Strobilurin Effects on Nitrogen Use Efficiency for the Yield and Protein in Durum Wheat Grown Under Rainfed Mediterranean Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial
2.2. SPAD Measurements
2.3. Yield, Protein Content, Nitrogen Plant Content and N Use Efficiency Indices
- -
- N use efficiency for grain yield (NUEy; kg kg−1) as the ratio of grain yield to the N fertilizer applied;
- -
- N use efficiency for protein (NUEp; kg kg−1) as the ratio of grain N content to N fertilizer applied;
- -
- N uptake efficiency (UPE; kg kg−1) as the ratio of plant N content to the N fertilizer applied;
- -
- N utilization efficiency (NUtE; kg kg−1) as the ratio of grain yield to plant N content;
- -
- N harvest index (NHI; kg kg−1) as the ratio of grain N content to plant N content.
2.4. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. SPAD Measurements
3.3. N Content in the Plant, Straw and Grain
3.4. N Use Efficiency Indices, Yield and Grain Protein Content
4. Discussion
4.1. Cultivars Effects
4.2. Nitrogen Fertilization Effects
4.3. Strobilurin Effect
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ISTAT. 2018. Available online: http://dati.istat.it (accessed on 12 May 2020).
- Todorovic, M.; Caliandro, A.; Albrizio, R. Irrigated agriculture and water use efficiency in Italy. In Options Méditerranéennes: Série B; Lamaddalena, N., Shatanawi, M., Todorovic, M., Bogliotti, C., Albrizio, R., Eds.; Etudes et Recherches; Water Use Efficiency and Water Productivity: WASAMED Project; CIHEAM: Bari, Italy, 2007; Volume 57, pp. 101–136. [Google Scholar]
- Del Moral, L.F.; Rharrabti, Y.; Villegas, D.; Royo, C. Evaluation of grain yield and its components in durum wheat under Mediterranean conditions. Agron. J. 2003, 95, 266–274. [Google Scholar] [CrossRef]
- Raun, W.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Kant, S.; Bi, Y.-M.; Rothstein, S.J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J. Exp. Bot. 2011, 62, 1499–1509. [Google Scholar] [CrossRef] [Green Version]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef] [Green Version]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Le Gouis, J.; Béghin, D.; Heumez, E.; Pluchard, P. Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. Eur. J. Agron. 2000, 12, 163–173. [Google Scholar] [CrossRef]
- Giuliani, M.M.; Giuzio, L.; De Caro, A.; Flagella, Z. Relationships between nitrogen utilization and grain technological quality in durum wheat: I. Nitrogen translocation and nitrogen use efficiency for protein. Agron. J. 2011, 103, 1487–1494. [Google Scholar] [CrossRef]
- Cormier, F.; Foulkes, M.; Hirel, B.; Gouache, D.; Moënne-Loccoz, Y.; Le Gouis, J. Breeding for increased nitrogen-use efficiency: A review for wheat (T. aestivum L.). Plant Breed. 2016, 135, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Giambalvo, D.; Ruisi, P.; Di Miceli, G.; Frenda, A.S.; Amato, G. Nitrogen use efficiency and nitrogen fertilizer recovery of durum wheat genotypes as affected by interspecific competition. Agron. J. 2010, 102, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Arduini, I.; Masoni, A.; Ercoli, L.; Mariotti, M. Grain yield, and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate. Eur. J. Agron. 2006, 25, 309–318. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Sauter, H.; Steglich, W.; Anke, T. Strobilurins: Evolution of a new class of active substances. Angew. Chem. Int. Ed. 1999, 38, 1328–1349. [Google Scholar] [CrossRef]
- Bartlett, D.W.; Clough, J.M.; Godwin, J.R.; Hall, A.A.; Hamer, M.; Parr-Dobrzanski, B. The strobilurin fungicides. Pest. Manag. Sci. 2002, 58, 649–662. [Google Scholar] [CrossRef]
- Glaab, J.; Kaiser, W.M. Increased nitrate reductase activity in leaf tissue after application of the fungicide Kresoxim-methyl. Planta 1999, 207, 442–448. [Google Scholar] [CrossRef]
- Nason, M.A.; Farrar, J.; Bartlett, D. Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress. Pest Manag. Sci. 2007, 63, 1191–1200. [Google Scholar] [CrossRef]
- Ruske, R.; Gooding, M.J.; Jones, S.A. The effects of triazole and strobilurin fungicide programmes on nitrogen uptake, partitioning, remobilization and grain N accumulation in winter wheat cultivars. J. Agric. Sci. 2003, 140, 395–407. [Google Scholar] [CrossRef]
- Gooding, M.J.; Gregory, P.J.; Ford, K.E.; Pepler, S. Fungicide and cultivar affect post-anthesis patterns of nitrogen uptake, remobilization and utilization efficiency in wheat. J. Agric. Sci. 2005, 143, 503–518. [Google Scholar] [CrossRef]
- Gooding, M.J.; Gregory, P.; Ford, K.; Ruske, R. Recovery of nitrogen from different sources following applications to winter wheat at and after anthesis. Field Crops Res. 2007, 100, 143–154. [Google Scholar] [CrossRef]
- Köhle, H.; Grossmann, K.; Jabs, T.; Gerhard, M.; Kaiser, W.; Glaab, J.; SEEHAUS, K.; Herms, S. Physiological effects of the strobilurin fungicide F 500 on plants. In Modern Fungicides and Antifungal Compounds III; Agroconcept GmbH: Bonn, Germany, 2003. [Google Scholar]
- Colecchia, S.A.; Basso, B.; Cammarano, D.; Gallo, A.; Mastrangelo, A.M.; Pontieri, P.; Del Giudice, L.; Pignone, M.; De Vita, P. On the relationship between N management and grain protein content in six durum wheat cultivars in Mediterranean environment. J. Plant Interact. 2013, 8, 271–279. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Noulas, C.; Herrera, J.M.; Tziouvalekas, M.; Qin, R.; Ruijun, Q. Agronomic assessment of nitrogen use efficiency in spring wheat and interrelations with leaf greenness under field conditions. Commun. Soil Sci. Plant Anal. 2018, 49, 763–781. [Google Scholar] [CrossRef]
- Shapiro, C.A.; Schepers, J.S.; Francis, D.D.; Shanahan, J.F. Using a Chlorophyll Meter to Improve N Management; Publ. G1632; Univ. of Nebraska Coop. Ext. Service: Lincoln, NE, USA, 2006. [Google Scholar]
- López-Bellido, L.; López-Bellido, R.J.; Redondo, R. Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crops Res. 2005, 94, 86–97. [Google Scholar] [CrossRef]
- Van Sanford, D.A.; Mackown, C.T. Variation in nitrogen use efficiency among soft red winter wheat genotypes. Theor. Appl. Genet. 1986, 72, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. B 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Ortiz-Monasterio, J.I.R.; Peñna, R.J.; Sayre, K.D.; Rajaram, S. CIMMYT’s genetic progress in wheat grain quality under four nitrogen rates. Crop Sci. 1997, 37, 892–898. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R.-project.org (accessed on 22 February 2020).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Ommen, O.; Donnelly, A.; Vanhoutvin, S.; Van Oijen, M.; Manderscheid, R. Chlorophyll content of spring wheat flag leaves grown under elevated CO2 concentrations and other environmental stresses within the ‘ESPACE-wheat’ project. Eur. J. Agron. 1999, 10, 197–203. [Google Scholar] [CrossRef]
- Yıldırım, M.; Koç, M.; Akıncı, C.; Barutçular, C.; Yildirim, M. Variations in morphological and physiological traits of bread wheat diallel crosses under timely and late sowing conditions. Field Crops Res. 2013, 140, 9–17. [Google Scholar] [CrossRef]
- Masoni, A.; Ercoli, L.; Mariotti, M.; Arduini, I. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. Eur. J. Agron. 2007, 26, 179–186. [Google Scholar] [CrossRef]
- Barbottin, A.; LeComte, C.; Bouchard, C.; Jeuffroy, M.H. Nitrogen remobilization during grain filling in wheat: Genotypic and environmental effects. Crop Sci. 2005, 45, 1141–1150. [Google Scholar] [CrossRef]
- Muurinen, S.; Kleemola, J.; Peltonen-Sainio, P. Accumulation and translocation of nitrogen in spring cereal cultivars differing in nitrogen use efficiency. Agron. J. 2007, 99, 441–449. [Google Scholar] [CrossRef]
- Tsialtas, I.T.; Theologidou, G.; Karaoglanidis, G. Effects of pyraclostrobin on leaf diseases, leaf physiology, yield and quality of durum wheat under Mediterranean conditions. Crop Prot. 2018, 113, 48–55. [Google Scholar] [CrossRef]
- Yu, Z.; Islam, S.; She, M.; Diepeveen, D.A.; Zhang, Y.; Tang, G.; Zhang, J.; Juhász, A.; Yang, R.; Ma, W. Wheat grain protein accumulation and polymerization mechanisms driven by nitrogen fertilization. Plant J. 2018, 96, 1160–1177. [Google Scholar] [CrossRef]
- Bingham, I.; Karley, A.; White, P.J.; Thomas, W.; Russell, J. Analysis of improvements in nitrogen use efficiency associated with 75 years of spring barley breeding. Eur. J. Agron. 2012, 42, 49–58. [Google Scholar] [CrossRef]
- Espindula, M.C.; Rocha, V.S.; Fontes, P.C.R.; Da Silva, R.C.C.; De Souza, L.T. Effect of nitrogen and trinexapac-ethyl rates on the SPAD index of wheat leaves. J. Plant Nutr. 2009, 32, 1956–1964. [Google Scholar] [CrossRef]
- Giambalvo, D.; Stringi, L.; Durante, G.; Amato, G.; Frenda, A.S. Nitrogen Efficiency Component Analysis in Wheat Under Rainfed Mediterranean Conditions: Effects of Crop Rotation and Nitrogen Fertilization. Mediterranean Rainfed Agriculture: Strategies for Sustainability; Mediterranean Agronomic Institute of Zaragoza: Zaragoza, Spain, 2004; pp. 169–173. [Google Scholar]
- López-Bellido, L.; López-Bellido, R.J.; López-Bellido, F.J. Fertilizer nitrogen efficiency in durum wheat under rainfed mediterranean conditions: Effect of split application. Agron. J. 2006, 98, 55–62. [Google Scholar] [CrossRef]
- Cabrera-Bosquet, L.; Molero, G.; Bort, J.; Nogués, S.; Araus, J.L. The combined effect of constant water deficit and nitrogen supply on WUE, NUE and Δ13C in durum wheat potted plants. Ann. Appl. Biol. 2007, 151, 277–289. [Google Scholar] [CrossRef]
- López-Bellido, L.; Muñoz-Romero, V.; Benítez-Vega, J.; Fernández-García, P.; Redondo, R.; López-Bellido, R.J. Wheat response to nitrogen splitting applied to a Vertisols in different tillage systems and cropping rotations under typical Mediterranean climatic conditions. Eur. J. Agron. 2012, 43, 24–32. [Google Scholar] [CrossRef]
- Ottman, M.J.; Doerge, T.A.; Martin, E.C. Durum grain quality as affected by nitrogen fertilization near anthesis and irrigation during grain fill. Agron. J. 2000, 92, 1035–1041. [Google Scholar] [CrossRef]
- Bly, A.G.; Woodard, H.J. Foliar nitrogen application timing influence on grain yield and protein concentration of hard red winter and spring wheat. Agron. J. 2003, 95, 335–338. [Google Scholar] [CrossRef]
- Orloff, S.; Wright, S.; Ottman, M. Nitrogen management impacts on wheat yield and protein. In Proceedings of the California Alfalfa & Grains Symposium, Sacramento, CA, USA, 11–12 December 2012. [Google Scholar]
- Borghi, B. The Varietal Evolution of Common Wheat in Italy in the Last Century. Wheat From Rieti Worldwide; Atti Convegno: Rieti, Italy, 2000. [Google Scholar]
- Blankenau, K.; Olfs, H.W.; Kuhlmann, H. Strategies to improve the use efficiency of mineral fertilizer nitrogen applied to winter wheat. J. Agron. Crop Sci. 2002, 188, 146–154. [Google Scholar] [CrossRef]
- Mahler, R.L.; Koehler, F.E.; Lutcher, L.K. Nitrogen source, timing of application, and placement: Effects on winter wheat production. Agron. J. 1907, 86, 637–642. [Google Scholar] [CrossRef]
- Sieling, K.; Schröder, H.; Finck, M.; Hanus, H. Yield, N uptake, and apparent N-use efficiency of winter wheat and winter barley grown in different cropping systems. J. Agric. Sci. 1998, 131, 375–387. [Google Scholar] [CrossRef]
- Limaux, F.; Recous, S.; Meynard, J.M.; Guckert, A. Relationship between rate of crop growth at date of fertiliser N application and fate of fertiliser N applied to winter wheat. Plant Soil 1999, 214, 49–59. [Google Scholar] [CrossRef]
- Velasco, J.L.; Rozas, H.S.; Echeverría, H.E.; Barbieri, P.A. Optimizing fertilizer nitrogen use efficiency by intensively managed spring wheat in humid regions: Effect of split application. Can. J. Plant Sci. 2012, 92, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Espejo, A.; Cuevas, M.V.; Ribas-Carbo, M.; Flexas, J.; Martorell, S.; Fernández, J.E. The effect of strobilurins on leaf gas exchange, water use efficiency and ABA content in grapevine under field conditions. J. Plant Physiol. 2012, 169, 379–386. [Google Scholar] [CrossRef]
- Blandino, M.; Haidukowski, M.; Pascale, M.; Plizzari, L.; Scudellari, D.; Reyneri, A.; Haidukowski, M. Integrated strategies for the control of Fusarium head blight and deoxynivalenol contamination in winter wheat. Field Crops Res. 2012, 133, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Amaro, A.C.E.; Baron, D.; Ono, E.O.; Rodrigues, J.D. Physiological effects of strobilurin and carboxamides on plants: An overview. Acta Physiol. Plant 2019, 42, 1–10. [Google Scholar] [CrossRef]
- Ishikawa, S.; Hare, M.C.; Kettlewell, P.S. Effects of strobilurin fungicide programmes and fertilizer nitrogen rates on winter wheat: Severity ofSeptoria tritici, leaf senescence and yield. J. Agric. Sci. 2011, 150, 411–426. [Google Scholar] [CrossRef]
- Bryson, R.J.; Leandro, L.; Jones, D.R. The physiological effects of kresoxim-methyl on wheat leaf greenness and the implications for crop yield. In The BCPC Conference: Pests and Diseases, Proceedings of the International Conference Held at the Brighton Hilton Metropole Hotel, Brighton, UK, 13–16 November 2000; British Crop Protection Council: Farnham, UK, 2000; Volume 2, pp. 739–746. ISBN 1901396592. [Google Scholar]
- Gooding, M.J.; Dimmock, J.P.R.E.; France, J.; Jones, S.A. Green leaf area decline of wheat flag leaves: The influence of fungicides and relationships with mean grain weight and grain yield. Ann. Appl. Biol. 2000, 136, 77–84. [Google Scholar] [CrossRef]
- Ruske, R.; Gooding, M.J.; Dobraszczyk, B. Effects of triazole and strobilurin fungicide programmes, with and without late-season nitrogen fertiliser, on the baking quality of Malacca winter wheat. J. Cereal Sci. 2004, 40, 1–8. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, F.; Li, D.; Zhang, H.; Huang, R. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 2010, 232, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Dunne, B. Strobilurin use on cereals. Crop. Prot. 2005, 23, 17–20. [Google Scholar]
- Jamieson, P.; Semenov, M.A. Modelling nitrogen uptake and redistribution in wheat. Field Crops Res. 2000, 68, 21–29. [Google Scholar] [CrossRef]
- Xu, G.; Fan, X.; Miller, A.J. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef] [Green Version]
- Kanungo, M.; Joshi, J. Impact of pyraclostrobin (F-500) on crop plants. Plant Sci. Today 2014, 1, 174–178. [Google Scholar] [CrossRef] [Green Version]
- Dhugga, K.S.; Waines, J.G. Analysis of nitrogen accumulation and use in bread and durum wheat. Crop Sci. 1989, 29, 1232–1239. [Google Scholar] [CrossRef]
- Aynehband, A.; Asadi, S.; Rahnama, A. Nitrogen use efficiency assessment under intra-and inter-specific competitions stress. J. Plant Physiol. Breed. 2014, 4, 9–21. [Google Scholar]
- Simmonds, N.W. The relation between yield and protein in cereal grain. J. Sci. Food Agric. 1995, 67, 309–315. [Google Scholar] [CrossRef]
- Gagliardi, A.; Carucci, F.; Masci, S.; Flagella, Z.; Gatta, G.; Giuliani, M.M. Effects of genotype, growing season and nitrogen level on gluten protein assembly of durum wheat grown under mediterranean conditions. Agronomy 2020, 10, 755. [Google Scholar] [CrossRef]
- Dimmock, J.P.R.E.; Gooding, M.J. The influence of foliar diseases, and their control by fungicides, on the protein concentration in wheat grain: A review. J. Agric. Sci. 2002, 138, 349–366. [Google Scholar] [CrossRef]
Soil Proprieties | Unit of Measurement | 2011 | 2012 |
---|---|---|---|
Sand | % | 35.2 | 31.7 |
Silt | % | 31.1 | 36.2 |
Clay | % | 33.7 | 32.1 |
Total N (Kjeldhal method) | ‰ | 1.16 | 1.15 |
Available P (Olsen method) | mg kg−1 | 80 | 81 |
Exchangeable K (Ammonium acetate method) | mg kg−1 | 461 | 450 |
Organic matter (Walkley-Black method) | % | 2.20 | 2.50 |
Nitrogen Application | Pre-Sowing | Tillering | Flag Leaf Appearance |
---|---|---|---|
Biammonium Phosphate (18% N) | Urea (46% N) | Ammonium Nitrate (27% N) | |
(kg ha−1) | |||
N60 | 36 | 24 | − |
N90 | 36 | 54 | − |
N90T3 | 36 | 27 | 27 |
N120 | 36 | 84 | − |
N120T3 | 36 | 54 | 30 |
2011 | 2012 | ||
---|---|---|---|
Crop cycle duration from sowing | days | 209 | 201 |
Crop cycle rainfall | mm | 362.2 | 242.1 |
From seeding to heading rainfall | mm | 302.6 | 220.9 |
Grain filling rainfall | mm | 59.6 | 21.2 |
Crop cycle mean T | °C | 11.4 | 10.7 |
Grain filling mean T | °C | 18.1 | 17.4 |
Grain filling mean T max | °C | 24.2 | 25.7 |
Experimental Factor | Crop Season | |||||
---|---|---|---|---|---|---|
2011 | 2012 | |||||
Plant | Straw | Grain | Plant | Straw | Grain | |
Cultivar | ||||||
Saragolla | 133.3 ± 7.9 b | 68.1 ± 3.9 b | 65.2 ± 4.4 b | 121.4 ± 3.8 b | 55.01 ± 1.6 b | 66.35 ± 2.3 b |
Sfinge | 273.9 ± 11.4 a | 195.9 ± 9.7 a | 78.0 ± 2.0 a | 141.2 ± 2.6 a | 72.30 ± 1.3 a | 68.89 ± 1.5 a |
Nitrogen Fertilization | ||||||
N60 | 146.2 ± 16.5 d | 92.4 ± 12.6 d | 53.8 ± 4.0 e | 147.4 ± 6.5 a | 71.1 ± 4.5 a | 76.31 ± 2.9 a |
N90 | 201.0 ± 30.1 c | 134.9 ± 25.5 c | 66.1 ± 5.1 d | 126.1 ± 7.3 d | 62.2 ± 3.5 c | 63.92 ± 4.1 d |
N90T3 | 213.8 ± 30.4 b | 142.0 ± 25.6 b | 71.8 ± 5.7 c | 119.9 ± 3.2 e | 58.8 ± 2.7 d | 61.12 ± 1.7 e |
N120 | 228.2 ± 18.6 a | 146.3 ± 18.7 a | 81.9 ± 1.6 b | 134.1 ± 2.7 b | 63.5 ± 2.1 b | 70.55 ± 1.0 b |
N120T3 | 228.8 ± 25.6 a | 144.5 ± 2 4 ab | 84.3 ± 6.5 a | 129.0 ± 5.5 c | 62.7 ± 3.4 bc | 66.22 ± 2.7 c |
Strobilurin Treatment | ||||||
ST0 | 211.0 ± 21.1 a | 143 ± 17.8 a | 68.0 ± 3.9 b | 129.5 ± 4.3 b | 63.39 ± 2.4 a | 66.12 ± 2.1 b |
STaz | 196.2 ± 9.3 b | 121 ± 8.1 b | 75.2 ± 3.24 a | 133.0 ± 3.0 a | 63.92 ± 2.0 a | 69.13 ± 1.8 a |
Crop Season | Strobilurin Treatment | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ST0 | STaz | |||||||||
N60 | N90 | N90T3 | N120 | N120T3 | N60 | N90 | N90T3 | N120 | N120T3 | |
2011 | ||||||||||
Plant | 135.2 ± 28.2 f | 221.9 ± 57.4 b | 215.9 ± 55.2 bc | 243.0 ± 37.4 a | 239.7 ± 53.1 a | 157.3 ± 18.6 e | 180.3 ± 23.0 d | 211.7 ± 32.0 c | 213.4 ± 5.87 c | 217.9 ± 4.4 bc |
Straw | 85.9 ± 21.0 f | 156.2 ± 47.1 ab | 152.6 ± 46.1 b | 159.5 ± 37.2 a | 161.5 ± 46.6 a | 99.0 ± 15.6 e | 113.7 ± 21.6 d | 131.4 ± 26.6 c | 133.1 ± 9.1 c | 127.5 ± 15.3 c |
Grain | 49.3 ± 7.2 h | 65.7 ± 10.3 e | 63.3 ± 9.2 f | 83.5 ± 0.3 b | 78.2 ± 6.5 d | 58.3 ± 3.1 g | 66.6 ± 1.5 e | 80.3 ± 5.3 c | 80.3 ± 3.3 c | 90.4 ± 11.2 a |
2012 | ||||||||||
Plant | 136.4 ± 11.7 c | 118.2 ± 14.4 h | 129.0 ± 2.7 e | 142.5 ± 0.8 b | 121.5 ± 10.5 g | 158.3 ± 1.4 a | 134.1 ± 1.6 d | 110.8 ± 2.0 i | 125.6 ± 1.8 f | 136.4 ± 0.9 c |
Straw | 65.2 ± 7.5 c | 58.7 ± 6.8 f | 63.2 ± 2.8 c | 69.1 ± 0.4 b | 60.8 ± 6.4 e | 76.9 ± 4.3 a | 65.7 ± 1.4 c | 54.3 ± 4.0 g | 58.0 ± 2.5 f | 64.7 ± 2.7 c |
Grain | 71.24 ± 4.1 c | 59.48 ± 7.6 g | 65.75 ± 0.3 e | 73.42 ± 0.4 b | 60.7 ± 4.1 f | 81.4 ± 3.0 a | 68.4 ± 3.0 d | 56.5 ± 2.0 h | 67.7 ± 0.7 d | 71.7 ± 1.9 c |
Experimental Factor | 2011 | 2012 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UPE | NUtE | NHI | NUEy | NUEp | GY | GPC | UPE | NUtE | NHI | NUEy | NUEp | GY | GPC | |
(kg kg-1) | (kg kg-1) | |||||||||||||
Cultivar | ||||||||||||||
Saragolla | 1.39 ± 0.1 b | 43.8 ± 2.0 a | 0.48 ± 0.071 a | 58.3 ± 1.5 a | 0.67 ± 0.03 b | 5.43 ± 0.12 a | 10.1 ± 0.2 b | 1.36 ± 0.1 b | 35.5 ± 1.0 a | 0.55 ± 0.010 a | 46.5 ± 2.3 a | 0.74 ± 0.05 b | 4.20 ± 0.0 a | 8.7 ± 0.1 b |
Sfinge | 2.95 ± 0.1 a | 14.4 ± 0.6 b | 0.29 ± 0.061 b | 41.5 ± 2.1 b | 0.85 ± 0.03 a | 3.74 ± 0.14 b | 16.0 ± 0.2 a | 1.59 ± 0.1 a | 19.7 ± 0.6 b | 0.49 ± 0.010 b | 30.4 ± 1.5 b | 0.78 ± 0.05 a | 2.75 ± 0.0 b | 10.4 ± 0.2 a |
Nitrogen Fertilization | ||||||||||||||
N60 | 2.44 ± 0.3 a | 33.0 ± 4.8 a | 0.39 ± 0.018 b | 66.0 ± 1.6 a | 0.90 ± 0.07 a | 3.96 ± 0.1 d | 11.7 ± 0.9 d | 2.46 ± 0.11 a | 24.2 ± 2.4 d | 0.52 ± 0.01 a | 57.0 ± 3.6 a | 1.27 ± 0.05 a | 3.42 ± 0.2 bc | 9.3 ± 0.4 a |
N90 | 2.23 ± 0.3 c | 32.4 ± 6.0 a | 0.37 ± 0.031 c | 51.9 ± 3.0 b | 0.74 ± 0.05 c | 4.67 ± 0.3b c | 12.5 ± 1.0 c | 1.40 ± 0.08 b | 29.9 ± 3.5 a | 0.50 ± 0.008 c | 39.0 ± 2.6 b | 0.71 ± 0.05 b | 3.51 ± 0.2 b | 9.3 ± 0.4 a |
N90T3 | 2.38 ± 0.3 b | 30.1 ± 5.6 b | 0.38 ± 0.029 bc | 51.2 ± 2.6 b | 0.80 ± 0.06 b | 4.61 ± 0.2 c | 13.7 ± 1.0 ab | 1.33 ± 0.03 c | 28.4 ± 2.6 b | 0.51 ± 0.014 b | 37.0 ± 2.7 c | 0.68 ± 0.02 c | 3.33 ± 0.2 c | 9.5 ± 0.3 a |
N120 | 1.90 ± 0.1 d | 23.6 ± 3.3 d | 0.39 ± 0.031 b | 39.6 ± 3.2 c | 0.68 ± 0.01 e | 4.76 ± 0.4 b | 13.1 ± 1.0 bc | 1.12 ± 0.02 d | 28.2 ± 1.9b c | 0.53 ± 0.007 a | 31.1 ± 1.7 d | 0.59 ± 0.01 d | 3.74 ± 0.2 a | 9.7 ± 0.3 a |
N120T3 | 1.91 ± 0.2 d | 26.4 ± 4.3 c | 0.41 ± 0.04 a | 41.0 ± 2.7 c | 0.70 ± 0.05 d | 4.92 ± 0.3 a | 14.1 ± 1.0 a | 1.07 ± 0.05 e | 27.3 ± 2.8 c | 0.51 ± 0.001 b | 28.1 ± 2.0 e | 0.55 ± 0.02 e | 3.38 ± 0.2 c | 10.1 ± 0.5 a |
Strobilurin Treatment | ||||||||||||||
ST0 | 2.23 ± 0.2 a | 31.8 ± 3.9 a | 0.38 ± 0.021 b | 48.6 ± 2.4 b | 0.72 ± 0.04 b | 4.47 ± 0.2 b | 12.9 ± 0.6 a | 1.44 ± 0.09 b | 27.8 ± 1.3 a | 0.51 ± 0.004 b | 36.7 ± 2.4 b | 0.74 ± 0.05 b | 3.32 ± 0.1 b | 9.4 ± 0.2 a |
STaz | 2.11 ± 0.1 b | 26.4 ± 1.9 b | 0.40 ± 0.017 a | 51.3 ± 2.4 a | 0.81 ± 0.03 a | 4.70 ± 0.2 a | 13.1 ± 0.6 a | 1.51 ± 0.11 a | 27.4 ± 2.0 a | 0.52 ± 0.008 a | 40.2 ± 2.5 a | 0.78 ± 0.06 a | 3.63 ± 0.1 a | 9.8 ± 0.3 a |
Crop Season | Saragolla | Sfinge | ||
---|---|---|---|---|
ST0 | STaz | ST0 | STaz | |
(kg kg−1) | (kg kg−1) | |||
2011 | ||||
UPE | 1.12 ± 0.03 d | 1.67 ± 0.04 c | 3.33 ± 0.12 a | 2.56 ± 0.16 b |
NUtE | 51.7 ± 2.1 a | 35.8 ± 1.5 b | 11.9 ± 0.8 d | 16.9 ± 0.5 c |
NHI | 0.49 ± 0.08 a | 0.48 ± 0.01 a | 0.27 ± 0.08 c | 0.31 ± 0.04 b |
NUEy | 57.4 ± 2.0 b | 59.3 ± 2.2 a | 39.8 ± 2.9 d | 43.2 ± 3.2 c |
NUEp | 0.55 ± 0.02 c | 0.80 ± 0.02 b | 0.90 ± 0.04 a | 0.81 ± 0.06 b |
GY | 5.3 ± 0.2 b | 5.5 ± 0.1 a | 3.6 ± 0.15 d | 3.9 ± 0.13 c |
GPC | 10.0 ± 0.3 b | 10.1 ± 0.2 b | 15.9 ± 0.2 a | 16.1 ± 0.3 a |
2012 | ||||
UPE | 1.23 ± 0.01 d | 1.49 ± 0.2 c | 1.66 ± 0.1 a | 1.53 ± 0.2 b |
NUtE | 37.1 ± 1.6 a | 33.8 ± 1.1 b | 17.7 ± 0.3 d | 21.7 ± 0.9 c |
NHI | 0.53 ± 0.06 b | 0.56 ± 0.03 a | 0.49 ± 0.03 c | 0.48 ± 0.05 d |
NUEy | 44.6 ± 3.1 b | 48.4 ± 3.4 a | 28.9 ± 2.2 d | 31.9 ± 2.2 c |
NUEp | 0.65 ± 0.1 d | 0.84 ± 0.1 a | 0.82 ± 0.1 b | 0.72 ± 0.1 c |
GY | 4.0 ± 0.15 b | 4.4 ± 0.13 a | 2.6 ± 0.1 d | 2.9 ± 0.1 c |
GPG | 8.7 ± 0.2 b | 8.7 ± 0.2 b | 10.0 ± 0.2 a | 10.9 ± 0.4 a |
Term | ln UPE versus ln NUEy | ln NUtE versus ln NUEy | ||||
---|---|---|---|---|---|---|
Estimate | Std Error | Prob | Estimate | Std Error | Prob | |
Intercept (contribution to ST) | −2.47 | 0.37 | *** | 2.47 | 0.37 | *** |
STo | −0.12 | 0.02 | *** | 0.12 | 0.02 | *** |
STaz | 0.12 | 0.02 | *** | −0.12 | 0.02 | *** |
Angular coefficient (contribution to NUEy) | ||||||
ln NUEy | 0.69 | 0.096 | *** | 0.31 | 0.096 | ** |
STo × ln NUEy | −0.26 | 0.096 | ** | 0.26 | 0.096 | ** |
STaz × ln NUEy | 0.26 | 0.096 | ** | −0.26 | 0.096 | ** |
R2 = 0.63 *** | RMSE = 0.17 | R2 = 0.43 ** | RMSE = 0.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carucci, F.; Gatta, G.; Gagliardi, A.; Vita, P.D.; Giuliani, M.M. Strobilurin Effects on Nitrogen Use Efficiency for the Yield and Protein in Durum Wheat Grown Under Rainfed Mediterranean Conditions. Agronomy 2020, 10, 1508. https://doi.org/10.3390/agronomy10101508
Carucci F, Gatta G, Gagliardi A, Vita PD, Giuliani MM. Strobilurin Effects on Nitrogen Use Efficiency for the Yield and Protein in Durum Wheat Grown Under Rainfed Mediterranean Conditions. Agronomy. 2020; 10(10):1508. https://doi.org/10.3390/agronomy10101508
Chicago/Turabian StyleCarucci, Federica, Giuseppe Gatta, Anna Gagliardi, Pasquale De Vita, and Marcella Michela Giuliani. 2020. "Strobilurin Effects on Nitrogen Use Efficiency for the Yield and Protein in Durum Wheat Grown Under Rainfed Mediterranean Conditions" Agronomy 10, no. 10: 1508. https://doi.org/10.3390/agronomy10101508
APA StyleCarucci, F., Gatta, G., Gagliardi, A., Vita, P. D., & Giuliani, M. M. (2020). Strobilurin Effects on Nitrogen Use Efficiency for the Yield and Protein in Durum Wheat Grown Under Rainfed Mediterranean Conditions. Agronomy, 10(10), 1508. https://doi.org/10.3390/agronomy10101508