Antioxidant Properties, γ-Aminobutyric Acid (GABA) Content, and Physicochemical Characteristics of Tomato Cultivars
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Firmness
2.3. Total Soluble Solids (TSS), Titratable Acidity (TA), and Brix Acid Ratio (BAR)
2.4. Color Changes
2.5. Lycopene and β-Carotene Content
2.6. Ascorbic Acid
2.7. Total Phenolics and Flavonoids
2.8. Amino Acids Mainly γ-Aminobutyric Acid (GABA)
2.9. Antioxidant Activity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Firmness
3.2. TSS, TA, and BAR
3.3. Color Values
3.4. Lycopene and β-Carotene Content
3.5. Ascorbic Acid
3.6. Total Phenolics and Flavonoids
3.7. Free Amino Acids and γ-Aminobutyric Acid (GABA)
3.8. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costa, J.M.; Heuvelink, E. Introduction: The Tomato Crop and Industry. Oxford-CAB International: Wallingford, UK, 2015; ISBN 0851993966. [Google Scholar]
- FAOSTAT Food & Agriculture Organization of the United Nations Statistics Division. Available online: http://faost at3.fao.org/home/index.html (accessed on 20 December 2020).
- Nasir, M.U.; Hussain, S.; Jabbar, S. Tomato processing, lycopene and health benefits: A review. Sci. Lett. 2015, 3, 1–5. [Google Scholar]
- Burton-Freeman, B.; Reimers, K. Tomato Consumption and Health: Emerging Benefits. Am. J. Lifestyle Med. 2011, 5, 182–191. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P. Antioxidant activity in different fractions of tomatoes. Food Res. Int. 2005, 38, 487–494. [Google Scholar] [CrossRef]
- Hamid, A.A.; Aiyelaagbe, O.O.; Usman, L.A.; Ameen, O.M.; Lawal, A. Antioxidants: Its medicinal and pharmacological applications. Afr. J. Pure Appl. Chem. 2010, 4, 142–151. [Google Scholar]
- Borguini, R.G.; Helena, D.; Bastos, M.; Moita-Neto, J.M.; Capasso, F.S.; Aparecida, E.; Da, F.; Torres, S. Brazilian Archives of Biology and Technology Antioxidant Potential of Tomatoes Cultivated in Organic and Conventional Systems. Arch. Biol. Technol. 2013, 56456, 521–529. [Google Scholar] [CrossRef]
- Akihiro, T.; Koike, S.; Tani, R.; Tominaga, T.; Watanabe, S.; Iijima, Y.; Aoki, K.; Shibata, D.; Ashihara, H.; Matsukura, C. Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant Cell Physiol. 2008, 49, 1378–1389. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.F.; Kriegstein, A.R. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 2002, 3, 715–727. [Google Scholar] [CrossRef]
- Takayama, M.; Ezura, H. How and why does tomato accumulate a large amount of GABA in the fruit? Front. Plant Sci. 2015, 6, 612. [Google Scholar] [CrossRef] [PubMed]
- Shimeles, T.; Do, S.P.; Mu, H.S.; Cheon, S.J. Review on factors affecting the quality and antioxidant properties of tomatoes. Afr. J. Biotechnol. 2017, 16, 1678–1687. [Google Scholar] [CrossRef]
- Farneti, B. Tomato Quality: From the Field to the Consumer Interactions between Genotype, Cultivation Brian Farneti. Ph.D. Thesis, Wageningen University, Wageningen, Netherlands, 2014. [Google Scholar]
- Taye, A.M.; Tilahun, S.; Seo, M.H.; Park, D.S.; Jeong, C.S. Effects of 1-MCP on Quality and Storability of Cherry Tomato (Solanum lycopersicum L.). Horticulturae 2019, 5, 29. [Google Scholar] [CrossRef]
- Fanasca, S.; Colla, G.; Maiani, G.; Venneria, E.; Rouphael, Y.; Azzini, E.; Saccardo, F. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J. Agric. Food Chem. 2006, 54, 4319–4325. [Google Scholar] [CrossRef]
- Peixoto, J.V.M.; Garcia, L.G.C.; Nascimento, A.D.R.; Moraes, E.R.D.; Ferreira, T.A.P.D.C.; Fernandes, M.R.; Pereira, V.D.A. Post-harvest evaluation of tomato genotypes with dual purpose. Food Sci. Technol. 2018, 38, 255–262. [Google Scholar] [CrossRef]
- Tilahun, S.; Seo, M.H.; Park, D.S.; Jeong, C.S. Effect of cultivar and growing medium on the fruit quality attributes and antioxidant properties of tomato (Solanum lycopersicum L.). Hortic. Environ. Biotechnol. 2018, 59, 215–223. [Google Scholar] [CrossRef]
- Lenucci, M.S.; Cadinu, D.; Taurino, M.; Piro, G.; Dalessandro, G. Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem. 2006, 54, 2606–2613. [Google Scholar] [CrossRef] [PubMed]
- United States Standards for Grades of Fresh Tomatoes (USDA). 1997. Available online: https://hort.purdue.edu/prod_quality/quality/tomatfrh.pdf (accessed on 10 November 2020).
- Tilahun, S.; Park, D.S.; Taye, A.M.; Jeong, C.S. Effect of ripening conditions on the physicochemical and antioxidant properties of tomato (Lycopersicon esculentum Mill.). Food Sci. Biotechnol. 2017, 26, 473–479. [Google Scholar] [CrossRef]
- Choi, H.R.; Tilahun, S.; Park, D.S.; Lee, Y.M.; Choi, J.H.; Baek, M.W.; Jeong, C.S. Harvest time affects quality and storability of kiwifruit (Actinidia spp.): Cultivars during long-term cool storage. Sci. Hortic. 2019, 256, 108523. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of Objective Color Measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- Fish, W.W.; Perkins-Veazie, P.; Collins, J.K. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Compos. Anal. 2002, 15, 309–317. [Google Scholar] [CrossRef]
- Tilahun, S.; Park, D.S.; Seo, M.H.; Hwang, I.G.; Kim, S.H.; Choi, H.R.; Jeong, C.S. Prediction of lycopene and β-carotene in tomatoes by portable chroma-meter and VIS/NIR spectra. Postharvest Biol. Technol. 2018, 136, 50–56. [Google Scholar] [CrossRef]
- Kim, H.S.; Jung, J.Y.; Kim, H.K.; Ku, K.M.; Suh, J.K.; Park, Y.; Kang, Y.H. Influences of Meteorological Conditions of Harvest Time on Water-Soluble Vitamin Contents and Quality Attributes of Oriental Melon. Prot. Hortic. Plant Fact. 2011, 20, 290–296. [Google Scholar]
- Tilahun, S.; Park, D.S.; Taye, A.M.; Jeong, C.S. Effects of storage duration on physicochemical and antioxidant properties of tomato (Lycopersicon esculentum Mill.). Korean J. Hortic. Sci. Technol. 2017, 35, 88–97. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Henderson, J.W.; Ricker, R.D.; Bidlingmeyer, B.A.; Woodward, C. Rapid, accurate, sensitive and reproducible HPLC analysis of amino acids. Amino Acids 2000, 1100, 1–10. [Google Scholar]
- Pataro, G.; Sinik, M.; Capitoli, M.M.; Donsì, G.; Ferrari, G. The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innov. Food Sci. Emerg. Technol. 2015, 30, 103–111. [Google Scholar] [CrossRef]
- Wu, T.; Abbott, J.A. Firmness and force relaxation characteristics of tomatoes stored intact or as slices. Postharvest Biol. Technol. 2002, 24, 59–68. [Google Scholar] [CrossRef]
- Kabir, M.S.N.; Ali, M.; Lee, W.H.; Cho, S.I.; Chung, S.O. Physicochemical quality changes in tomatoes during delayed cooling and storage in a controlled chamber. Agriculture 2020, 10, 196. [Google Scholar] [CrossRef]
- Tilahun, S.; Park, D.S.; Solomon, T.; Choi, H.R.; Jeong, C.S. Maturity stages affect nutritional quality and storability of tomato cultivars. CyTA-J. Food 2019, 17, 87–95. [Google Scholar] [CrossRef]
- Batu, A. Determination of acceptable firmness and colour values of tomatoes. J. Food Eng. 2004, 61, 471–475. [Google Scholar] [CrossRef]
- Jones, R.A.; Scott, S.J. Improvement of tomato flavor by genetically increasing sugar and acid contents. Euphytica 1983, 32, 845–855. [Google Scholar] [CrossRef]
- Anthon, G.E.; Lestrange, M.; Barrett, D.M. Changes in pH, acids, sugars and other quality parameters during extended vine holding of ripe processing tomatoes. J. Sci. Food Agric. 2011, 91, 1175–1181. [Google Scholar] [CrossRef]
- Xu, S.; Sun, X.; Lu, H.; Yang, H.; Ruan, Q.; Huang, H.; Chen, M. Detecting and monitoring the flavor of tomato (Solanum lycopersicum) under the impact of postharvest handlings by physicochemical parameters and electronic nose. Sensors 2018, 18, 1847. [Google Scholar] [CrossRef]
- Tigist, M.; Workneh, T.S.; Woldetsadik, K. Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 2013, 50, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, T.N.; Ibrahim, A.M.; Abtew, W.G. Degradation and formation of fruit color in tomato (Solanum lycopersicum L.) in response to storage temperature. Am. J. Food Technol. 2015, 10, 147–157. [Google Scholar] [CrossRef]
- Pék, Z.; Helyes, L.; Lugasi, A. Color changes and antioxidant content of vine and postharvest-ripened tomato fruits. HortScience 2010, 45, 466–468. [Google Scholar] [CrossRef]
- Kaur, D.; Sharma, R.; Wani, A.A.; Gill, B.S.; Sogi, D.S. Physicochemical changes in seven tomato (Lycopersicon esculentum) cultivars during ripening. Int. J. Food Prop. 2006, 9, 747–757. [Google Scholar] [CrossRef]
- Rosati, C.; Aquilani, R.; Dharmapuri, S.; Pallara, P.; Marusic, C.; Tavazza, R.; Bouvier, F.; Camara, B.; Giuliano, G. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J. 2000, 24, 413–420. [Google Scholar] [CrossRef]
- Carrillo-López, A.; Yahia, E.M. Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI+-mass Spectrometry. J. Food Sci. Technol. 2014, 51, 2720–2726. [Google Scholar] [CrossRef]
- Davis, A.R.; Fish, W.W.; Perkins-Veazie, P. A rapid hexane-free method for analyzing lycopene content in watermelon. J. Food Sci. 2003, 68, 328–332. [Google Scholar] [CrossRef]
- Alda, L.M.; Gogoa, I.; Bordean, D.; Gergen, I.; Alda, S.; Moldovan, C.; Ni, L. Lycopene content of tomatoes and tomato products. J. Agroaliment. Process Technol. 2009, 15, 540–542. [Google Scholar]
- Rubén, D.; Gullon, P.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Lorenzo, J.M. Tomato as Potential Source of Natural Additives for. Antioxidants 2020, 9, 73. [Google Scholar]
- Dobrin, A.; Nedelus, A.; Bujor, O.; Mot, A.; Zugravu, M.; Badulescu, L. Nutritional Quality Parameters of the Fresh Red Tomato Varieties Cultivated in Organic System. Sci. Pap. Ser. B. Hortic. 2019, LXIII, 439–443. [Google Scholar]
- Thompson, K.A.; Marshall, M.R.; Sims, C.A.; Wei, C.I.; Sargent, S.A.; Scott, J.W. Cultivar, maturity, and heat treatment on lycopene content in tomatoes. J. Food Sci. 2000, 65, 791–795. [Google Scholar] [CrossRef]
- Baranska, M.; Schütze, W.; Schulz, H. Determination of lycopene and β-carotene content in tomato fruits and related products: Comparison of FT-raman, ATR-IR, and NIR spectroscopy. Anal. Chem. 2006, 78, 8456–8461. [Google Scholar] [CrossRef]
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef]
- Yahia, E.M.; Contreras-Padilla, M.; Gonzalez-Aguilar, G. Ascorbic acid content in relation to ascorbic acid oxidase activity and polyamine content in tomato and bell pepper fruits during development, maturation and senescence. LWT-Food Sci. Technol. 2001, 34, 452–457. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Ionica, M.E. Antioxidant compounds, mineral content and antioxidant activity of several tomato cultivars grown in Southwestern Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 136–142. [Google Scholar] [CrossRef]
- Di Matteo, A.; Ruggieri, V.; Sacco, A.; Rigano, M.M.; Carriero, F.; Bolger, A.; Fernie, A.R.; Frusciante, L.; Barone, A. Identification of candidate genes for phenolics accumulation in tomato fruit. Plant Sci. 2013, 205–206, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Silva-Beltrán, N.P.; Ruiz-Cruz, S.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Ornelas-paz, J.D.J.; López-mata, M.A.; Del-toro-Sánchez, C.L.; Ayala-Zavala, J.F.; Márquez-ríos, E. Tomatidine Contents and Antioxidant and Antimicrobial Activities of Extracts of Tomato Plant. Int. J. Anal. Chem. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Taveira, M.; Ferreres, F.; Gil-Izquierdo, A.; Oliveira, L.; Valentão, P.; Andrade, P.B. Fast determination of bioactive compounds from Lycopersicon esculentum Mill. leaves. Food Chem. 2012, 135, 748–755. [Google Scholar] [CrossRef]
- Periago, M.J.; Martínez-Valverde, I.; Chesson, A.; Provan, G. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agric. 2002, 82, 323–330. [Google Scholar] [CrossRef]
- Slimestada, R.; Verheulb, M. Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum mill.) cultivars. J. Sci. Food Agric. 2009, 89, 1255–1270. [Google Scholar] [CrossRef]
- Frusciante, L.; Carli, P.; Ercolano, M.R.; Pernice, R.; Di Matteo, A.; Fogliano, V.; Pellegrini, N. Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res. 2007, 51, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Slimestad, R.; Fossen, T.; Verheul, M.J. The flavonoids of tomatoes. J. Agric. Food Chem. 2008, 56, 2436–2441. [Google Scholar] [CrossRef]
- Schijlen, E.; Ric De Vos, C.H.; Jonker, H.; Van Den Broeck, H.; Molthoff, J.; Van Tunen, A.; Martens, S.; Bovy, A. Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol. J. 2006, 4, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Junbae Ahn Amino Acid, Amino Acid Metabolite, and GABA Content of Three Domestic Tomato Varieties. Culin. Sci. Hosp. Res. 2016, 22, 71–77. [CrossRef]
- Sorrequieta, A.; Ferraro, G.; Boggio, S.B.; Valle, E.M. Free amino acid production during tomato fruit ripening: A focus on L-glutamate. Amino Acids 2010, 38, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Pratta, G.; Zorzoli, R.; Boggio, S.B.; Picardi, L.A.; Valle, E.M. Glutamine and glutamate levels and related metabolizing enzymes in tomato fruits with different shelf-life. Sci. Hortic. 2004, 100, 341–347. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, H.Y.; Chang, C.Y.; Liu, Y.C. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J. Food Eng. 2006, 77, 478–485. [Google Scholar] [CrossRef]





| Varieties | Firmness (N) | TSS (°Bx) | TA (mg 100 g−1) | BAR |
|---|---|---|---|---|
| Tori | 10.54 ± 0.64 a | 4.86 ±0.05 b | 0.38 ± 0.01 ab | 12.79 ± 0.16 b |
| TY VIP | 8.31 ± 0.63 b | 5.34 ± 0.08 a | 0.47 ± 0.03 ab | 11.36 ± 1.17 b |
| Mamirio | 11.88 ± 0.47 a | 4.84 ± 0.12 b | 0.26 ± 0.06 b | 18.61 ± 1.72 a |
| Arya | 11.45 ± 0.48 a | 4.46 ± 0.06 b | 0.59 ± 0.04 a | 7.56 ± 0.79 c |
| Amino Acids | Tori | TY VIP | Mamirio | Arya | ||||
|---|---|---|---|---|---|---|---|---|
| mg kg−1 (Dry Weight) | % of Total Amino Acids | mg kg−1 (Dry Weight) | % of Total Amino Acids | mg kg−1 (Dry Weight) | % of Total Amino Acids | mg kg−1 (Dry Weight) | % of Total Amino Acids | |
| Aspartic acid | 3062.49 d | 7.70 | 3781.79 a | 6.60 | 3322.94 b | 8.09 | 3309.36 c | 8.53 |
| Glutamic acid | 15,587.17 c | 39.20 | 17,926.04 a | 31.28 | 17,293.17 b | 42.10 | 15,166.22 d | 39.07 |
| Asparagine | 1870.43 c | 4.70 | 2481.90 a | 4.33 | 1596.54 d | 3.89 | 1945.60 b | 5.01 |
| Serine | 525.38 c | 1.32 | 1448.11 a | 2.53 | 573.54 b | 1.40 | 427.40 d | 1.10 |
| Glutamine | 12,146.58 b | 30.55 | 17,983.99 a | 31.38 | 11,429.39 d | 27.82 | 12,097.73 c | 31.17 |
| Histidine (EAA) | 300.06 c | 0.75 | 383.90 a | 0.67 | 296.97 d | 0.72 | 353.42 b | 0.91 |
| Glycine | 69.14 b | 0.17 | 303.31 a | 0.53 | 61.64 c | 0.15 | 46.66 d | 0.12 |
| Threonine (EAA) | 503.59 c | 1.27 | 1210.25 a | 2.11 | 500.60 d | 1.22 | 569.08 b | 1.47 |
| Arginine | 137.17 d | 0.34 | 571.49 a | 1.00 | 196.80 c | 0.48 | 208.68 b | 0.54 |
| Alanine | 405.48 c | 1.02 | 784.19 a | 1.37 | 423.08 b | 1.03 | 242.64 d | 0.63 |
| GABA | 3112.77 b | 7.83 | 4048.98 a | 7.06 | 2977.96 c | 7.25 | 2198.60 d | 5.66 |
| Tyrosine | 199.67 c | 0.50 | 758.07 a | 1.32 | 165.02 d | 0.40 | 288.26 b | 0.74 |
| Valine (EAA) | 110.40 c | 0.28 | 464.75 a | 0.81 | 110.99 b | 0.27 | 105.90 d | 0.27 |
| Methionine (EAA) | 73.35 b | 0.18 | 259.57 a | 0.45 | 55.90 c | 0.14 | 48.18 d | 0.12 |
| Tryptophane (EAA) | 142.95 d | 0.36 | 335.22 a | 0.58 | 146.62 c | 0.36 | 191.47 b | 0.49 |
| Phenylalanine (EAA) | 745.75 d | 1.88 | 2046.38 a | 3.57 | 906.40 b | 2.21 | 819.14 c | 2.11 |
| Isoleucine (EAA) | 195.06 d | 0.49 | 593.39 a | 1.04 | 213.93 c | 0.52 | 256.37 b | 0.66 |
| Leucine (EAA) | 199.57 d | 0.50 | 932.48 a | 1.63 | 215.72 c | 0.53 | 261.92 b | 0.67 |
| Lysine (EAA) | 150.95 d | 0.38 | 614.10 a | 1.07 | 161.15 c | 0.39 | 182.34 b | 0.47 |
| Proline | 226.81 c | 0.57 | 387.54 b | 0.68 | 430.26 a | 1.05 | 94.60 d | 0.24 |
| Total EAA | 2421.68 d | 6.09 | 6840.03 a | 11.93 | 2608.28 c | 6.35 | 2787.82 b | 7.18 |
| Total amino acids | 39,764.76 c | 57,315.44 a | 41,078.61 b | 38,813.57 d | ||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tilahun, S.; Choi, H.-R.; Baek, M.-W.; Cheol, L.-H.; Kwak, K.-W.; Park, D.-S.; Solomon, T.; Jeong, C.-S. Antioxidant Properties, γ-Aminobutyric Acid (GABA) Content, and Physicochemical Characteristics of Tomato Cultivars. Agronomy 2021, 11, 1204. https://doi.org/10.3390/agronomy11061204
Tilahun S, Choi H-R, Baek M-W, Cheol L-H, Kwak K-W, Park D-S, Solomon T, Jeong C-S. Antioxidant Properties, γ-Aminobutyric Acid (GABA) Content, and Physicochemical Characteristics of Tomato Cultivars. Agronomy. 2021; 11(6):1204. https://doi.org/10.3390/agronomy11061204
Chicago/Turabian StyleTilahun, Shimeles, Han-Ryul Choi, Min-Woo Baek, Lee-Hee Cheol, Ki-Wung Kwak, Do-Su Park, Tifsehit Solomon, and Cheon-Soon Jeong. 2021. "Antioxidant Properties, γ-Aminobutyric Acid (GABA) Content, and Physicochemical Characteristics of Tomato Cultivars" Agronomy 11, no. 6: 1204. https://doi.org/10.3390/agronomy11061204
APA StyleTilahun, S., Choi, H.-R., Baek, M.-W., Cheol, L.-H., Kwak, K.-W., Park, D.-S., Solomon, T., & Jeong, C.-S. (2021). Antioxidant Properties, γ-Aminobutyric Acid (GABA) Content, and Physicochemical Characteristics of Tomato Cultivars. Agronomy, 11(6), 1204. https://doi.org/10.3390/agronomy11061204

