Nitrogen Use Efficiency in Durum Wheat (Triticum durum Desf.) Grown under Semiarid Conditions in Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Crop Management
2.2. Experimental Design and Treatments Description
2.3. Sampling Method, Measurements of Traits, and Data Collection
2.4. Statistical Analysis
3. Results
3.1. Dry Matter Accumulation
3.2. Grain Yield and Yield Components
3.3. Marginal Net Return (MNR)
3.4. Total Nitrogen Uptake at Maturity, Nitrogen Uptake by Grain, and Nitrogen Harvest Index
3.5. Nitrogen Use Efficiency and Its Components
3.6. Correlations between NUE and Its Components with Other Traits
4. Discussion
4.1. Dry Matter, Grain Yield, and Total N Uptake
4.2. Nitrogen Use Efficiency (NUE) and Its Components
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Djermoun, A. La production céréalière en Algérie: Les principales caractéristiques. Rev. Nat. Technol. 2009, 1, 45–53. Available online: https://www.asjp.cerist.dz/en/article/41189 (accessed on 22 April 2022).
- Ranieri, R. Geography of the durum wheat crop. Pastaria Int. 2015, 6, 24–36. Available online: http://www.openfields.it/sito/wp-content/uploads/2016/01/PASTARIA2015_N06_en-artOF.pdf (accessed on 22 April 2022).
- ITGC. ITGC—Institut Technique des Grandes Cultures. Available online: http://www.itgc.dz/ (accessed on 22 April 2022).
- Bessaoud, O.; Pellissier, J.P.; Rolland, J.P.; Khechimi, W. Rapport de Synthèse sur L’agriculture en Algérie. CIHEAM-IAMM. 2019, p. 82. Available online: https://hal.archives-ouvertes.fr/hal-02137632 (accessed on 22 April 2022).
- FAOSTAT. Data in Food and Agriculture Organization. Available online: http://www.fao.org/faostat/fr/#data/QC (accessed on 23 June 2020).
- Djaouti, M. Renforecement des Capacités des Acteurs de la Filière Céréales en Algérie dans le Cadre d’un Partenariat Nord-Sud. Ca de la Wilaya de Sétif, Thèse de Master of Sciences du CIHEAM_IAMM, Montpellier. 2010. Available online: http://www.secheresse.info/spip.php?article70340 (accessed on 10 September 2021).
- Benbelkacem, A. Adaptation of cereal cultivars to extreme agroecologic environments of North Africa. Field Crops Res. 1996, 45, 49–55. Available online: https://art1lib.org/book/16399579/eb40f4 (accessed on 22 April 2022). [CrossRef]
- Mekhlouf, A.; Dehbi, F.; Bouzerzour, H.; Hannchi, A.; Benmahammed, A.; Adjabi, A. Relationships Between Cold Tolerance, Grain Yield Performance and Stability of Durum Wheat (Triticum durum Desf.) Genotypes Grown at High Elevation Area of Eastern Algeria. Asian J. Plant Sci. 2006, 4, 700–708. Available online: https://agris.fao.org/agris-search/search.do?recordID=DJ2012050409 (accessed on 22 April 2022).
- Xynias, I.N.; Mylonas, I.; Korpetis, E.G.; Ninou, E.; Tsaballa, A.; Avdikos, I.D.; Mavromatis, A.G. Durum Wheat Breeding in the Mediterranean Region: Current Status and Future Prospects. Agronomy 2020, 3, 432. Available online: https://www.mdpi.com/2073-4395/10/3/432 (accessed on 22 April 2022). [CrossRef] [Green Version]
- Cammarano, D.; Ceccarelli, S.; Grando, S.; Romagosa, I.; Benbelkacem, A.; Akar, T.; Al-Yassin, A.; Pecchioni, N.; Francia, E.; Rongaa, D. The impact of climate change on barley yield in the Mediterranean basin. Eur. J. Agron. 2019, 106, 1–11. Available online: https://www.sciencedirect.com/science/article/pii/S1161030119300243 (accessed on 22 April 2022). [CrossRef]
- Di Mola, I.; Conti, S.; Cozzolino, E.; Melchionna, G.; Ottaiano, L.; Testa, A.; Sabatino, L.; Rouphael, Y.; Mori, M. Plant-Based Protein Hydrolysate Improves Salinity Tolerance in Hemp: Agronomical and Physiological Aspects. Agronomy 2021, 2, 342. Available online: https://www.mdpi.com/2073-4395/11/2/342 (accessed on 22 April 2022). [CrossRef]
- Carucci, F.; Gatta, G.; Gagliardi, A.; Vita, P.D.; Giuliani, M.M. Strobilurin Effects on Nitrogen Use Efficiency for the Yield and Protein in Durum Wheat Grown under Rainfed Mediterranean Conditions. Agronomy 2020, 10, 1508. Available online: https://www.mdpi.com/2073-4395/10/10/1508 (accessed on 22 April 2022). [CrossRef]
- Yadav, M.R.; Kumar, R.; Parihar, C.M.; Yadav, R.K.; Jat, S.L.; Ram, H.; Meena, R.K.; Singh, M.; Verma, A.P.; Ghoshand, A.; et al. Strategies for improving nitrogen use efficiency: A review. Agric. Rev. 2017, 1, 29–40. Available online: http://arccjournals.com/journal/agricultural-reviews/R-1677 (accessed on 22 April 2022). [CrossRef] [Green Version]
- Xu, H.-C.; Dai, X.-L.; Chu, J.-P.; Wang, Y.-C.; Yin, L.-J.; Ma, X.; Dong, S.; He, M.-R. Integrated management strategy for improving the grain yield and nitrogen-use efficiency of winter wheat. J. Integr. Agric. 2018, 2, 315–327. Available online: http://www.sciencedirect.com/science/article/pii/S2095311917618057 (accessed on 22 April 2022). [CrossRef]
- Foulkes, M.J.; Hawkesford, M.J.; Barraclough, P.B.; Holdsworth, M.J.; Kerr, S.; Kightley, S.; Shewry, P. Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Res. 2009, 3, 329–342. Available online: http://www.sciencedirect.com/science/article/pii/S0378429009002408 (accessed on 22 April 2022). [CrossRef]
- Gaju, O.; Allard, V.; Martre, P.; Snape, J.; Heumez, E.; LeGouis, J.; Moreau, D.; Bogard, M.; Griffiths, S.; Orford, S.; et al. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res. 2011, 123, 139–152. [Google Scholar] [CrossRef]
- Ladha, J.K.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; Van Kessel, C.; Richter, D.D.B.; Chakraborty, D.; Pathak, H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice and wheat production systems. Sci. Rep. 2016, 1, 19355. Available online: https://www.nature.com/articles/srep19355/ (accessed on 22 April 2022). [CrossRef] [PubMed] [Green Version]
- Hawkesford, M.J. Genetic variation in traits for nitrogen use efficiency in wheat. J. Exp. Bot. 2017, 10, 2627–2632. [Google Scholar] [CrossRef]
- Kichey, T.; Hirel, B.; Heumez, E.; Dubois, F.; Le Gouis, J. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops Res. 2007, 1, 22–32. Available online: http://www.sciencedirect.com/science/article/pii/S0378429007000135 (accessed on 22 April 2022). [CrossRef]
- Pask, A.J.D.; Sylvester-Bradley, R.; Jamieson, P.D.; Foulkes, M.J. Quantifying how winter wheat crops accumulate and use nitrogen reserves during growth. Field Crops Res. 2012, 126, 104–118. Available online: http://www.sciencedirect.com/science/article/pii/S0378429011003364 (accessed on 22 April 2022). [CrossRef]
- Ercoli, L.; Masoni, A.; Pampana, S.; Mariotti, M.; Arduini, I. As durum wheat productivity is affected by nitrogen fertilisation management in Central Italy. Eur. J. Agron. 2013, 44, 38–45. Available online: http://www.sciencedirect.com/science/article/pii/S1161030112001190 (accessed on 22 April 2022). [CrossRef]
- Karrou, M. Variation génotypique de I’efficience d’utilisation de l’azote chez le blé tendre. Al Awamia 1996, 95, 39–51. Available online: https://www.inra.org.ma/fr/content/variation-g%C3%A9notypique-de-l%E2%80%99efficience-d%E2%80%99utilisation-de-l%E2%80%99azote-chez-le-bl%C3%A9-tendre (accessed on 22 April 2022).
- Delogu, G.; Cattivelli, L.; Pecchioni, N.; De Falcis, D.; Maggiore, T.; Stanca, A.M. Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat. Eur. J. Agron. 1998, 1, 11–20. Available online: http://www.sciencedirect.com/science/article/pii/S1161030198000197 (accessed on 22 April 2022). [CrossRef]
- López-Bellido, R.J.; López-Bellido, L. Efficiency of nitrogen in wheat under Mediterranean conditions: Effect of tillage, crop rotation and N fertilization. Field Crops Res. 2001, 71, 31–46. [Google Scholar] [CrossRef]
- Giambalvo, D.; Stringi, L.; Durante, G.; Amato, G.; Frenda, A. Nitrogen efficiency component analysis in wheat under rainfed Mediterranean conditions: Effects of crop rotation and nitrogen fertilization. Options Méditerranéennes 2004, 60, 169–173. Available online: http://om.ciheam.org/article.php?IDPDF=4600059 (accessed on 22 April 2022).
- Rahimizadeh, M.; Kashani, A.; Zare-Feizabadi, A.; Koocheki, A.R.; Nassiri-Mahallati, M. Nitrogen use efficiency of wheat as affected by preceding crop, application rate of nitrogen and crop residues. Aust. J. Crop Sci. 2010, 5, 363–368. Available online: https://search.informit.org/doi/10.3316/INFORMIT.414715022907778 (accessed on 22 April 2022).
- Naser, M.A.; Khosla, R.; Longchamps, L.; Dahal, S. Characterizing Variation in Nitrogen Use Efficiency in Wheat Genotypes Using Proximal Canopy Sensing for Sustainable Wheat Production. Agronomy 2020, 6, 773. Available online: https://www.mdpi.com/2073-4395/10/6/773 (accessed on 22 April 2022). [CrossRef]
- López-Bellido, L.; López-Bellido, R.J.; López-Bellido, F.J. Fertilizer Nitrogen Efficiency in Durum Wheat under Rainfed Mediterranean Conditions: Effect of Split Application. Agron. J. 2006, 1, 55–62. Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj2005.0017 (accessed on 22 April 2022). [CrossRef]
- Cammarano, D.; Hawes, C.; Squire, G.; Holland, J.; Rivington, M.; Murgia, T.; Roggero, P.P.; Fontana, F.; Casa, R.; Ronga, D. Rainfall and temperature impacts on barley (Hordeum vulgare L.) yield and malting quality in Scotland. Field Crops Res. 2019, 241, 107559. Available online: https://www.sciencedirect.com/science/article/pii/S0378429019307877 (accessed on 22 April 2022). [CrossRef]
- Karrou, M. Stratégies D’amélioration de L’efficience D’utilisation de L’azote chez les céréales au Maroc. Ph.D. Thesis, Gembloux Agro-Bio Tech Université de Liège, Gembloux, Belgium, 2001. [Google Scholar]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and Interpretation of Factors Which Contribute to Efficiency of Nitrogen Utilizatilon. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 7, 1141–1157. [Google Scholar] [CrossRef] [Green Version]
- Raun, W.R.; Johnson, G.V. Improving Nitrogen Use Efficiency for Cereal Production. Agron. J. 1999, 3, 357–363. Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj1999.00021962009100030001x (accessed on 22 April 2022). [CrossRef] [Green Version]
- Lopez-Bellido, R.J.; Shepherd, C.E.; Barraclough, P.B. Predicting post-anthesis N requirements of bread wheat with a Minolta SPAD meter. Eur. J. Agron. 2004, 3, 313–320. Available online: http://www.sciencedirect.com/science/article/pii/S116103010300025X (accessed on 22 April 2022). [CrossRef]
- Sylvester-Bradley, R.; Kindred, D.R. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. J. Exp. Bot. 2009, 7, 1939–1951. Available online: https://academic.oup.com/jxb/article/60/7/1939/684898 (accessed on 22 April 2022). [CrossRef] [Green Version]
- Hirel, B.; Le Gouis, J.; Ney, B.; Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 2007, 9, 2369–2387. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, M.M.; Giuzio, L.; De Caro, A.; Flagella, Z. Relationships between nitrogen utilization and grain technological quality in durum wheat: I. Nitrogen translocation and nitrogen use efficiency for protein. Agron. J. 2011, 103, 1487–1494. [Google Scholar] [CrossRef]
- Zarei, L.; Cheghamirza, K.; Farshadfar, E. Evaluation of grain yield and some agronomic characters in durum wheat (Triticum turgidum L.) Under rainfed conditions. Aust. J. Crop Sci. 2013, 7, 609–617. [Google Scholar]
- Giambalvo, D.; Ruisi, P.; Di Miceli, G.; Salvatore, F.A.; Amato, G. Nitrogen Use Efficiency and Nitrogen Fertilizer Recovery of Durum Wheat Genotypes as Affected by Interspecific Competition. Agron. J. 2010, 2, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Limon-Ortega, A.; Sayre, K.D.; Francis, C.A. Wheat Nitrogen Use Efficiency in a Bed Planting System in Northwest Mexico. Agron. J. 2000, 2, 303–308. Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj2000.922303x (accessed on 22 April 2022). [CrossRef]
- Ronga, D.; Parisi, M.; Pentangelo, A.; Mori, M.; Di Mola, I. Effects of Nitrogen Management on Biomass Production and Dry Matter Distribution of Processing Tomato Cropped in Southern Italy. Agronomy 2019, 12, 855. Available online: https://www.mdpi.com/2073-4395/9/12/855 (accessed on 22 April 2022). [CrossRef] [Green Version]
- Jeuffroy, M.H.; Oury, F.X. Impact des nouvelles techniques de production, impliquant de faibles niveaux d’intrants, sur la quantité de protéines. Innov. Agron. 2012, 19, 13–25. Available online: https://hal.archives-ouvertes.fr/hal-01000353 (accessed on 22 April 2022).
- Albrizio, R.; Todorovic, M.; Matic, T.; Stellacci, A.M. Comparing the interactive effects of water and nitrogen on durum wheat and barley grown in a Mediterranean environment. Field Crops Res. 2010, 2, 179–190. Available online: http://www.sciencedirect.com/science/article/pii/S037842900900313X (accessed on 22 April 2022). [CrossRef]
- Ladha, J.K.; Pathak, H.J.; Krupnik, T.; Six, J.; van Kessel, C. Efficiency of Fertilizer Nitrogen in Cereal Production: Retrospects and Prospects. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2005; pp. 85–156. Available online: http://www.sciencedirect.com/science/article/pii/S0065211305870038 (accessed on 22 April 2022).
- López-Bellido, L.; Fuentes, M.; Castillo, J.E.; López-Garrido, F.J.; Fernández, E.J. Long-Term Tillage, Crop Rotation, and Nitrogen Fertilizer Effects on Wheat Yield under Rainfed Mediterranean Conditions. Agron. J. 1996, 5, 783–791. Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj1996.00021962008800050016x (accessed on 22 April 2022). [CrossRef]
- Souissi, A.; Bahri, H.; Cheikh M’hamed, H.; Chakroun, M.; Benyoussef, S.; Frija, A.; Annabi, M. Effect of Tillage, Previous Crop, and N Fertilization on Agronomic and Economic Performances of Durum Wheat (Triticum durum Desf.) under Rainfed Semi-Arid Environment. Agronomy 2020, 8, 1161. Available online: https://www.mdpi.com/2073-4395/10/8/1161 (accessed on 22 April 2022). [CrossRef]
- Corbeels, M.; Hofman, G.; Van Cleemput, O. Residual effect of nitrogen fertilisation in a wheat–sunflower cropping sequence on a Vertisol under semi-arid Mediterranean conditions. Eur. J. Agron. 1998, 2, 109–116. Available online: http://www.sciencedirect.com/science/article/pii/S1161030198000306 (accessed on 22 April 2022). [CrossRef]
- Vidican, R.; Mălinaș, A.; Rotar, I.; Kadar, R.; Deac, V.; Mălinaș, C. Assessing Wheat Response to N Fertilization in a Wheat–Maize–Soybean Long-Term Rotation through NUE Measurements. Agronomy 2020, 7, 941. Available online: https://www.mdpi.com/2073-4395/10/7/941 (accessed on 22 April 2022). [CrossRef]
- Adeyemi, O.; Keshavarz-Afshar, R.; Jahanzad, E.; Battaglia, M.L.; Luo, Y.; Sadeghpour, A. Effect of Wheat Cover Crop and Split Nitrogen Application on Corn Yield and Nitrogen Use Efficiency. Agronomy 2020, 8, 1081. Available online: https://www.mdpi.com/2073-4395/10/8/1081 (accessed on 22 April 2022). [CrossRef]
- Panayotova, G.; Kostadinova, S.; Manolov, I. Response of durum wheat to nitrogen fertilization rates. Agric. For. 2017, 63, 113–120. Available online: http://89.188.43.75/agricultforest/20171213-13%20Panayotova%20et%20al..pdf (accessed on 22 April 2022). [CrossRef] [Green Version]
- Pampana, S.; Mariotti, M. Durum Wheat Yield and N Uptake as Affected by N Source, Timing, and Rate in Two Mediterranean Environments. Agronomy 2021, 11, 1299. Available online: https://www.mdpi.com/2073-4395/11/7/1299 (accessed on 22 April 2022). [CrossRef]
- Gagliardi, A.; Carucci, F.; Masci, S.; Flagella, Z.; Gatta, G.; Giuliani, M.M. Effects of Genotype, Growing Season and Nitrogen Level on Gluten Protein Assembly of Durum Wheat Grown under Mediterranean Conditions. Agronomy 2020, 10, 755. Available online: https://www.mdpi.com/2073-4395/10/5/755 (accessed on 22 April 2022). [CrossRef]
- Ayadi, S.; Karmous, C.; Hammami, Z.; Trifa, Y.; Rezgui, S. Variation of durum wheat yield and nitrogen use efficiency under Mediterranean rainfed environment. Int. J. Agric. Crop Sci. IJACS 2014, 10, 693–699. Available online: https://www.cabdirect.org/cabdirect/abstract/20143270956 (accessed on 22 April 2022).
- Barut, H.; Aykanat, S.; Şïmşek, T.; Eker, S. Nitrogen-Use Efficiencies of Bread and Durum Wheat Cultivars Grown in Çukurova Region. Uluslar Tarım Yaban Hayatı Bilim Derg. 2015, 1, 15–22. Available online: https://dergipark.org.tr/tr/pub/ijaws/104850 (accessed on 22 April 2022).
- Almaliev, M.; Kostadinova, S.; Panayotova, G. Nitrogen Efficiency in Durum Wheat. In Proceedings of the Eco-Conference, Bulgaria, 2012; pp. 165–172. Available online: https://www.researchgate.net/publication/321797291_NITROGEN_EFFICIENCY_IN_DURUM_WHEAT (accessed on 22 April 2022).
- Ierna, A.; Lombardo, G.M.; Mauromicale, G. Yield, nitrogen use efficiency and grain quality in durum wheat as affected by nitrogen fertilization under a Mediterranean environment. Exp. Agric. 2016, 2, 314–329. Available online: https://www.cambridge.org/core/journals/experimental-agriculture/article/yield-nitrogen-use-efficiency-and-grain-quality-in-durum-wheat-as-affected-by-nitrogen-fertilization-under-a-mediterranean-environment/2F65B2E5918D86B036D331FCB58F7B35 (accessed on 22 April 2022). [CrossRef]
Properties of Experimental Site | |||
---|---|---|---|
Coordinates | 36°08′ N, 5°20′ E. | ||
Altitude (m) | 962 m a.s.l. | ||
Soil texture | Clay soil (Sand 40%, Silt 4%, Clay 56%) | ||
pH (in H2O) | 8.29 | ||
Electrical conductivity (mS/cm) | 0.22 | ||
Organic matter (%) | 1.88 | ||
C/N ratio | 7.81 | ||
Total N (%) | 0.14 | ||
Available Phosphorus P (ppm) | 29.8 | ||
Exchangeable potassium K (meq/100 g) | 1.3 | ||
Harvest year | 2015–2016 | 2016–2017 | 2017–2018 |
Sowing date | 3 December 2015 | 22 December 2016 | 2 January 2018 |
The first N supply at beginning of tillering | 1 February 2016 | 1 March 2017 | 17 March 2018 |
The second N supply at beginning of stem elongation | 4 April 2018 | 12 April 2017 | 19 April 2018 |
Flowering | 12 May 2016 | 3 May 2017 | 13 May 2018 |
Harvesting | 18 July 2016 | 22 June 2017 | 22 June 2018 |
Number of days to heading | 162 | 134 | 133 |
Genotypes | Pedigree | Origin |
Bousselam | Heider/Martes//Huevos de Oro ICD86-0414-ABL-0TR-4AP-0TR-14AP-0TR | ICARDA-CIMMYT |
MBB | Genealogical selection from a landrace population | ITGC (Setif) |
Megres | Ofanto/Waha//MBB | ITGC (Setif) |
GTAdur | Crane/4/PolonicumPI185309//T.glutin en/2 * Tc60/3/Gll | ICARDA-CIMMYT |
Trait | Description | Formula | Units |
DMS-F | Dry matter of spikes at flowering | kg ha−1 | |
DMST-F | Dry matter of straw at flowering | kg ha−1 | |
DMF | Total dry matter at flowering | DMS-F + DMST-F | kg ha−1 |
DMS-M | Dry matter of spikes at maturity | kg ha−1 | |
DMST-M | Dry matter of the straw at maturity | kg ha−1 | |
DMM | Total dry matter at maturity | DMS-M + DMST-M | kg ha−1 |
GY | Grain yield | kg ha−1 | |
NbrS m−2 | Number of spikes m−2 | ||
TGW | Thousand grain weight | (g) | |
HI | Harvest index | GY DMM−1 | % |
NG | Nitrogen uptake by grain | kg N ha−1 | |
NST-M | Nitrogen uptake by straw at maturity | kg N ha−1 | |
NM | Total nitrogen uptake at maturity | NST-M + NG | kg N ha−1 |
NHI | Nitrogen harvest index | NG NM−1 | |
NUE | Nitrogen use efficiency | GY N supply−1 | kg kg−1 |
NUpE | Nitrogen uptake efficiency | NM N supply−1 | kg kg−1 |
NUtE | Nitrogen utilization efficiency | GY NM−1 | kg kg−1 |
MNR | Marginal net return | (Yield × Price) − (Nfertilization × Cost) | € t−1 |
DMF | DMM | GY | NbrS m−2 | TGW | HI | MNR | ||
Effect Years (Y) | 2015/16 | 6859.37 | 8589.93 | 2614.58 | 256.28 | 39.45 | 30.61 | 707.85 |
2016/17 | 1917.36 | 2541.66 | 933.68 | 186.66 | 32.91 | 36.31 | 236.67 | |
2017/18 | 4316.66 | 7708.33 | 2747.22 | 325.55 | 41.45 | 35.79 | 745.03 | |
Test F | p | <0.0001 *** | <0.0001 *** | <0.0001 *** | <0.0001 *** | <0.0001 *** | <0.0001 *** | <0.0001 *** |
LSD | 351.44 | 456.01 | 193.39 | 18.318 | 1.238 | 2.269 | 55.2 | |
Effect Nitrogen level (N) | 0 | 4070.37 | 6230.55 | 2163.88 | 237.68 | 40.43 | 35.18 | 606.55 |
40 | 4263.42 | 6150.00 | 2038.88 | 249.86 | 38.50 | 33.59 | 554.82 | |
80 | 4541.66 | 6330.55 | 2123.61 | 258.14 | 37.18 | 34.69 | 561.88 | |
120 | 4582.40 | 6408.79 | 2067.59 | 278.98 | 35.66 | 33.50 | 529.48 | |
Test F | p | 0.0441 * | 0.7785 NS | 0.6858 NS | 0.0020 ** | <0.0001 *** | 0.5047 NS | 0.1196 NS |
LSD | 405.81 | 526.55 | 223.31 | 21.152 | 1.429 | 2.6201 | 63.739 | |
Effect Genotype (G) | Bousselam | 4205.55 | 5951.38 | 1893.51 | 290.74 | 36.62 | 33.12 | 505.73 |
MBB | 4572.68 | 6694.90 | 1931.01 | 235.83 | 37.19 | 29.66 | 516.24 | |
Megress | 4518.98 | 6488.42 | 2396.29 | 256.20 | 42.50 | 37.76 | 646.66 | |
GTAdur | 4160.64 | 5985.18 | 2173.14 | 241.89 | 35.45 | 36.42 | 584.11 | |
Test F | p | 0.1005 NS | 0.0114 * | <0.0001 *** | <0.0001 *** | <0.0001 *** | <0.0001 *** | <0.0001 *** |
LSD | 405.81 | 526.55 | 223.31 | 21.152 | 1.429 | 2.6201 | 63.739 | |
Y × N | p | 0.2042 NS | 0.4485 NS | 0.8751 NS | 0.0427 * | 0.0003 ** | 0.0846 NS | 0.8846 NS |
Y × G | p | 0.0007 ** | 0.0012 ** | 0.0008 ** | <0.0001 *** | <0.0001 *** | 0.0970 NS | 0.0011 ** |
G × N | p | 0.0025 ** | 0.0026 ** | 0.0119 * | 0.0356 * | 0.4705 NS | 0.2435 NS | 0.0150 * |
Y × G × N | p | 0.0688 NS | 0.7441 NS | 0.3635 NS | 0.1717 NS | 0.1733 NS | 0.7122 NS | 0.4021 NS |
Means | 4364.46 | 6279.97 | 2098.49 | 256.16 | 37.94 | 34.24 | 563.19 | |
CV% | 19.86 | 17.91 | 22.73 | 17.64 | 8.05 | 16.35 | 24.18 |
NG | NM | NHI | NUE | NUpE | NUtE | ||
Effect years | 2015/16 | 60.37 | 90.99 | 0.66 | 19.87 | 0.74 | 26.11 |
(Y) | 2016/17 | 24.92 | 33.62 | 0.73 | 7.95 | 0.29 | 27.34 |
2017/18 | 78.32 | 110.10 | 0.70 | 16.50 | 0.68 | 24.07 | |
Test F | p | <0.0001 *** | <0.0001 *** | <0.0001 *** | <0.0001 *** | <0.0001 *** | 0.0042 ** |
LSD | 5.3213 | 6.6924 | 0.0255 | 1.9662 | 0.0594 | 1.9105 | |
Effect Nitrogen level | 0 | 46.12 | 64.68 | 0.71 | / | / | / |
(N) | 40 | 51.57 | 72.01 | 0.71 | 19.06 | 0.66 | 28.22 |
80 | 59.51 | 85.17 | 0.70 | 14.35 | 0.57 | 25.30 | |
120 | 60.96 | 91.08 | 0.67 | 10.91 | 0.47 | 24.00 | |
Test F | p | <0.0001 *** | <0.0001 *** | 0.0221 * | <0.0001 *** | <0.0001 *** | 0.0001 ** |
LSD | 6.1445 | 7.7277 | 0.0295 | 1.9662 | 0.0594 | 1.9105 | |
Effect Genotype | Bousselam | 50.05 | 73.96 | 0.68 | 12.67 | 0.50 | 24.73 |
(G) | MBB | 52.00 | 78.18 | 0.66 | 15.02 | 0.54 | 27.66 |
Megress | 61.78 | 85.35 | 0.73 | 14.89 | 0.62 | 23.41 | |
GTAdur | 54.32 | 75.44 | 0.72 | 16.51 | 0.60 | 27.55 | |
Test F | p | 0.0016 ** | 0.0216 * | <0.0001 *** | 0.0129 * | 0.0024 ** | 0.0002 ** |
LSD | 6.1445 | 7.7277 | 0.0295 | 2.2703 | 0.0686 | 2.2061 | |
Y × N | p | 0.0003 ** | <0.0001 *** | 0.1353 NS | 0.0157 * | 0.9928 NS | 0.0003 ** |
Y × G | p | 0.0081 ** | 0.0682 NS | 0.0465 * | 0.1050 NS | 0.0103 * | 0.6472 NS |
G × N | p | 0.0282 * | 0.0167 * | 0.6545 NS | 0.0924 NS | 0.1114 NS | 0.8552 NS |
Y × G × N | p | 0.2388 NS | 0.3935 NS | 0.3526 NS | 0.5432 NS | 0.4855 NS | 0.7195 NS |
Means | 54.54 | 78.24 | 0.70 | 14.77 | 0.57 | 25.84 | |
CV% | 24.07 | 21.10 | 8.94 | 28.30 | 22.05 | 15.72 |
DMF | DMM | GY | NbrS/m2 | TGW | HI | NG | NM | NHI | NuE | NUpE | NUtE | |
DMF | 1 | |||||||||||
DMM | 0.78 *** | 1 | ||||||||||
GY | 0.61 *** | 0.89 *** | 1 | |||||||||
NbrS/m² | 0.45 *** | 0.54 *** | 0.45 *** | 1 | ||||||||
TGW | 0.35 *** | 0.57 *** | 0.69 *** | 0.26 ** | 1 | |||||||
HI | 0.34 *** | 0.24 ** | 0.17 * | 0.23 ** | 0.28 ** | 1 | ||||||
NG | 0.51 *** | 0.80 *** | 0.90 *** | 0.58 *** | 0.54 *** | 0.15 NS | 1 | |||||
NM | 0.59 *** | 0.85 *** | 0.86 *** | 0.64 *** | 0.48 *** | 0.01 NS | 0.97 *** | 1 | ||||
NHI | 0.39 *** | 0.25 ** | 0.08 NS | 0.28 ** | 0.26 *** | 0.81 *** | 0.03 NS | 0.16 * | 1 | |||
NUE | 0.53 *** | 0.71 *** | 0.79 *** | 0.21 * | 0.61 *** | 0.11 NS | 0.64 *** | 0.59 *** | 0.16 NS | 1 | ||
NUpE | 0.65 *** | 0.84 *** | 0.84 *** | 0.40 *** | 0.60 *** | 0.06 NS | 0.78 *** | 0.79 *** | 0.07 NS | 0.90 *** | 1 | |
NUtE | 0.16 NS | 0.13 NS | 0.07 NS | 0.37 *** | 0.220 * | 0.54 *** | 0.14 NS | 0.29 ** | 0.75 *** | 0.35 ** | 0.025 NS | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benchelali, S.; Benkherbache, N.; Mefti, M.; Ronga, D.; Louahdi, N.; Russo, M.; Pecchioni, N. Nitrogen Use Efficiency in Durum Wheat (Triticum durum Desf.) Grown under Semiarid Conditions in Algeria. Agronomy 2022, 12, 1284. https://doi.org/10.3390/agronomy12061284
Benchelali S, Benkherbache N, Mefti M, Ronga D, Louahdi N, Russo M, Pecchioni N. Nitrogen Use Efficiency in Durum Wheat (Triticum durum Desf.) Grown under Semiarid Conditions in Algeria. Agronomy. 2022; 12(6):1284. https://doi.org/10.3390/agronomy12061284
Chicago/Turabian StyleBenchelali, Soumia, Nadjat Benkherbache, Mohamed Mefti, Domenico Ronga, Nasreddine Louahdi, Mario Russo, and Nicola Pecchioni. 2022. "Nitrogen Use Efficiency in Durum Wheat (Triticum durum Desf.) Grown under Semiarid Conditions in Algeria" Agronomy 12, no. 6: 1284. https://doi.org/10.3390/agronomy12061284
APA StyleBenchelali, S., Benkherbache, N., Mefti, M., Ronga, D., Louahdi, N., Russo, M., & Pecchioni, N. (2022). Nitrogen Use Efficiency in Durum Wheat (Triticum durum Desf.) Grown under Semiarid Conditions in Algeria. Agronomy, 12(6), 1284. https://doi.org/10.3390/agronomy12061284