Changes in Ripening-Related Quality Traits of Long Shelf Life Tomatoes as Influenced by Water Deficit and Short-Term Postharvest Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growing Conditions
2.2. Fruit Sampling and Storage Conditions
2.3. Physical Measurements
2.4. Sugar and Organic Acid Content
2.5. Total Phenolic Content and Antioxidant Activity
2.6. Ethylene Production Capacity and Respiration Rate
2.7. Statistical Analyses
3. Results and Discussion
3.1. Effect of Water Deficit and Growing Environment on Fruit Quality and Physiological Traits
3.2. Effect of Short-Term Storage on Fruit Quality and Physiological Traits
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tieman, D.; Zhu, G.; Resende, M.F.R.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Beltran, K.S.O.; Taylor, M.; Zhang, B.; et al. A chemical genetic roadmap to improved tomato flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef]
- Folta, K.M.; Klee, H.J. Sensory sacrifices when we mass-produce mass produce. Hortic. Res. 2016, 3, 16032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertin, N.; Génard, M. Tomato quality as influenced by preharvest factors. Sci. Hortic. 2018, 233, 264–276. [Google Scholar] [CrossRef]
- Causse, M.; Zhao, J.; Diouf, I.; Qang, J.; Lefebvre, V.; Caromel, B.; Génard, M.; Bertin, N. Genomic designing for climate-smart tomato. In Genomic Designing of Climate-Smart Vegetable Crops; Kole, C., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 47–159. [Google Scholar]
- Terzopoulos, P.J.; Bebeli, P.J. Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Sci. Hortic. 2010, 126, 138–144. [Google Scholar] [CrossRef]
- Siracusa, L.; Patane, C.; Avola, G.; Ruberto, G. Polyphenols as chemotaxonomic markers in italian “long-storage” tomato genotypes. J. Agric. Food Chem. 2012, 60, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Cebolla-Cornejo, J.; Roselló, S.; Nuez, F. Phenotypic and genetic diversity of Spanish tomato landraces. Sci. Hortic. 2013, 162, 150–164. [Google Scholar] [CrossRef] [Green Version]
- Mazzucato, A.; Ficcadenti, N.; Caioni, M.; Mosconi, P.; Piccinini, E.; Sanampudi, V.R.R.; Sestili, S.; Ferrari, V. Genetic diversity and distinctiveness in tomato (Solanum lycopersicum L.) landraces: The Italian case study of “A pera Abruzzese”. Sci. Hortic. 2010, 125, 55–62. [Google Scholar] [CrossRef]
- Conesa, M.À.; Fullana-Pericàs, M.; Granell, A.; Galmés, J. Mediterranean Long Shelf-Life landraces: An untapped genetic resource for tomato improvement. Front. Plant Sci. 2020, 10, 1651. [Google Scholar] [CrossRef]
- Siracusa, L.; Patanè, C.; Rizzo, V.; Cosentino, S.L.; Ruberto, G. Targeted secondary metabolic and physico-chemical traits analysis to assess genetic variability within a germplasm collection of “long storage” tomatoes. Food Chem. 2018, 244, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Figàs, M.R.; Prohens, J.; Raigón, M.D.; Fita, A.; García-Martínez, M.D.; Casanova, C.; Borràs, D.; Plazas, M.; Andújar, I.; Soler, S. Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chem. 2015, 187, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Rosa-Martínez, E.; Adalid, A.M.; Alvarado, L.E.; Burguet, R.; García-Martínez, M.D.; Pereira-Dias, L.; Casanova, C.; Soler, E.; Figàs, M.R.; Plazas, M.; et al. Variation for composition and quality in a collection of the resilient Mediterranean ‘de penjar’ Long Shelf-Life tomato under high and low N fertilization levels. Front. Plant Sci. 2021, 12, 441. [Google Scholar] [CrossRef]
- Bota, J.; Conesa, M.À.; Ochogavia, J.M.; Medrano, H.; Francis, D.M.; Cifre, J. Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. Genet. Resour. Crop Evol. 2014, 61, 1131–1146. [Google Scholar] [CrossRef]
- Casals, J.; Pascual, L.; Canizares, J.; Cebolla-Cornejo, J.; Casanas, F.; Nuez, F. Genetic basis of long shelf life and variability into Penjar tomato. Genet. Resour. Crop Evol. 2012, 59, 219–229. [Google Scholar] [CrossRef]
- Mercati, F.; Longo, C.; Poma, D.; Araniti, F.; Lupini, A.; Mammano, M.M.; Fiore, M.C.; Abenavoli, M.R.; Sunseri, F. Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits. Genet. Resour. Crop Evol. 2015, 62, 721–732. [Google Scholar] [CrossRef]
- Galmes, J.; Conesa, M.A.; Ochogavia, J.M.; Perdomo, J.A.; Francis, D.M.; Ribas-Carbo, M.; Save, R.; Flexas, J.; Medrano, H.; Cifre, J. Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant Cell Environ. 2011, 34, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Patanè, C.; Scordia, D.; Testa, G.; Cosentino, S.L. Physiological screening for drought tolerance in Mediterranean long-storage tomato. Plant Sci. 2016, 249, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Conesa, M.À.; Galmés, J.; Ochogavía, J.M.; March, J.; Jaume, J.; Martorell, A.; Francis, D.M.; Medrano, H.; Rose, J.K.C.; Cifre, J. The postharvest tomato fruit quality of long shelf-life Mediterranean landraces is substantially influenced by irrigation regimes. Postharvest Biol. Technol. 2014, 93, 114–121. [Google Scholar] [CrossRef]
- Albert, E.; Gricourt, J.; Bertin, N.; Bonnefoi, J.; Pateyron, S.; Tamby, J.-P.; Bitton, F.; Causse, M. Genotype by watering regime interaction in cultivated tomato: Lessons from linkage mapping and gene expression. Theor. Appl. Genet. 2016, 129, 395–418. [Google Scholar] [CrossRef]
- Giné-Bordonaba, J.; Terry, L.A. Effect of deficit irrigation and methyl jasmonate application on the composition of strawberry (Fragaria x ananassa) fruit and leaves. Sci. Hortic. 2016, 199, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Fullana-Pericàs, M.; Conesa, M.À.; Douthe, C.; El Aou-ouad, H.; Ribas-Carbó, M.; Galmés, J. Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions. Agric. Water Manag. 2019, 223, 105722. [Google Scholar] [CrossRef]
- Barbagallo, R.N.; Chisari, M.; Branca, F.; Spagna, G. Pectin methylesterase, polyphenol oxidase and physicochemical properties of typical long-storage cherry tomatoes cultivated under water stress regime. J. Sci. Food Agric. 2008, 88, 389–396. [Google Scholar] [CrossRef]
- Patanè, C.; Siah, S.; Pellegrino, A.; Cosentino, S.L.; Siracusa, L. Fruit yield, polyphenols, and carotenoids in Long Shelf-Life tomatoes in response to drought stress and rewatering. Agronomy 2021, 11, 1943. [Google Scholar] [CrossRef]
- Wang, X.; Xing, Y. Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality: A principal component analysis. Sci. Rep. 2017, 7, 350. [Google Scholar] [CrossRef] [Green Version]
- Casals, J.; Martí, M.; Rull, A.; Pons, C. Sustainable transfer of tomato landraces to modern cropping systems: The effects of environmental conditions and management practices on Long-Shelf-Life tomatoes. Agronomy 2021, 11, 533. [Google Scholar] [CrossRef]
- Saltveit, M.E. Postharvest biology and handling of tomatoes. In Tomatoes; Heuvelink, E., Ed.; CABI: Wallingford, Germany, 2018; pp. 314–336. ISBN 9781780641935. [Google Scholar]
- Beckles, D.M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Kumar, R.; Tamboli, V.; Sharma, R.; Sreelakshmi, Y. NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life. Food Chem. 2018, 259, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Casals, J.; Cebolla-Cornejo, J.; Rosello, S.; Beltran, J.; Casanas, F.; Nuez, F. Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation. Eur. Food Res. Technol. 2011, 233, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Manzo, N.; Pizzolongo, F.; Meca, G.; Aiello, A.; Marchetti, N.; Romano, R. Comparative chemical compositions of fresh and stored Vesuvian PDO “Pomodorino Del Piennolo” tomato and the Ciliegino variety. Molecules 2018, 23, 2871. [Google Scholar] [CrossRef] [Green Version]
- Renna, M.; Durante, M.; Gonnella, M.; Buttaro, D.; D’Imperio, M.; Mita, G.; Serio, F. Quality and butritional evaluation of Regina tomato, a traditional long-storage landrace of Puglia (southern Italy). Agriculture 2018, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Casals, J.; Martí, R.; Casañas, F.; Cebolla, J. Sugar-and-acid profile of Penjar tomatoes and its evolution during storage. Sci. Agric. 2015, 72, 314–321. [Google Scholar]
- Rambla, J.L.; Tikunov, Y.M.; Monforte, A.J.; Bovy, A.G.; Granell, A. The expanded tomato fruit volatile landscape. J. Exp. Bot. 2014, 65, 4613–4623. [Google Scholar] [CrossRef] [Green Version]
- Figàs, M.R.; Prohens, J.; Raigón, M.D.; Pereira-Dias, L.; Casanova, C.; García-Martínez, M.D.; Rosa, E.; Soler, E.; Plazas, M.; Soler, S. Insights into the adaptation to greenhouse cultivation of the traditional Mediterranean long shelf-life tomato carrying the alc mutation: A multi-trait comparison of landraces, selections, and hybrids in open field and greenhouse. Front. Plant Sci. 2018, 9, 1774. [Google Scholar] [CrossRef] [PubMed]
- Peet, M.M. Irrigation and fertilization. In Tomatoes; Heuvelink, E., Ed.; CABI Publishing: Cambridge, MA, USA, 2005; pp. 171–198. [Google Scholar]
- Camps, C.; Gilli, C. Prediction of local and global tomato texture and quality by FT-NIR spectroscopy and chemometric. Eur. J. Hortic. Sci. 2017, 82, 126–133. [Google Scholar] [CrossRef]
- Giné-Bordonaba, J.; Echeverría, G.; Ubach, D.; Aguiló-Aguayo, I.; López, M.L.; Larrigaudière, C. Biochemical and physiological changes during fruit development and ripening of two sweet cherry varieties with different levels of cracking tolerance. Plant Physiol. Biochem. 2017, 111, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Giné-Bordonaba, J.; Cantín, C.M.; Larrigaudière, C.; López, M.L.; López, R.; Echeverría, G. Suitability of nectarine cultivars for minimal processing: The role of genotype, harvest season and maturity at harvest on quality and sensory attributes. Postharvest Biol. Technol. 2014, 93, 49–60. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Causse, M.; Damidaux, R.; Rousselle, P. Traditional and enhanced breeding for quality traits in tomato. In Genetic Improvement of Solanaceous Crops. Volume 2: Tomato; Razdan, M.K., Mattoo, A.K., Eds.; Science Publishers: Enfield, NH, USA, 2007; Volume 2, pp. 153–192. [Google Scholar]
- Zheng, J.; Huang, G.; Jia, D.; Wang, J.; Mota, M.; Pereira, L.S.; Huang, Q.; Xu, X.; Liu, H. Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China. Agric. Water Manag. 2013, 129, 181–193. [Google Scholar] [CrossRef]
- Barry, C.S.; Giovannoni, J.J. Ethylene and fruit ripening. J. Plant Growth Regul. 2007, 26, 143. [Google Scholar] [CrossRef]
- Basiouny, F.M.; Basiouny, K.; Maloney, M. Influence of water stress on abscisic acid and ethylene production in tomato under different PAR levels. J. Hortic. Sci. 1994, 69, 535–541. [Google Scholar] [CrossRef]
- Botella, M.Á.; Del Amor, F.; Amorós, A.; Serrano, M.; Martínez, V.; Cerdá, A. Polyamine, ethylene and other physico-chemical parameters in tomato (Lycopersicon esculentum) fruits as affected by salinity. Physiol. Plant. 2000, 109, 428–434. [Google Scholar] [CrossRef]
- Tilahun, S.; Seo, M.H.; Park, D.S.; Jeong, C.S. Effect of cultivar and growing medium on the fruit quality attributes and antioxidant properties of tomato (Solanum lycopersicum L.). Hortic. Environ. Biotechnol. 2018, 59, 215–223. [Google Scholar] [CrossRef]
- Saladie, M.; Matas, A.J.; Isaacson, T.; Jenks, M.A.; Goodwin, S.M.; Niklas, K.J.; Ren, X.L.; Labavitch, J.M.; Shackel, K.A.; Fernie, A.R.; et al. A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol. 2007, 144, 1012–1028. [Google Scholar] [CrossRef] [Green Version]
- Zeven, A.C. Landraces: A review of definitions and classifications. Euphytica 1998, 104, 127–139. [Google Scholar] [CrossRef]
- Casañas, F.; Simó, J.; Casals, J.; Prohens, J. Toward an evolved concept of landrace. Front. Plant Sci. 2017, 8, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kader, A.A. Flavor quality of fruits and vegetables. J. Sci. Food Agric. 2008, 88, 1863–1868. [Google Scholar] [CrossRef]
- Getinet, H.; Seyoum, T.; Woldetsadik, K. The effect of cultivar, maturity stage and storage environment on quality of tomatoes. J. Food Eng. 2008, 87, 467–478. [Google Scholar] [CrossRef]
Genotype | Irrigation | Environment | Diameter (mm) | FW (g) | Firmness (kg) | L | a | b | Chroma | Hue | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MV | WD | OF | 49.3 | ab | 64.1 | ns | 3.8 | ab | 44.3 | bc | 23.4 | a | 19.6 | c | 30.6 | b | 39.7 | d |
MV | WW | OF | 49.0 | ab | 65.0 | ns | 3.7 | ab | 46.4 | a | 20.2 | b | 22.9 | b | 31.1 | b | 47.8 | ab |
MV | WD | T | 47.0 | b | 60.3 | ns | 3.4 | bc | 44.1 | bc | 23.4 | a | 19.0 | c | 30.2 | b | 38.9 | d |
MV | WW | T | 52.7 | a | 74.2 | ns | 4.1 | a | 46.0 | ab | 21.9 | ab | 20.2 | c | 30.0 | b | 42.4 | cd |
LR | WD | OF | 51.4 | a | 70.3 | ns | 2.9 | c | 43.7 | c | 24.0 | a | 25.3 | a | 35.5 | a | 46.4 | abc |
LR | WW | OF | 52.2 | a | 75.6 | ns | 3.3 | bc | 44.3 | bc | 21.8 | ab | 26.1 | a | 34.3 | a | 49.8 | a |
LR | WD | T | 49.7 | ab | 65.9 | ns | 2.8 | c | 42.6 | c | 24.2 | a | 24.1 | ab | 34.4 | a | 44.6 | bc |
LR | WW | T | 52.3 | a | 74.4 | ns | 3.3 | bc | 43.6 | c | 22.7 | a | 26.0 | a | 34.8 | a | 48.7 | ab |
Sig. | *** | ns | *** | *** | *** | *** | *** | *** |
Genotype | Irrigation | Environment | Malic Acid (mg g−1 fw) | Glucose + Fructose (mg g−1 fw) | Citric Acid (mg g−1 fw) | FRAP (mg Fe2+ g−1 fw) | TPC (mg GAE g−1 fw) | Ethylene (µL kg−1 h−1) | Respiration (mg CO2 kg−1 h−1) | SSC (°Brix) | TA (g Malic Acid L−1) | Chlorophyll (IAD) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MV | WD | OF | 0.28 | b | 27.2 | ab | 3.03 | ab | 3.59 | a | 0.52 | ns | 1.18 | b | 0.026 | a | 6.9 | a | 3.2 | a | 0.05 | ns |
MV | WW | OF | 0.22 | b | 25.2 | abc | 4.24 | a | 2.77 | bc | 0.47 | ns | 1.00 | b | 0.021 | ab | 6.8 | a | 3.3 | a | 0.02 | ns |
MV | WD | T | 0.24 | b | 28.8 | a | 3.03 | ab | 3.31 | abc | 0.41 | ns | 0.63 | b | 0.021 | ab | 6.8 | a | 3.0 | ab | 0.00 | ns |
MV | WW | T | 0.25 | b | 25.9 | abc | 4.23 | a | 2.57 | c | 0.43 | ns | 0.56 | b | 0.017 | b | 6.2 | b | 3.2 | ab | 0.01 | ns |
LR | WD | OF | 0.5 | a | 23.1 | bc | 1.96 | ab | 3.55 | a | 0.39 | ns | 1.06 | b | 0.015 | b | 5.9 | b | 2.8 | ab | 0.03 | ns |
LR | WW | OF | 0.52 | a | 21.5 | c | 2.07 | ab | 3.02 | abc | 0.42 | ns | 0.88 | b | 0.017 | b | 5.1 | c | 2.4 | b | 0.06 | ns |
LR | WD | T | 0.35 | ab | 21.3 | c | 1.68 | b | 3.48 | ab | 0.39 | ns | 1.33 | b | 0.021 | ab | 6.8 | a | 3.2 | ab | 0.04 | ns |
LR | WW | T | 0.49 | a | 16.0 | d | 1.43 | b | 2.61 | c | 0.35 | ns | 2.48 | a | 0.026 | a | 5.0 | c | 2.7 | ab | 0.07 | ns |
Sig. | *** | *** | ** | ** | ns | *** | ** | *** | * | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casals, J.; Rull, A.; Giné-Bordonaba, J. Changes in Ripening-Related Quality Traits of Long Shelf Life Tomatoes as Influenced by Water Deficit and Short-Term Postharvest Storage. Agronomy 2021, 11, 2304. https://doi.org/10.3390/agronomy11112304
Casals J, Rull A, Giné-Bordonaba J. Changes in Ripening-Related Quality Traits of Long Shelf Life Tomatoes as Influenced by Water Deficit and Short-Term Postharvest Storage. Agronomy. 2021; 11(11):2304. https://doi.org/10.3390/agronomy11112304
Chicago/Turabian StyleCasals, Joan, Aurora Rull, and Jordi Giné-Bordonaba. 2021. "Changes in Ripening-Related Quality Traits of Long Shelf Life Tomatoes as Influenced by Water Deficit and Short-Term Postharvest Storage" Agronomy 11, no. 11: 2304. https://doi.org/10.3390/agronomy11112304
APA StyleCasals, J., Rull, A., & Giné-Bordonaba, J. (2021). Changes in Ripening-Related Quality Traits of Long Shelf Life Tomatoes as Influenced by Water Deficit and Short-Term Postharvest Storage. Agronomy, 11(11), 2304. https://doi.org/10.3390/agronomy11112304