Cultivation Systems, Light Intensity, and Their Influence on Yield and Fruit Quality Parameters of Tomatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Growth Conditions
2.2.1. Conventional Hydroponic Cultivation Systems
2.2.2. Organic Low-Input Cultivation System
2.3. Agronomic and Yield Parameters
2.4. Harvest and Sample Processing
2.5. Fruit Quality Parameters and Chemical Analyses
2.6. Total Phenolic Content and Antioxidant Capacity
2.7. Sensory Evaluation by a Trained Panel
2.8. Metabolite Profiling
2.9. Statistical Analyses
3. Results
3.1. Environmental Conditions in the Cultivation Systems
3.2. Comparison of Yield, Fruit Quality Attributes, Antioxidant Capacity, and Mineral Content
3.3. Influence of Glass Cover and Supplementary LED Interlighting on Yield, Fruit Quality, and Flavor Compounds
3.4. Comparison of Fruits from CSs with and without Supplementary LED Interlighting in Terms of Sensory Analysis and Their Metabolite Profile in Single Glazing and Double Glazing
4. Discussion
4.1. Comparison of the Cultivation Systems
4.1.1. Climatic Differences among the Cultivation Systems
4.1.2. Differences in Yield, Fruit Quality Attributes, and Antioxidant Capacity within the Five Cultivation Systems
4.2. Effects of Single Glazing and Double Glazing and Additional LED Interlighting
4.2.1. Yield Parameters, Fruit Quality Attributes, Total Phenolic Content, and Antioxidant Capacity
4.2.2. Effect of Supplemental LED Interlighting on Sensory Analysis and the Metabolite Profile in Single Glazing and Double Glazing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 30 March 2021).
- Martínez-Valverde, I.; Periago, M.J.; Provan, G.; Chesson, A. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agric. 2002, 82, 323–330. [Google Scholar] [CrossRef]
- Pinela, J.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’ varieties in Northeastern Portugal Homegardens. Food Chem. Toxicol. 2012, 50, 829–834. [Google Scholar] [CrossRef]
- Tieman, D.; Zhu, G.; Resende, M.F.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Beltran, K.S.O.; Taylor, M.; Zhang, B.; et al. A chemical genetic roadmap to improved tomato flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef]
- Tikunov, Y.M.; Roohanitaziani, R.; Meijer-Dekens, F.; Molthoff, J.; Paulo, J.; Finkers, R.; Capel, I.; Carvajal Moreno, F.; Maliepaard, C.; Nijenhuis-de Vries, M.; et al. The genetic and functional analysis of flavor in commercial tomato: The FLORAL4 gene underlies a QTL for floral aroma volatiles in tomato fruit. Plant J. 2020, 103, 1189–1204. [Google Scholar] [CrossRef]
- Grandillo, S.; Cammareri, M. Molecular mapping of quantitative trait loci in tomato. In The Tomato Genome, Compendium of Plant Genomes; Causse, M., Giovannoni, J., Bouzayen, M., Zouine, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 39–73. ISBN 978-3-662-53387-1. [Google Scholar]
- Schouten, H.J.; Tikunov, Y.; Verkerke, W.; Finkers, R.; Bovy, A.; Bai, Y.; Visser, R.G.F. Breeding has increased the diversity of cultivated tomato in the Netherlands. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Gruda, N. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. CRC Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Jones, J.W.; Thorp, K.R.; Ahmad, D.; Man, H.C.; Taheri, S. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. Int. Agrophys. 2018, 32, 287–302. [Google Scholar] [CrossRef]
- Dzakovich, M.P.; Gómez, C.; Mitchell, C.A. Tomatoes grown with light-emitting diodes or high-pressure sodium supplemental lights have similar fruit-quality attributes. HortScience 2015, 50, 1498–1502. [Google Scholar] [CrossRef]
- Gómez, C.; Morrow, R.C.; Bourget, C.M.; Massa, G.D.; Mitchell, C.A. Comparison of intracanopy light-emitting diode towers and overhead high-pressure sodium lamps for supplemental lighting of greenhouse-grown tomatoes. HortTechnology 2013, 23, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Morrow, R.C. LED lighting in horticulture. HortScience 2008, 43, 1947–1950. [Google Scholar] [CrossRef] [Green Version]
- Borguini, R.G.; Ferraz Da Silva Torres, E.A. Tomatoes and tomato products as dietary sources of antioxidants. Food Rev. Int. 2009, 25, 313–325. [Google Scholar] [CrossRef]
- Max, J.F.J.; Schurr, U.; Tantau, H.-J.; Mutwiwa, U.N.; Hofmann, T.; Ulbrich, A. Greenhouse cover technology. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 259–396. ISBN 978-1-118-35187-1. [Google Scholar]
- Tantau, H.-J.; Meyer, J.; Schmidt, U.; Bessler, B. Low energy greenhouse—A system approach. Acta Hortic. 2011, 75–84. [Google Scholar] [CrossRef]
- Wilms, D.; Römer, H.-P.; Rehrmann, P.; Bettin, A. Prüfung von wärmeschutzglas als bedachungsmaterial für die zierpflanzenproduktion. In Niedrigenergiegewächshäuser. Ergebnisse des ZINEG-Verbundprojektes; Kuratorium für Technik und Bauwesen in der Landwirtschaft e. V. (KTBL), Ed.; KTBL-Schrift: Darmstadt, Germany, 2015; ISBN 978-3-945088-14-2. [Google Scholar]
- De Kreij, C.; Voogt, W.; Baas, R. Nutrient Solutions and Water Quality for Soilless Cultures; Applied Plant Research, Division Glasshouse: Naaldwijk, The Netherlands, 2003. [Google Scholar]
- Kanski, L.; Naumann, M.; Pawelzik, E. Flavor-related quality attributes of ripe tomatoes are not significantly affected under two common household conditions. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, J.; Xu, Y.; Liang, J.; Chang, P.; Yan, F.; Li, M.; Liang, Y.; Zou, Z. Genome-wide association mapping for tomato volatiles positively contributing to tomato flavor. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DIN EN ISO 8586:2014-05, Sensorische Analyse_-Allgemeiner Leitfaden für die Auswahl, Schulung und Überprüfung Ausgewählter Prüfer und Sensoriker (ISO_8586:2012); Deutsche Fassung EN_ISO_8586:2014; Beuth Verlag GmbH: Berlin, Germany, 2014.
- DIN EN ISO 8589:2014-10, Sensorische Analyse_- Allgemeiner Leitfaden für die Gestaltung von Prüfräumen (ISO_8589:2007_+ Amd_1:2014); Deutsche Fassung EN_ISO_8589:2010_+ A1:2014; Beuth Verlag GmbH: Berlin, Germany, 2010.
- Mitchell, C.A.; Dzakovich, M.P.; Gomez, C.; Lopez, R.; Burr, J.F.; Hernández, R.; Kubota, C.; Currey, C.J.; Meng, Q.; Runkle, E.S.; et al. Light-emitting diodes in horticulture. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; Volume 43, pp. 1–88. ISBN 978-1-119-10778-1. [Google Scholar]
- Paucek, I.; Appolloni, E.; Pennisi, G.; Quaini, S.; Gianquinto, G.; Orsini, F. LED lighting systems for horticulture: Business growth and global distribution. Sustainability 2020, 12, 7516. [Google Scholar] [CrossRef]
- Tewolde, F.T.; Lu, N.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W. Nighttime supplemental LED inter-lighting improves growth and yield of single-truss tomatoes by enhancing photosynthesis in both winter and summer. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, G.; Briassoulis, D.; Scarascia Mugnozza, G.; Vox, G.; Feuilloley, P.; Stoffers, J.A. Review paper (SE—Structures and environment). J. Agric. Eng. Res. 2000, 77, 7–38. [Google Scholar] [CrossRef]
- Bradfield, E.G.; Guttridge, C.G. Effects of night-time humidity and nutrient solution concentration on the calcium content of tomato fruit. Sci. Hortic. 1984, 22, 207–217. [Google Scholar] [CrossRef]
- Rosales, M.A.; Cervilla, L.M.; Sánchez-Rodríguez, E.; del Mar Rubio-Wilhelmi, M.; Blasco, B.; Ríos, J.J.; Soriano, T.; Castilla, N.; Romero, L.; Ruiz, J.M. The effect of environmental conditions on nutritional quality of cherry tomato fruits: Evaluation of two experimental mediterranean greenhouses. J. Sci. Food Agric. 2011, 91, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Beckles, D.M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Klee, H.J.; Tieman, D.M. The genetics of fruit flavour preferences. Nat. Rev. Genet. 2018, 19, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, E.A.; Goodner, K.; Plotto, A. Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors. J. Food Sci. 2008, 73, S294–S307. [Google Scholar] [CrossRef] [PubMed]
- Vogel, J.T.; Tieman, D.M.; Sims, C.A.; Odabasi, A.Z.; Clark, D.G.; Klee, H.J. Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). J. Sci. Food Agric. 2010, 90, 2233–2240. [Google Scholar] [CrossRef] [PubMed]
- Cebolla-Cornejo, J.; Roselló, S.; Valcárcel, M.; Serrano, E.; Beltrán, J.; Nuez, F. Evaluation of genotype and environment effects on taste and aroma flavor components of Spanish fresh tomato varieties. J. Agric. Food Chem. 2011, 59, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.J.; Jayaprakasha, G.K.; Avila, C.A.; Crosby, K.M.; Patil, B.S. Metabolomic studies of volatiles from tomatoes grown in net-house and open-field conditions. Food Chem. 2019, 275, 282–291. [Google Scholar] [CrossRef]
- Gautier, H.; Diakou-Verdin, V.; Bénard, C.; Reich, M.; Buret, M.; Bourgaud, F.; Poëssel, J.L.; Caris-Veyrat, C.; Génard, M. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J. Agric. Food Chem. 2008, 56, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, E. The chemistry of fresh tomato flavor. Turk. J. Agric. For. 2001, 25, 149–155. [Google Scholar]
- Costa, F.; de Lurdes Baeta, M.; Saraiva, D.; Verissimo, M.T.; Ramos, F. Evolution of mineral contents in tomato fruits during the ripening process after harvest. Food Anal. Methods 2011, 4, 410–415. [Google Scholar] [CrossRef]
- Hernández Suárez, M.; Rodríguez Rodríguez, E.M.; Díaz Romero, C. Mineral and trace element concentrations in cultivars of tomatoes. Food Chem. 2007, 104, 489–499. [Google Scholar] [CrossRef]
- Dzakovich, M.P.; Ferruzzi, M.G.; Mitchell, C.A. Manipulating sensory and phytochemical profiles of greenhouse tomatoes using environmentally relevant doses of ultraviolet radiation. J. Agric. Food Chem. 2016, 64, 6801–6808. [Google Scholar] [CrossRef]
- Dzakovich, M.P.; Gómez, C.; Ferruzzi, M.G.; Mitchell, C.A. Chemical and sensory properties of greenhouse tomatoes remain unchanged in response to red, blue, and far red supplemental light from light-emitting diodes. HortScience 2017, 52, 1734–1741. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, K.; Gajc-Wolska, J.; Metera, A.; Mazur, K.; Radzanowska, J.; Szatkowski, M. Effect of supplementary lighting on the quality of tomato fruit (Solanum lycopersicum L.) in autumn-winter cultivation. Acta Hortic. 2012, 395–401. [Google Scholar] [CrossRef]
- Snowden, C.J.; Thomas, B.; Baxter, C.J.; Smith, J.A.C.; Sweetlove, L.J. A tonoplast glu/asp/gaba exchanger that affects tomato fruit amino acid composition. Plant J. 2015, 81, 651–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanor, M.I.; Rambla, J.-L.; Chaïb, J.; Steppa, A.; Medina, A.; Granell, A.; Fernie, A.R.; Causse, M. Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. J. Exp. Bot. 2009, 60, 2139–2154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biais, B.; Bénard, C.; Beauvoit, B.; Colombié, S.; Prodhomme, D.; Ménard, G.; Bernillon, S.; Gehl, B.; Gautier, H.; Ballias, P.; et al. Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism. Plant Physiol. 2014, 164, 1204–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Breeding Line/ Cultivar | Genotype Number | Genotype | Tomato Fruit Type |
---|---|---|---|
1 | 45 | Lyterno F1 × Primabella | salad |
2 | 157 | Paul Robson × Sakura F1 | salad |
3 | 170 | Paul Robson × Sakura F1 | salad |
4 | 781-11 | Black Cherry × Sakura F1 | cocktail |
5 | 791-11 | Resi × Bocati F1 | cocktail |
6 | Lyterno F1 | salad |
CS | Characterization |
---|---|
1 | Single-glazed greenhouse with LED interlighting, conventional hydroponic cultivation system |
2 | Single-glazed greenhouse without LED interlighting, conventional hydroponic cultivation system |
3 | Double-glazed greenhouse (low-energy-greenhouse) with LED interlighting, conventional hydroponic cultivation system |
4 | Double-glazed greenhouse (low-energy-greenhouse) without LED interlighting, conventional hydroponic cultivation system |
5 | Organic low-input cultivation system on the field with a rainout shelter |
Cultivation System (CS) | Breeding Line (BL)/Cultivar (CV) | BL/CV × CS | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 6 | ||||
Dry matter [%] | 7.33 ± 1.07 a | 7.22 ± 1.39 a | 6.88 ± 1.01 ab | 6.58 ± 1.34 b | 6.97 ± 0.86 ab | *** | 6.5 ± 0.68 b | 7.68 ± 0.83 a | 6.1 ± 0.45 bc | 7.86 ± 0.67 a | 8.14 ± 0.77 a | 5.67 ± 0.61 c | *** | ** |
TSS [° Brix] | 6.56 ± 1.10 ab | 6.78 ± 1.18 a | 6.19 ± 0.89 ab | 6.15 ± 1.16 b | 6.33 ± 0.97 ab | ** | 5.75 ± 0.79 b | 6.93 ± 0.85 a | 5.8 ± 0.87 b | 7.45 ± 0.42 a | 6.99 ± 0.80 a | 5.47 ± 0.84 b | *** | ns |
TA [%] | 0.58 ± 0.14 a | 0.58 ± 0.16 a | 0.56 ± 0.13 a | 0.57 ± 0.15 a | 0.47 ± 0.09 b | *** | 0.43 ± 0.13 c | 0.51 ± 0.07 bc | 0.48 ± 0.07 bc | 0.67 ± 0.11 a | 0.71 ± 0.12 a | 0.52 ± 0.09 b | *** | ns |
pH | 4.2 ± 0.14 ab | 4.27 ± 0.18 a | 4.22 ± 0.13 ab | 4.21 ± 0.16 ab | 4.14 ± 0.08 b | ** | 4.22 ± 0.10 bc | 4.26 ± 0.11 b | 4.36 ± 0.14 a | 4.14 ± 0.07 c | 4.14 ± 0.12 c | 4.13 ± 0.16 c | *** | ns |
a* value | 14.03 ± 4.29 b | 13.92 ± 4.71 b | 14.01 ± 4.48 b | 13.59 ± 4.26 b | 15.23 ± 4.17 a | ** | 18.01 ± 1.58 a | 14.54 ± 1.87 b | 10.54 ± 2.17 c | 7.4 ± 0.89 d | 18.75 ± 1.54 a | 15.7 ± 1.46 b | *** | *** |
Hue angle [°] | 62.09 ± 4.64 ab | 61.78 ± 5.72 ab | 62.37 ± 5.06 a | 62.52 ± 5.17 a | 60.73 ± 3.80 b | * | 58.09 ± 2.19 c | 61.62 ± 2.89 b | 67.07 ± 3.45 a | 67.59 ± 1.81 a | 56.52 ± 2.42 c | 60.5 ± 2.20 b | *** | *** |
Fructose [g/100 g] | 1.89 ± 0.36 ab | 1.98 ± 0.42 a | 1.85 ± 0.28 ab | 1.76 ± 0.42 b | 1.98 ± 0.44 a | *** | 1.78 ± 0.21 c | 2.07 ± 0.32 b | 1.58 ± 0.14 d | 2.26 ± 0.21 a | 2.24 ± 0.19 a | 1.42 ± 0.18 e | *** | *** |
Glucose [g/100 g] | 1.7 ± 0.35 ab | 1.8 ± 0.42 a | 1.63 ± 0.25 b | 1.58 ± 0.40 b | 1.7 ± 0.37 ab | *** | 1.51 ± 0.21 b | 1.91 ± 0.30 a | 1.39 ± 0.11 bc | 2.04 ± 0.18 a | 1.98 ± 0.17 a | 1.26 ± 0.19 c | *** | ** |
DPPH [µmol/100 g] | 138.45 ± 28.45 ab | 140.19 ± 28.54 a | 123.91 ± 21.61 bc | 119.82 ± 27.90 c | 124.55 ± 24.07 bc | *** | 134.22 ± 17.68 bc | 128.31 ± 24.73 c | 109.16 ± 12.75 d | 152.28 ± 18.96 a | 151.59 ± 21.01 ab | 101.47 ± 18.59 d | *** | ns |
TEAC [µmol/100 g] | 164.46 ± 29.95 ab | 174.33 ± 33.50 a | 157.22 ± 25.35 bc | 149.19 ± 29.13 c | 152.53 ± 25.53 bc | *** | 166.38 ± 19.39 ab | 161.6 ± 29.60 b | 141.79 ± 14.12 c | 182.81 ± 21.09 a | 182.39 ± 21.79 a | 123.18 ± 15.94 d | *** | ns |
TPC [mg/100 g] | 48.65 ± 7.95 ab | 48.27 ± 8.74 ab | 46.33 ± 6.48 b | 37.12 ± 7.49 c | 52.24 ± 9.96 a | *** | 45.91 ± 7.75 b | 53.06 ± 9.50 a | 43.33 ± 6.35 b | 51.15 ± 5.40 a | 51.25 ± 8.43 a | 34.88 ± 5.52 c | *** | ns |
Cultivation System (CS) | Breeding Line (BL)/Cultivar (CV) | BL/CV × CS | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[mg/100 g] | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 6 | |||
Ca | 7.9 ± 1.69 b | 7.82 ± 1.87 b | 7.23 ± 1.28 b | 7.39 ± 1.17 b | 12.27 ± 1.52 a | *** | 9.42 ± 2.77 a | 8.76 ± 1.92 a | 7.43 ± 2.36 b | 9.07 ± 2.09 a | 9.23 ± 2.55 a | 7.31 ± 2.18 b | *** | ns |
K | 295.72 ± 49.19 a | 285.03 ± 38.08 a | 293.74 ± 47.42 a | 280.11 ± 49.79 a | 200.87 ± 24.84 b | *** | 233.56 ± 38.81 c | 284.17 ± 43.16 b | 267.29 ± 38.85 b | 286.31 ± 56.23 b | 323.07 ± 56.64 a | 228.7 ± 36.67 c | *** | ** |
Mg | 11.98 ± 2.18 a | 12.01 ± 2.12 a | 12.34 ± 2.62 a | 11.84 ± 2.75 a | 9.25 ± 1.81 b | *** | 9.65 ± 1.77 c | 10.61 ± 1.24 b | 11.13 ± 1.32 b | 14.34 ± 2.17 a | 14.03 ± 1.59 a | 9.17 ± 1.24 c | *** | * |
P | 47.94 ± 6.56 a | 47.25 ± 6.06 a | 47.28 ± 6.79 a | 45.33 ± 7.63 a | 37.99 ± 6.49 b | *** | 42.73 ± 5.45 b | 48.31 ± 4.71 a | 43.5 ± 5.60 b | 50.32 ± 6.62 a | 50.87 ± 4.62 a | 35.08 ± 4.62 c | *** | ** |
N | 5.81 ± 0.82 a | 5.47 ± 0.63 a | 5.52 ± 0.66 a | 5.48 ± 0.91 a | 4.78 ± 0.71 b | *** | 5.13 ± 0.50 b | 5.86 ± 0.70 a | 5.00 ± 0.52 b | 6.00 ± 0.68 a | 5.95 ± 0.61 a | 4.5 ± 0.55 c | *** | * |
Fe | 0.74 ± 0.28 | 0.63 ± 0.19 | 0.64 ± 0.20 | 0.64 ± 0.31 | 0.6 ± 0.18 | ns | 0.56 ± 0.10 cd | 0.67 ± 0.14 bc | 0.6 ± 0.30 bcd | 0.86 ± 0.28 a | 0.75 ± 0.14 ab | 0.44 ± 0.14 d | *** | ns |
M | 0.29 ± 0.09 a | 0.29 ± 0.10 a | 0.26 ± 0.08 a | 0.26 ± 0.06 a | 0.08 ± 0.02 b | *** | 0.24 ± 0.10 b | 0.25 ± 0.12 b | 0.2 ± 0.07 c | 0.31 ± 0.12 a | 0.26 ± 0.10 b | 0.17 ± 0.07 c | *** | *** |
Glazing (G) | Lighting (L) | BL/CV | BL/CV × G | BL/CV × L | G × L | BL/CV × G × L | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Single Glazing | Double Glazing | without | with | ||||||||
length [m] | 3.31 ± 0.30 | 3.44 ± 0.34 | ** | 3.43 ± 0.32 | 3.31 ± 0.32 | * | *** | ns | ns | ns | ns |
leaves up to truss 3 | 3.12 ± 0.40 | 3.13 ± 0.48 | ns | 3.16 ± 0.53 | 3.09 ± 0.34 | ns | *** | ns | ns | * | ns |
trusses up to 2.5 m | 9.16 ± 1.34 | 8.7 ± 1.25 | ** | 8.59 ± 1.19 | 9.27 ± 1.34 | *** | *** | ns | ns | ns | ns |
trusses per week since planting | 0.91 ± 0.13 | 0.88 ± 0.14 | ns | 0.86 ± 0.14 | 0.93 ± 0.12 | *** | *** | * | ns | * | ns |
trusses whole plant | 12.52 ± 1.50 | 12.08 ± 1.33 | * | 11.95 ± 1.54 | 12.65 ± 1.23 | ** | *** | ns | ns | ** | ns |
time from planting to 2.5 m plant height [weeks] | 10.2 ± 0.93 | 9.9 ± 0.93 | * | 10.01 ± 0.99 | 10.09 ± 0.90 | ns | *** | ns | ns | ns | ns |
single fruit weight [g] | 58.11 ± 29.18 | 52.09 ± 25.71 | ** | 52.64 ± 25.53 | 57.56 ± 29.43 | ** | *** | ns | ** | * | ns |
yield [g per week and plant since planting] | 327.36 ± 150.21 | 282.48 ± 131.37 | *** | 282.17 ± 128.99 | 327.66 ± 152.17 | *** | *** | ns | ns | ns | ns |
calculated yield [kg per plant] | 3.23 ± 1.33 | 2.68 ± 1.01 | *** | 2.75 ± 1.09 | 3.17 ± 1.30 | *** | *** | * | ns | * | * |
Glazing (G) | Lighting (L) | BL/CV | BL/CV × G | BL/CV × L | G × L | BL/CV × G × L | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Single Glazing | Double Glazing | without | with | ||||||||
Dry matter [%] | 7.27 ± 1.23 | 6.73 ± 1.18 | *** | 6.9 ± 1.39 | 7.11 ± 1.06 | ns | *** | *** | ns | ns | ns |
TSS [° Brix] | 6.67 ± 1.13 | 6.17 ± 1.02 | ** | 6.46 ± 1.20 | 6.38 ± 1.01 | ns | *** | ns | ns | ns | ns |
TA [%] | 0.58 ± 0.15 | 0.57 ± 0.14 | ns | 0.57 ± 0.15 | 0.57 ± 0.14 | ns | *** | ns | ns | ns | ns |
pH | 4.23 ± 0.16 | 4.21 ± 0.14 | ns | 4.24 ± 0.17 | 4.21 ± 0.14 | ns | *** | ns | ns | ns | ns |
a* value | 13.98 ± 4.46 | 13.8 ± 4.33 | ns | 13.76 ± 4.45 | 14.02 ± 4.34 | ns | *** | * | ns | ns | ns |
Hue angle [°] | 61.93 ± 5.15 | 62.45 ± 5.06 | ns | 62.15 ± 5.41 | 62.23 ± 4.81 | ns | *** | * | ns | ns | ns |
Fructose [g/100 g] | 1.93 ± 0.39 | 1.81 ± 0.35 | *** | 1.87 ± 0.43 | 1.86 ± 0.32 | ns | *** | *** | ns | ** | * |
Glucose [g/100 g] | 1.75 ± 0.39 | 1.61 ± 0.33 | *** | 1.69 ± 0.42 | 1.67 ± 0.30 | ns | *** | ** | ns | * | * |
DPPH [µmol/100 g] | 139.32 ± 28.20 | 121.91 ± 24.70 | *** | 130.22 ± 29.76 | 131.18 ± 26.05 | ns | *** | ns | ns | ns | ns |
TEAC [µmol/100 g] | 169.4 ± 31.82 | 153.29 ± 27.27 | *** | 162.03 ± 33.59 | 160.84 ± 27.69 | ns | *** | ns | ns | * | ns |
TPC [mg/100 g] | 48.46 ± 8.27 | 41.82 ± 8.34 | *** | 42.81 ± 9.84 | 47.49 ± 7.27 | *** | *** | ** | ns | *** | ns |
Ca [mg/100 g] | 7.86 ± 1.76 | 7.3 ± 1.22 | * | 7.6 ± 1.56 | 7.57 ± 1.52 | ns | *** | ns | ns | ns | ns |
K [mg/100 g] | 290.37 ± 43.85 | 287.07 ± 48.55 | ns | 282.62 ± 43.78 | 294.73 ± 47.81 | * | *** | ** | ns | ns | ns |
Mg [mg/100 g] | 12 ± 2.12 | 12.16 ± 2.66 | ns | 11.99 ± 2.42 | 12.16 ± 2.39 | ns | *** | ** | ns | ns | ns |
P [mg/100 g] | 47.59 ± 6.26 | 46.33 ± 7.20 | * | 46.31 ± 6.87 | 47.61 ± 6.61 | * | *** | *** | ns | ns | ns |
Na [mg/100 g] | 5.64 ± 0.75 | 5.5 ± 0.79 | ns | 5.47 ± 0.77 | 5.66 ± 0.75 | * | *** | ** | ns | ns | ns |
Fe [mg/100 g] | 0.68 ± 0.24 | 0.64 ± 0.25 | ns | 0.64 ± 0.25 | 0.69 ± 0.24 | ns | *** | ns | ns | ns | ns |
Mn [mg/100 g] | 0.29 ± 0.09 | 0.26 ± 0.07 | * | 0.28 ± 0.08 | 0.28 ± 0.08 | ns | *** | ** | ns | ns | ns |
Glazing (G) | Lighting (L) | BL/CV | BL/CV × G | BL/CV × L | G × L | BL/CV × G × L | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
[ng/mL sample] | Single Glazing | Double Glazing | without | with | |||||||
1-Penten-3-one | 0.01 ± 0.00 | 0.01 ± 0.00 | ns | 0.01 ± 0.00 | 0.01 ± 0.00 | ns | *** | ns | ns | ns | ns |
Hexanal | 6.24 ± 3.71 | 7.59 ± 4.93 | ns | 6.92 ± 3.76 | 6.92 ± 4.98 | ns | *** | ns | ns | * | ns |
Z-3-Hexenal | 1.59 ± 0.69 | 1.46 ± 0.70 | ns | 1.27 ± 0.55 | 1.78 ± 0.73 | *** | *** | ns | ns | * | ns |
E-2-Hexenal | 3.98 ± 1.99 | 4.61 ± 1.96 | *** | 3.86 ± 1.74 | 4.73 ± 2.14 | *** | *** | ns | ns | *** | ns |
6-Methyl-5-hepten-2-one | 2.87 ± 1.28 | 2.74 ± 1.15 | ns | 2.7 ± 1.16 | 2.9 ± 1.27 | ns | ns | ns | ns | ns | ns |
1-Hexanol | 0.14 ± 0.09 | 0.12 ± 0.08 | ns | 0.15 ± 0.10 | 0.1 ± 0.07 | *** | *** | ns | ns | ns | ns |
Z-3-Hexenol | 0.22 ± 0.05 | 0.23 ± 0.04 | * | 0.24 ± 0.04 | 0.21 ± 0.05 | *** | *** | ns | ns | ns | ns |
2-Isobutylthiazole | 2.19 ± 2.15 | 2.14 ± 1.44 | ns | 2.19 ± 2.00 | 2.14 ± 1.64 | ns | *** | ** | ns | ns | ns |
Benzaldehyde | 0.15 ± 0.05 | 0.13 ± 0.06 | ** | 0.16 ± 0.06 | 0.13 ± 0.05 | ** | *** | *** | ns | * | ns |
Phenylacetaldeyde | 0.09 ± 0.03 | 0.08 ± 0.03 | ns | 0.08 ± 0.03 | 0.08 ± 0.04 | ns | *** | ns | * | ** | ns |
Neral | 0.05 ± 0.04 | 0.04 ± 0.03 | ** | 0.05 ± 0.04 | 0.05 ± 0.03 | ns | *** | ns | ns | ns | ns |
Geranial | 0.31 ± 0.16 | 0.23 ± 0.14 | *** | 0.21 ± 0.11 | 0.32 ± 0.17 | *** | ns | ns | ns | *** | ns |
Methyl salicylate | 0.15 ± 0.27 | 0.09 ± 0.12 | ns | 0.14 ± 0.26 | 0.1 ± 0.14 | ns | *** | ns | ns | ns | ns |
ß-Damascenone | 0.15 ± 0.10 | 0.2 ± 0.17 | * | 0.18 ± 0.15 | 0.18 ± 0.14 | ns | *** | * | ns | ns | ns |
Z-Geranylacetone | 0.02 ± 0.01 | 0.02 ± 0.01 | ns | 0.02 ± 0.01 | 0.02 ± 0.01 | ** | *** | * | ns | ns | ns |
E-Geranylacetone | 2.13 ± 1.10 | 2.07 ± 1.10 | ns | 1.91 ± 0.95 | 2.27 ± 1.20 | ns | *** | ns | * | ns | ns |
2-Phenylethanol | 0.42 ± 0.18 | 0.4 ± 0.18 | ns | 0.45 ± 0.21 | 0.36 ± 0.14 | *** | *** | ns | ns | ns | ns |
ß-Ionone | 0.34 ± 0.20 | 0.33 ± 0.20 | ns | 0.28 ± 0.14 | 0.39 ± 0.23 | *** | *** | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanski, L.; Kahle, H.; Naumann, M.; Hagenguth, J.; Ulbrich, A.; Pawelzik, E. Cultivation Systems, Light Intensity, and Their Influence on Yield and Fruit Quality Parameters of Tomatoes. Agronomy 2021, 11, 1203. https://doi.org/10.3390/agronomy11061203
Kanski L, Kahle H, Naumann M, Hagenguth J, Ulbrich A, Pawelzik E. Cultivation Systems, Light Intensity, and Their Influence on Yield and Fruit Quality Parameters of Tomatoes. Agronomy. 2021; 11(6):1203. https://doi.org/10.3390/agronomy11061203
Chicago/Turabian StyleKanski, Larissa, Hannah Kahle, Marcel Naumann, Julia Hagenguth, Andreas Ulbrich, and Elke Pawelzik. 2021. "Cultivation Systems, Light Intensity, and Their Influence on Yield and Fruit Quality Parameters of Tomatoes" Agronomy 11, no. 6: 1203. https://doi.org/10.3390/agronomy11061203
APA StyleKanski, L., Kahle, H., Naumann, M., Hagenguth, J., Ulbrich, A., & Pawelzik, E. (2021). Cultivation Systems, Light Intensity, and Their Influence on Yield and Fruit Quality Parameters of Tomatoes. Agronomy, 11(6), 1203. https://doi.org/10.3390/agronomy11061203