 c | 66.4 ± 0.74 b | 68.1 ± 2.34 bc | 33.6 ± 0.74 a | 202.4 ± 3.68 c | ||
SIN90 | 140.4 ± 4.97 b | 65.7 ± 2.14 b | 73.3 ± 5.21 ab | 34.3 ± 2.14 a | 213.6 ± 4.96 b | ||
DIN45 | 135.8 ± 1.16 c | 66.7 ± 0.95 b | 67.8 ± 2.77 bc | 33.3 ± 0.95 a | 203.6 ± 2.87 c | ||
DIN90 | 143.4 ± 1.39 b | 65.3 ± 1.28 b | 76.3 ± 2.22 a | 34.7 ± 1.28 a | 219.7 ± 4.08 ab | ||
2017–2018 | CIN45 | 83.5 ± 3.35 c | 85.7 ± 2.51 a | 13.9 ± 3.21 d | 14.3 ± 2.51 b | 97.4 ± 6.24 c | |
CIN90 | 98.5 ± 2.80 a | 78.3 ± 1.34 b | 27.2 ± 2.86 a | 21.7 ± 1.34 a | 125.7 ± 5.49 a | ||
SIN45 | 75.4 ± 2.32 d | 77.7 ± 1.96 b | 21.6 ± 2.52 c | 22.3 ± 1.96 a | 97.0 ± 3.93 c | ||
SIN90 | 86.8 ± 1.74 bc | 76.7 ± 0.66 b | 26.4 ± 1.09 a | 23.3 ± 0.66 a | 113.2 ± 2.43 b | ||
DIN45 | 79.2 ± 1.27 d | 76.9 ± 1.84 b | 23.7 ± 2.08 bc | 23.1 ± 1.84 a | 102.9 ± 0.83 c | ||
DIN90 | 90.2 ± 1.10 b | 77.0 ± 0.46 b | 26.9 ± 0.38 a | 23.0 ± 0.46 a | 117.1 ± 0.78 b |
Year | Treatment | Soil NO3−-N Accumulation Amount (kg·ha−1) | SNC (kg·ha−1) | ||||
---|---|---|---|---|---|---|---|
SNC1 | Ratio (%) | SNC2 | Ratio (%) | ||||
2016–2017 | CIN45 | 38.0 ± 2.37 b | 20.3 ± 1.15 b | 148.9 ± 2.37 b | 79.7 ± 1.15 a | 186.9 ± 1.42 c | |
CIN90 | 64.0 ± 4.77 a | 24.4 ± 4.91 b | 198.1 ± 4.77 a | 75.6 ± 4.91 a | 262.1 ± 0.39 a | ||
SIN45 | 39.5 ± 6.45 b | 22.3 ± 5.39 b | 138.0 ± 6.45 c | 77.7 ± 5.39 a | 177.5 ± 1.41 d | ||
SIN90 | 63.2 ± 4.70 a | 29.1 ± 0.99 a | 154.0 ± 4.70 b | 70.9 ± 0.99 b | 217.2 ± 3.71 b | ||
DIN45 | 41.1 ± 5.84 b | 22.8 ± 4.44 b | 139.0 ± 5.84 c | 77.2 ± 4.44 a | 180.1 ± 1.45 d | ||
DIN90 | 66.5 ± 1.63 a | 30.1 ± 1.90 a | 154.5 ± 1.63 b | 69.9 ± 1.90 b | 221.0 ± 3.48 b | ||
2017–2018 | CIN45 | 92.8 ± 5.51 b | 29.3 ± 1.14 c | 224.2 ± 2.26 b | 70.7 ± 1.14 a | 316.9 ± 6.79 c | |
CIN90 | 125.4 ± 2.97 a | 33.0 ± 0.82 b | 254.2 ± 3.73 a | 67.0 ± 0.82 b | 379.6 ± 1.74 a | ||
SIN45 | 95.1 ± 5.32 b | 31.6 ± 0.87 b | 206.1 ± 4.39 c | 68.4 ± 0.87 b | 301.2 ± 9.27 d | ||
SIN90 | 128.2 ± 4.65 a | 36.5 ± 0.97 a | 222.7 ± 2.80 b | 63.5 ± 0.97 c | 350.9 ± 4.54 b | ||
DIN45 | 98.1 ± 4.38 b | 31.8 ± 0.58 b | 210.5 ± 4.97 c | 68.2 ± 0.58 b | 308.6 ± 9.03 cd | ||
DIN90 | 132.1 ± 3.37 a | 37.2 ± 0.66 a | 223.0 ± 2.31 b | 62.8 ± 0.66 c | 355.1 ± 3.96 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, Z.; Song, Y.; Li, J.; Zhang, Y. Effects of Reducing Nitrogen Application Rate under Different Irrigation Methods on Grain Yield, Water and Nitrogen Utilization in Winter Wheat. Agronomy 2022, 12, 1835. https://doi.org/10.3390/agronomy12081835
Li J, Wang Z, Song Y, Li J, Zhang Y. Effects of Reducing Nitrogen Application Rate under Different Irrigation Methods on Grain Yield, Water and Nitrogen Utilization in Winter Wheat. Agronomy. 2022; 12(8):1835. https://doi.org/10.3390/agronomy12081835
Chicago/Turabian StyleLi, Jinpeng, Zhimin Wang, Youhong Song, Jincai Li, and Yinghua Zhang. 2022. "Effects of Reducing Nitrogen Application Rate under Different Irrigation Methods on Grain Yield, Water and Nitrogen Utilization in Winter Wheat" Agronomy 12, no. 8: 1835. https://doi.org/10.3390/agronomy12081835
APA StyleLi, J., Wang, Z., Song, Y., Li, J., & Zhang, Y. (2022). Effects of Reducing Nitrogen Application Rate under Different Irrigation Methods on Grain Yield, Water and Nitrogen Utilization in Winter Wheat. Agronomy, 12(8), 1835. https://doi.org/10.3390/agronomy12081835