Critical Photoperiod and Optimal Quality of Night Interruption Light for Runner Induction in June-Bearing Strawberries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Measurement of Growth Parameters
2.3. Chlorophyll Contents
2.4. Soluble Sugar and Starch Contents
2.5. Chlorophyll Fluorescence Parameters
2.6. Statistical Analysis
3. Results
3.1. Runner Growth as Affected by Long Day Photoperiod
3.2. Plant Growth as Affected by Long Day Photoperiod
3.3. Runner and Plant Growth as Affected by NI Lights
3.4. Chlorophyll Contents
3.5. Soluble Sugar and Starch Content
3.6. Chlorophyll Fluorescence Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Zhang, X.; Qu, H.; Li, L.; Mao, B.; Xu, Y.; Lin, X.; Luo, Z. Delaying the biosynthesis of aromatic secondary metabolites in postharvest strawberry fruit exposed to elevated CO2 atmosphere. Food Chem. 2020, 306, 125611. [Google Scholar] [CrossRef]
- Caruana, J.C.; Sittmann, J.W.; Wang, W.; Liu, Z. Suppressor of runnerless encodes a della protein that controls runner formation for asexual reproduction in strawberry. Mol. Plant 2018, 11, 230–233. [Google Scholar] [CrossRef] [Green Version]
- Heide, O.M. Photoperiod and temperature interactions in growth and flowering of strawberry. Physiol. Plantarum 1977, 40, 21–26. [Google Scholar] [CrossRef]
- Heide, O.; Stavang, J.; Sønsteby, A. Physiology and genetics of flowering in cultivated and wild strawberries—A review. J. Hortic. Sci. Biotechnol. 2013, 88, 1–18. [Google Scholar] [CrossRef]
- Hytönen, T.; Elomaa, P.; Moritz, T.; Junttila, O. Gibberellin mediates daylength-controlled differentiation of vegetative meristems in strawberry (Fragaria× ananassa duch). BMC Plant Biol. 2009, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouhu, K.; Kurokura, T.; Koskela, E.A.; Albert, V.A.; Elomaa, P.; Hytönen, T. The Fragaria vesca homolog of suppressor of overexpression of constans1 represses flowering and promotes vegetative growth. Plant Cell 2013, 25, 3296–3310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sønsteby, A.; Heide, O. Quantitative long-day flowering response in the perpetual-flowering F1 strawberry cultivar elan. J. Hortic. Sci. Biotechnol. 2007, 82, 266–274. [Google Scholar] [CrossRef]
- Hytönen, T.; Elomaa, P. Genetic and environmental regulation of flowering and runnering in strawberry. Genes Genom. Genom. 2011, 5, 56–64. [Google Scholar]
- Sonsteby, A.; Nes, A. Short days and temperature effects on growth and flowering in strawberry (Fragaria× ananassa duch.). J. Hortic. Sci. Biotechnol. 1998, 73, 730–736. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Wei, H.; Jeong, B.R. A long-day photoperiod and 6-benzyladenine promote runner formation through upregulation of soluble sugar content in strawberry. Int. J. Mol. Sci. 2020, 21, 4917. [Google Scholar] [CrossRef]
- Ohashi-Kaneko, K.; Takase, M.; Kon, N.; Fujiwara, K.; Kurata, K. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ. Control Biol. 2007, 45, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Hsu, S.; Chang, M.; Fang, W. Effect of light environment on runner plant propagation of strawberry. In Proceedings of the VI International Symposium on Light in Horticulture, Tsukuba, Japan, 15–19 November 2009; Volume 907, pp. 297–302. [Google Scholar]
- Aubé, M.; Roby, J.; Kocifaj, M. Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility. PLoS ONE 2013, 8, e67798. [Google Scholar] [CrossRef] [Green Version]
- Dufault, R.J.; Ward, B.K. Further attempts to enhance forced ‘sweet charlie’strawberry yield through manipulation of light quality in high tunnels. Int. J. Fruit Sci. 2009, 9, 409–418. [Google Scholar] [CrossRef]
- Uddin, A.J.; Hoq, M.; Rini, S.; Urme, F.; Ahmad, H. Influence of supplement led spectrum on growth and yield of strawberry. J. Biosci. Agr. Res. 2018, 16, 1348–1355. [Google Scholar] [CrossRef]
- Kim, S.-K.; Jeong, M.-S.; Park, S.-W.; Kim, M.-J.; Na, H.-Y.; Chun, C.-H. Improvement of runner plant production by increasing photosynthetic photon flux during strawberry transplant propagation in a closed transplant production system. Hortic. Sci. Technol. 2010, 28, 535–539. [Google Scholar]
- Kim, Y.J.; Lee, H.J.; Kim, K.S. Night interruption promotes vegetative growth and flowering of Cymbidium. Sci. Hortic. 2011, 130, 887–893. [Google Scholar] [CrossRef]
- Kang, K.J.; Oh, W.; Shin, J.H.; Kim, K.S. Night interruption and cyclic lighting promote flowering of Cyclamen persicum under low temperature regime. Hortic. Environ. Biotechnol. 2008, 49, 72–77. [Google Scholar]
- Blanchard, M.G.; Runkle, E.S. Use of a cyclic high-pressure sodium lamp to inhibit flowering of chrysanthemum and velvet sage. Sci. Hortic. 2009, 122, 448–454. [Google Scholar] [CrossRef]
- Yamada, A.; Tanigawa, T.; Suyama, T.; Matsuno, T.; Kunitake, T. Red: Far-red light ratio and far-red light integral promote or retard growth and flowering in Eustoma grandiflorum (raf.) shinn. Sci. Hortic. 2009, 120, 101–106. [Google Scholar] [CrossRef]
- Park, Y.J.; Kim, Y.J.; Kim, K.S. Vegetative growth and flowering of Dianthus, Zinnia, and Pelargonium as affected by night interruption at different timings. Hortic. Environ. Biotechnol. 2013, 54, 236–242. [Google Scholar] [CrossRef]
- Koskela, E.A.; Hytönen, T. Control of flowering in strawberries. In The Genomes of Rosaceous Berries and Their Wild Relatives; Hytönen, T., Graham, J., Harrison, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 35–48. [Google Scholar]
- De Kort, H.; Panis, B.; Helsen, K.; Douzet, R.; Janssens, S.B.; Honnay, O. Pre-adaptation to climate change through topography-driven phenotypic plasticity. J. Ecol. 2020, 108, 1465–1474. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, J.; Wei, H.; Jeong, B.R. Supplementary light source affects growth and development of carnation ‘dreambyul’cuttings. Agronomy 2020, 10, 1217. [Google Scholar] [CrossRef]
- Zheng, J.; Ji, F.; He, D.; Niu, G. Effect of light intensity on rooting and growth of hydroponic strawberry runner plants in a LED plant factory. Agronomy 2019, 9, 875. [Google Scholar] [CrossRef] [Green Version]
- Guttridge, C.; Thompson, P. The effect of gibberellins on growth and flowering of Fragaria and Duchesnea. J. Exp. Bot. 1964, 15, 631–646. [Google Scholar] [CrossRef]
- Guo, L.; Plunkert, M.; Luo, X.; Liu, Z. Developmental regulation of stolon and rhizome. Curr. Opin. Plant Biol. 2021, 59, 101970. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, B.; Sun, H.; Zhang, Z. Transcriptome profiling of runner formation induced by exogenous gibberellin in Fragaria vesca. Sci. Hortic. 2021, 281, 109966. [Google Scholar] [CrossRef]
- Butare, D. Effect of Temperature on Plant Growth and Yield in Everbearing Strawberry Fragaria x ananassa, cv. Florentina. A2E. Master Thesis, The Swedish University of Agricultural Sciences, Uppsala, Sweden, 29 August 2020. [Google Scholar]
- Zhao, Y.; Wang, Z.; Wei, H.; Bao, Y.; Guo, P. Effect of prolonged photoperiod on morphology, biomass accumulation and nutrient utilization in post-transplant Taxus cuspidata seedlings. Pak. J. Bot. 2017, 49, 1285–1290. [Google Scholar]
- Zha, L.; Liu, W. Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue leds. Hortic. Environ. Biotechnol. 2018, 59, 511–518. [Google Scholar] [CrossRef]
- Roháček, K. Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 2002, 40, 13–29. [Google Scholar] [CrossRef]
- Rascher, U.; Liebig, M.; Lüttge, U. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ. 2000, 23, 1397–1405. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Zhu, X.-C.; Song, F.-B.; Xu, H.-W. Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 2010, 331, 129–137. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yu, D.J.; Rho, H.; Runkle, E.S.; Lee, H.J.; Kim, K.S. Photosynthetic changes in Cymbidium orchids grown under different intensities of night interruption lighting. Sci. Hortic. 2015, 186, 124–128. [Google Scholar] [CrossRef]
- Torres, A.P.; Lopez, R.G. Photoperiod and temperature influence flowering responses and morphology of Tecoma stans. HortScience 2011, 46, 416–419. [Google Scholar] [CrossRef] [Green Version]
- Sønsteby, A.; Heide, O. Long-day control of flowering in everbearing strawberries. J. Hortic. Sci. Biotechnol. 2007, 82, 875–884. [Google Scholar] [CrossRef]
- Aliniaeifard, S.; Seif, M.; Arab, M.; Zare Mehrjerdi, M.; Li, T.; Lastochkina, O. Growth and photosynthetic performance of Calendula officinalis under monochromatic red light. Int. J. Hortic. Sci. Technol. 2018, 5, 123–132. [Google Scholar]
- Kang, W.H.; Park, J.S.; Park, K.S.; Son, J.E. Leaf photosynthetic rate, growth, and morphology of lettuce under different fractions of red, blue, and green light from light-emitting diodes (leds). Hortic. Environ. Biotechnol. 2016, 57, 573–579. [Google Scholar] [CrossRef]
- Rehman, M.; Ullah, S.; Bao, Y.; Wang, B.; Peng, D.; Liu, L. Light-emitting diodes: Whether an efficient source of light for indoor plants? Environ. Sci. Pollut. Res. 2017, 24, 24743–24752. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Chen, Q.; Qu, M.; Gao, L.; Hou, L. Blue light alleviates ‘red light syndrome’by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber plants. Sci. Hortic. 2019, 257, 108680. [Google Scholar] [CrossRef]
- Appenroth, K.J.; Gabrys, H. Light-induced starch degradation in non-dormant turions of Spirodela polyrhiza. Photochem. Photobiol. 2001, 73, 77–82. [Google Scholar] [CrossRef]
- Appenroth, K.J.; Ziegler, P. Light-induced degradation of storage starch in turions of Spirodela polyrhiza depends on nitrate. Plant Cell Environ. 2008, 31, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Zeeman, S.C.; Smith, S.M. Starch degradation. Annu. Rev. Plant Biol. 2005, 56, 73–98. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Huang, S.; Gao, R.; Liu, W.; Yong, T.; Wang, X.; Wu, X.; Yang, W. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: Far-red ratio. Field Crop Res. 2014, 155, 245–253. [Google Scholar] [CrossRef]
- Park, Y.G.; Muneer, S.; Jeong, B.R. Morphogenesis, flowering, and gene expression of Dendranthema grandiflorum in response to shift in light quality of night interruption. Int. J. Mol. Sci. 2015, 16, 16497–16513. [Google Scholar] [CrossRef] [Green Version]
- Martínez-García, J.F.; Santes, C.M.; García-Martínez, J.L. The end-of-day far-red irradiation increases gibberellin a1 content in cowpea (vigna sinensis) epicotyls by reducing its inactivation. Physiol. Plant. 2000, 108, 426–434. [Google Scholar] [CrossRef]
- Liao, Y.; Suzuki, K.; Yu, W.; Zhuang, D.; Takai, Y.; Ogasawara, R.; Shimazu, T.; Fukui, H. Night-break effect of led light with different wavelengths on shoot elongation of Chrysanthemum morifolium ramat ‘jimba’and ‘iwa no hakusen’. Environ. Control Biol. 2014, 52, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Gaston, A.; Perrotte, J.; Lerceteau-Köhler, E.; Rousseau-Gueutin, M.; Petit, A.; Hernould, M.; Rothan, C.; Denoyes, B. PFRU, a single dominant locus regulates the balance between sexual and asexual plant reproduction in cultivated strawberry. J. Exp. Bot. 2013, 64, 1837–1848. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.R.; Natarajan, S.; Kim, H.T.; Jesse, D.M.I.; Lee, C.G.; Park, J.I.; Nou, I.S. High density linkage map construction and QTL mapping for runner production in allo-octoploid strawberry Fragaria× ananassa based on ddRAD-seq derived SNPs. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Martins, A.O.; Nunes-Nesi, A.; Araújo, W.L.; Fernie, A.R. To bring flowers or do a runner: Gibberellins make the decision. Mol. Plant 2018, 11, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Guan, S.C.; Wen, C.; Li, P.; Gao, Z.; Chen, X. Auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner. BMC Plant Biol. 2019, 19, 1–16. [Google Scholar] [CrossRef]
Cultivar (A) | Photoperiod (B, h) | Plant Height (cm) | Petiole | Leaf | ||
---|---|---|---|---|---|---|
Length (cm) | Diameter (mm) | Length (cm) | Width (cm) | |||
‘Sulhyang’ | 12 | 20.4 cdz | 12.5 b | 2.0 bcd | 7.4 de | 6.3 bcd |
14 | 20.1 cd | 11.7 bc | 2.1 a-d | 7.7 b-e | 6.6 abcd | |
16 | 18.6 de | 10.3 cde | 2.0 bcd | 7.8 bcde | 6.8 abc | |
18 | 19.1 de | 10.8 bcd | 2.0 cd | 7.9 bcd | 6.9 ab | |
20 | 17.9 ef | 9.8 de | 2.1 bcd | 7.7 b-e | 7.0 a | |
22 | 17.3 f | 9.2 e | 1.9 d | 7.1 e | 6.8 a-d | |
‘Maehyang’ | 12 | 23.2 a | 13.5 a | 2.1 abcd | 8.2 bc | 6.3 bcd |
14 | 22.4 abc | 12.3 b | 2.2 a-d | 8.6 ab | 6.2 cd | |
16 | 22.7 abc | 11.9 bc | 2.4 a | 8.1 bcd | 6.4 abcd | |
18 | 21.0 bc | 11.6 bc | 2.2 abcd | 8.4 ab | 6.7 a-d | |
20 | 21.4 bc | 11.4 bcd | 2.3 ab | 9.0 a | 6.9 ab | |
22 | 19.1 de | 11.1 bcd | 2.3 abc | 7.6 cde | 6.1 d | |
F-test y | A | *** | *** | *** | *** | * |
B | *** | *** | NS | ** | * | |
A×B | ** | NS | NS | * | NS |
Cultivar (A) | Light Treatment (B) | Runner | Petiole | Leaf | Plant height (cm) | ||||
---|---|---|---|---|---|---|---|---|---|
Number | Length (cm) | Diameter (mm) | Length (cm) | Diameter (mm) | Length (cm) | Width (cm) | |||
‘Sulhyang’ | LD | 2.56 abz | 41.46 bcd | 1.84 abc | 3.63 e | 2.36 e | 5.08 d | 4.82 ef | 9.87 gh |
NI-W | 1.44 cd | 27.93 e | 1.70 bcd | 4.42 e | 2.32 e | 6.07 c | 5.57 cd | 11.35 fg | |
NI-G | 2.33 abc | 43.83 bc | 1.72 a–d | 7.25 d | 2.47 cde | 7.20 ab | 6.52 ab | 15.42 cd | |
NI-B | 2.33 abc | 36.51 cde | 1.90 ab | 7.58 cd | 2.64 a–e | 7.63 a | 6.43 ab | 16.00 cd | |
NI-R | 2.89 a | 36.38 cde | 1.90 ab | 4.87 e | 2.60 b–e | 7.42 ab | 6.72 a | 12.93 ef | |
NI-FR | 2.00 a–d | 53.48 a | 1.53 d | 7.20 d | 2.54 b–e | 7.22 ab | 6.22 abc | 15.07 de | |
SD | 0.67 f | 35.50 cde | 1.57 d | 3.37 e | 1.96 f | 4.33 d | 3.73 g | 8.40 h | |
‘Maehyang’ | LD | 2.11 abc | 41.17 bcd | 1.79 abc | 6.63 d | 2.86 ab | 6.17 c | 5.32 de | 13.78 de |
NI-W | 2.56 ab | 35.33 cde | 1.92 a | 9.00 bc | 2.80 abc | 7.62 a | 6.42 ab | 17.53 bc | |
NI-G | 1.78 bcd | 42.33 bcd | 1.73 a–d | 6.68 d | 2.81 abc | 6.68 bc | 5.55 cd | 13.95 de | |
NI-B | 1.32 cd | 38.42 cd | 1.84 abc | 12.45 a | 2.97 a | 7.60 a | 5.92 bcd | 20.82 a | |
NI-R | 2.56 ab | 43.20 bc | 1.79 abc | 10.27 b | 2.77 a–d | 7.80 a | 5.98 bcd | 18.77 ab | |
NI-FR | 2.33 abc | 49.33 ab | 1.66 cd | 10.60 b | 2.76 a–d | 7.20 ab | 5.60 cd | 18.80 ab | |
SD | 0.89 ef | 32.75 de | 1.82 abc | 4.62 e | 2.42 de | 4.88 d | 4.37 f | 10.55 gh | |
F-testy | A | NS | NS | NS | *** | *** | ** | NS | *** |
B | *** | *** | *** | *** | *** | *** | *** | *** | |
A × B | *** | *** | *** | *** | *** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xiao, J.; Hu, J.; Jeong, B.R. Critical Photoperiod and Optimal Quality of Night Interruption Light for Runner Induction in June-Bearing Strawberries. Agronomy 2021, 11, 1996. https://doi.org/10.3390/agronomy11101996
Li Y, Xiao J, Hu J, Jeong BR. Critical Photoperiod and Optimal Quality of Night Interruption Light for Runner Induction in June-Bearing Strawberries. Agronomy. 2021; 11(10):1996. https://doi.org/10.3390/agronomy11101996
Chicago/Turabian StyleLi, Yali, Jie Xiao, Jiangtao Hu, and Byoung Ryong Jeong. 2021. "Critical Photoperiod and Optimal Quality of Night Interruption Light for Runner Induction in June-Bearing Strawberries" Agronomy 11, no. 10: 1996. https://doi.org/10.3390/agronomy11101996
APA StyleLi, Y., Xiao, J., Hu, J., & Jeong, B. R. (2021). Critical Photoperiod and Optimal Quality of Night Interruption Light for Runner Induction in June-Bearing Strawberries. Agronomy, 11(10), 1996. https://doi.org/10.3390/agronomy11101996