Flexible and Washable Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate/Polyvinyl Alcohol Fabric Dry Electrode for Long-Term Electroencephalography Signals Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Conductive Fabric Preparation
2.3. Conductive Fabric Characterization
2.4. PEDOT: PSS/PVA Fabric Dry Electrode Design
2.5. PEDOT: PSS/PVA Fabric Dry Electrode Characterization
2.5.1. Measurement of Impedance
2.5.2. Measurement of Short Circuit Noise
2.5.3. Measurement of EEG Signals
2.5.4. Measurement of Signal-to-Noise Ratios (SNRs)
2.5.5. Measurement of Sweat Resistance
2.5.6. Measurement of Biocompatibility
3. Results and Discussion
3.1. Conductive Fabric Properties Analysis
3.2. Electrode–Skin Contact Impedance Analysis
3.3. Short Circuit Noise Analysis
3.4. EEG Signals Analysis
3.5. Signal-to-Noise Ratios (SNRs) Analysis
3.6. Washability Analysis
3.7. Sweat Resistance Analysis
3.8. Biocompatibility Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tseghai, G.B.; Malengier, B.; Fante, K.A.; Van Langenhove, L. Validating Poly(3,4-ethylene dioxythiophene) Polystyrene Sulfonate-Based Textile Electroencephalography Electrodes by a Textile-Based Head Phantom. Polymers 2021, 13, 3629. [Google Scholar] [CrossRef] [PubMed]
- Alturki, F.A.; AlSharabi, K.; Abdurraqeeb, A.M.; Aljalal, M. EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques. Sensors 2020, 20, 2505. [Google Scholar] [CrossRef]
- Chang, K.-H.; French, I.T.; Liang, W.-K.; Lo, Y.-S.; Wang, Y.-R.; Cheng, M.-L.; Huang, N.E.; Wu, H.-C.; Lim, S.-N.; Chen, C.-M.; et al. Evaluating the Different Stages of Parkinson’s Disease Using Electroencephalography With Holo-Hilbert Spectral Analysis. Front. Aging Neurosci. 2022, 14, 832637. [Google Scholar] [CrossRef]
- Sutcliffe, L.; Lumley, H.; Shaw, L.; Francis, R.; Price, C.I. Surface electroencephalography (EEG) during the acute phase of stroke to assist with diagnosis and prediction of prognosis: A scoping review. BMC Emerg. Med. 2022, 22, 29. [Google Scholar] [CrossRef]
- Yu, X.; Li, Z.; Zang, Z.; Liu, Y. Real-Time EEG-Based Emotion Recognition. Sensors 2023, 23, 7853. [Google Scholar] [CrossRef]
- Yuan, H.; Li, Y.; Yang, J.; Li, H.; Yang, Q.; Guo, C.; Zhu, S.; Shu, X. State of the Art of Non-Invasive Electrode Materials for Brain-Computer Interface. Micromachines 2021, 12, 1521. [Google Scholar] [CrossRef]
- Yokus, M.A.; Jur, J.S. Fabric-Based Wearable Dry Electrodes for Body Surface Biopotential Recording. IEEE Trans. Biomed. Eng. 2016, 63, 423–430. [Google Scholar] [CrossRef]
- Gao, K.-P.; Yang, H.-J.; Liao, L.-L.; Jiang, C.-P.; Zhao, N.; Wang, X.-L.; Li, X.-Y.; Chen, X.; Yang, B.; Liu, J. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements. IEEE Trans. Biomed. Eng. 2020, 67, 750–761. [Google Scholar] [CrossRef]
- Kam, J.W.Y.; Griffin, S.; Shen, A.; Patel, S.; Hinrichs, H.; Heinze, H.-J.; Deouell, L.Y.; Knight, R.T. Systematic comparison between a wireless EEG system with dry electrodes and a wired EEG system with wet electrodes. NeuroImage 2019, 184, 119–129. [Google Scholar] [CrossRef]
- Kimura, M.; Nakatani, S.; Nishida, S.-I.; Taketoshi, D.; Araki, N. 3D Printable Dry EEG Electrodes with Coiled-Spring Prongs. Sensors 2020, 20, 4733. [Google Scholar] [CrossRef]
- Lee, J.S.; Han, C.M.; Kim, J.H.; Park, K.S. Reverse-curve-arch-shaped dry EEG electrode for increased skin–electrode contact area on hairy scalps. Electron. Lett. 2015, 51, 1643–1645. [Google Scholar] [CrossRef]
- Fiedler, P.; Griebel, S.; Pedrosa, P.; Fonseca, C.; Vaz, F.; Zentner, L.; Zanow, F.; Haueisen, J. Multichannel EEG with novel Ti/TiN dry electrodes. Sens. Actuators A Phys. 2015, 221, 139–147. [Google Scholar] [CrossRef]
- Li, G.; Wang, S.; Duan, Y.Y. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sens. Actuators B Chem. 2018, 277, 250–260. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, X.; Wang, W.; Li, Z. A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens. Actuators B Chem. 2017, 244, 750–758. [Google Scholar] [CrossRef]
- Muthukumar, N.; Thilagavathi, G. Design and development of textile electrodes for EEG measurement using Copper Plated Polyester Fabrics. J. Text. Appar. Technol. Manag. 2014, 8, 1–8. [Google Scholar]
- Muthukumar, N.; Thilagavathi, G.; Kannaian, T. Polyaniline-coated foam electrodes for electroencephalography (EEG) measurement. J. Text. Inst. 2015, 107, 283–290. [Google Scholar] [CrossRef]
- Luo, R.; Li, H.; Du, B.; Zhou, S.; Zhu, Y. A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT: PSS-PDMS blends. Org. Electron. 2020, 76, 105451. [Google Scholar] [CrossRef]
- Luo, R.B.; Li, X.; Li, H.B.; Du, B.; Zhou, S.S. A stretchable and printable PEDOT: PSS/PDMS composite conductors and its application to wearable strain sensor. Prog. Org. Coat. 2022, 162, 106593. [Google Scholar] [CrossRef]
- Wu, S.H.; Zhou, S.H.; Wu, J.H.; Hong, J.Y.; Zheng, Y.L. Ionic-electronic Conductive Fabric Electrodes for Wearable Biopotential Monitoring. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 2483–2486. [Google Scholar]
- Tseghai, G.B.; Malengier, B.; Fante, K.A.; Van Langenhove, L. Dry electroencephalography textrode for brain activity monitoring. IEEE Sens. J. 2021, 21, 22077–22085. [Google Scholar] [CrossRef]
- Shi, H.; Liu, C.C.; Jiang, Q.L.; Xu, J.K. Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review. Adv. Electron. Mater. 2015, 1, 1500017. [Google Scholar] [CrossRef]
- Wang, G.H.; Hong, X.H.; Zhu, Z.J.; Zeng, X.S.; Zeng, F.M. Preparation and properties of PEDOT: PSS/PVA-coated conductive fabrics. Adv. Text. Technol. 2024, 5, 38–47. [Google Scholar]
- ISO 5084:1996; Textiles—Determination of Thickness of Textiles and Textile Products. ISO: Geneva, Switzerland, 1996.
- ISO 13934-1:2013; Textiles—Tensile Properties of Fabrics. ISO: Geneva, Switzerland, 1996.
- GB/T 8629-2017; Textiles—Domestic Washing and Drying Procedures for Textile Testing. Standardization Administration of China: Beijing, China, 2017.
- Chin-Teng, L.; Lun-De, L.; Yu-Hang, L.; Wang, I.J.; Bor-Shyh, L.; Jyh-Yeong, C. Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans. Biomed. Eng. 2011, 58, 1200–1207. [Google Scholar] [CrossRef]
- Shen, G.; Gao, K.; Zhao, N.; Yi, Z.; Jiang, C.; Yang, B.; Liu, J. A novel flexible hydrogel electrode with a strong moisturizing ability for long-term EEG recording. J. Neural Eng. 2021, 18, 066047. [Google Scholar] [CrossRef]
- Uwe, H.; Peyman, S.; Carlos, S.L. Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. 2003, 16, 95–99. [Google Scholar]
- Richard, W.H.; John, H.; Phillip, P. Cerebral location of international 10–20 system electrode placement. Electroencephalogr. Chem. Neurophysiol. 1986, 66, 376–382. [Google Scholar]
- Li, G.; Zhang, D.; Wang, S.; Duan, Y.Y. Novel passive ceramic based semi-dry electrodes for recording electroencephalography signals from the hairy scalp. Sens. Actuators B Chem. 2016, 237, 167–178. [Google Scholar] [CrossRef]
- Wang, F.; Li, G.; Chen, J.; Duan, Y.; Zhang, D. Novel semi-dry electrodes for brain–computer interface applications. J. Neural Eng. 2016, 13, 046021. [Google Scholar] [CrossRef]
- ISO 3160-2:2015; Watch-Cases and Accessories—Gold Alloy Coverings. ISO: Geneva, Switzerland, 2015.
- ISO 10993-10:2021; Biological Evaluation of Medical Devices. ISO: Geneva, Switzerland, 2021.
- Yang, J.; Jia, Y.; Liu, Y.; Liu, P.; Wang, Y.; Li, M.; Jiang, F.; Lan, X.; Xu, J. PEDOT: PSS/PVA/Te ternary composite fibers toward flexible thermoelectric generator. Compos. Commun. 2021, 27, 10085. [Google Scholar] [CrossRef]
- Lei, X.; Xie, A.; Yuan, X.; Hou, X.; Lu, J.; Liu, P.; Xiang, Z.; Chen, G.; Xing, T. Fabrication of Superhydrophobic and Light-Absorbing Polyester Fabric Based on Caffeic Acid. Polymers 2022, 14, 5536. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, M.; Kang, X.; Zhu, C.; Ge, M. Continuous wet-spinning of flexible and water-stable conductive PEDOT: PSS/PVA composite fibers for wearable sensors. Compos. Commun. 2020, 17, 134–140. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, Q.; Li, P.C. Synergistic Enhancement of Thermoelectric and Tensile Properties of PEDOT: PSS Fibers with Poly(vinyl alcohol). Nengyuan Yanjiu Yu Guanli 2023, 15, 120–126. [Google Scholar]
- Wang, X.Y.; Feng, G.Y.; Li, M.J.; Ge, M.Q. Effect of PEDOT: PSS content on structure and properties of PEDOT: PSS/poly(vinyl alcohol) composite fiber. Polym. Bulleti. 2018, 76, 2097–2111. [Google Scholar] [CrossRef]
- Erwin, H.T.S.; Marta, M.; Trond, Y. Impedance and Noise of Passive and Active Dry EEG Electrodes: A Review. IEEE Sens. J. 2020, 20, 14565–14577. [Google Scholar]
- Li, G.; Wu, J.; Xia, Y.; Wu, Y.; Tian, Y.; Liu, J.; Chen, D.; He, Q. Towards emerging EEG applications: A novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites. J. Neural Eng. 2020, 17, 026001. [Google Scholar] [CrossRef]
- Sheng, X.; Qin, Z.; Xu, H.; Shu, X.; Gu, G.; Zhu, X. Soft ionic-hydrogel electrodes for electroencephalography signal recording. Sci. China Technol. Sci. 2020, 64, 273–282. [Google Scholar] [CrossRef]
- Romo Vázquez, R.; Vélez-Pérez, H.; Ranta, R.; Louis Dorr, V.; Maquin, D.; Maillard, L. Blind source separation, wavelet denoising and discriminant analysis for EEG artifacts and noise canceling. Biomed. Signal Process. Control 2012, 7, 389–400. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Du, F.; Song, J.; Huang, S.; Mao, J.; Xiang, W.; Wang, F.; Liang, Y.; Chen, W.; et al. Shared oscillatory mechanisms of alpha-band activity in prefrontal regions in eyes open and closed state using a portable EEG acquisition device. Sci. Rep. 2024, 14, 26719. [Google Scholar] [CrossRef]
- Li, G.; Liu, Y.; Chen, Y.; Li, M.; Song, J.; Li, K.; Zhang, Y.; Hu, L.; Qi, X.; Wan, X.; et al. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain–computer interfaces. J. Neural Eng. 2023, 20, 026017. [Google Scholar] [CrossRef]
- Teplan, M. Fundamentals of EEG measurement. Meas. Sci. Revie. 2002, 2, 1–11. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, F.; Wang, G.; Sun, C.; Gao, J.; Ji, S.; Zhang, Q. Flexible and Washable Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate/Polyvinyl Alcohol Fabric Dry Electrode for Long-Term Electroencephalography Signals Measurement. Polymers 2025, 17, 683. https://doi.org/10.3390/polym17050683
Zeng F, Wang G, Sun C, Gao J, Ji S, Zhang Q. Flexible and Washable Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate/Polyvinyl Alcohol Fabric Dry Electrode for Long-Term Electroencephalography Signals Measurement. Polymers. 2025; 17(5):683. https://doi.org/10.3390/polym17050683
Chicago/Turabian StyleZeng, Fangmeng, Guanghua Wang, Chenyi Sun, Jiayi Gao, Shanqun Ji, and Quanxi Zhang. 2025. "Flexible and Washable Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate/Polyvinyl Alcohol Fabric Dry Electrode for Long-Term Electroencephalography Signals Measurement" Polymers 17, no. 5: 683. https://doi.org/10.3390/polym17050683
APA StyleZeng, F., Wang, G., Sun, C., Gao, J., Ji, S., & Zhang, Q. (2025). Flexible and Washable Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate/Polyvinyl Alcohol Fabric Dry Electrode for Long-Term Electroencephalography Signals Measurement. Polymers, 17(5), 683. https://doi.org/10.3390/polym17050683