From Small Molecules to Polymers: Developing Non-Fullerene Acceptors for Efficient NIR Photothermal Cancer Therapy
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthetic Procedures
2.3. General Methods
3. Results
3.1. Synthesis
3.2. Optical and Electrochemical Properties
3.3. Preparation and Characterization of Nanoparticles
3.4. In Vitro Experiments
3.5. Photothermal Ability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ROS | Reactive oxygen species |
| PDT | Photodynamic therapy |
| PTT | Photothermal therapy |
| PSs | Photosensitizers |
| DCFH-DA | 2′,7′-dichlorodihydrofluorescein diacetate |
| NIR | Near-infrared |
| OSMs | Organic semiconductor materials |
| ICT | Intramolecular charge transfer |
| NPs | Nanoparticles |
| NFA | Non-fullerene acceptor |
| EPR | Enhanced permeability and retention |
| D-A | Donor-acceptor |
| GPS | Gel permeation chromatography |
| THF | Tetrahydrofuran |
| CV | Cyclic voltammetry |
| DLS | Dynamic light scattering |
| RES | Reticuloendothelial system |
| PTCE | Photothermal conversion efficiency |
References
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef] [PubMed]
- Kurz, B.; Berneburg, M.; Bäumler, W.; Karrer, S. Phototherapy: Theory and practice. JDDG J. Dtsch. Dermatol. Ges. 2023, 21, 882–897. [Google Scholar] [CrossRef] [PubMed]
- El-Sadek, M.Z.; El-Aziz, M.K.A.; Shaaban, A.H.; Mostafa, S.A.; Wadan, A.H.S. Advancements and emerging trends in photodynamic therapy: Innovations in cancer treatment and beyond. Photochem. Photobiol. Sci. 2025, 24, 1489–1511. [Google Scholar] [CrossRef] [PubMed]
- Overchuk, M.; Weersink, R.A.; Wilson, B.C.; Zheng, G. Photodynamic and photothermal therapies: Synergy opportunities for nanomedicine. ACS Nano 2023, 17, 7979–8003. [Google Scholar] [CrossRef]
- Kong, C.; Chen, X. Combined photodynamic and photothermal therapy and immunotherapy for cancer treatment: A review. Int. J. Nanomed. 2022, 17, 6427. [Google Scholar] [CrossRef]
- Jiang, W.; Liang, M.; Lei, Q.; Li, G.; Wu, S. The current status of photodynamic therapy in cancer treatment. Cancers 2023, 15, 585. [Google Scholar] [CrossRef]
- Li, G.; Wang, C.; Jin, B.; Sun, T.; Sun, K.; Wang, S.; Fan, Z. Advances in smart nanotechnology-supported photodynamic therapy for cancer. Cell Death Discov. 2024, 10, 466. [Google Scholar] [CrossRef]
- Swamy, P.C.A.; Sivaraman, G.; Priyanka, R.N.; Raja, S.O.; Ponnuvel, K.; Shanmugpriya, J.; Gulyani, A. Near Infrared (NIR) absorbing dyes as promising photosensitizer for photodynamic therapy. Coord. Chem. Rev. 2020, 411, 213233. [Google Scholar] [CrossRef]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef]
- Pontremoli, C.; Chinigò, G.; Galliano, S.; Plata, M.M.; Dereje, D.M.; Sansone, E.; Gilardino, A.; Barolo, C.; Pla, A.F.; Visentin, S.; et al. Photosensitizers for photodynamic therapy: Structure–activity analysis of cyanine dyes through design of experiments. Dyes Pigment. 2023, 210, 111047. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Y.; He, H.; Lv, T.; Xu, X.; Fang, X.; Lu, C.; Yang, H. Carbon network-hosted porphyrin as a highly biocompatible nanophotosensitizer for enhanced photodynamic therapy. Biomater. Sci. 2023, 11, 7423–7431. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, S.; Priefer, R. Non-porphyrin dyes used as photosensitizers in photodynamic therapy. J. Drug Deliv. Sci. Technol. 2020, 60, 101979. [Google Scholar] [CrossRef]
- Papkovskaya, E.D.; Balakirev, D.O.; Min, J.; Luponosov, Y.N. Toward commercially viable non-fullerene organic solar cells: A critical review of recent developments in high-performance non-fused ring electron acceptors. Mater. Today Energy 2024, 43, 101591. [Google Scholar] [CrossRef]
- Chuyko, I.A.; Troshin, P.A.E.; Ponomarenko, S.A.E.; Luponosov, Y.N. Polymers based on triphenylamine: Synthesis, properties, and applications. Russ. Chem. Rev. 2025, 94, RCR5152. [Google Scholar] [CrossRef]
- Nowsherwan, G.A.; Ali, Q.; Ali, U.F.; Ahmad, M.; Khan, M.; Hussain, S.S. Advances in organic materials for next-generation optoelectronics: Potential and challenges. Organics 2024, 5, 520–560. [Google Scholar] [CrossRef]
- Feron, K.; Lim, R.; Sherwood, C.; Keynes, A.; Brichta, A.; Dastoor, P.C. Organic bioelectronics: Materials and biocompatibility. Int. J. Mol. Sci. 2018, 19, 2382. [Google Scholar] [CrossRef]
- Wang, D.; Lee, M.M.; Xu, W.; Shan, G.; Zheng, X.; Kwok, R.T.; Lam, J.W.; Hu, X.; Tang, B.Z. Boosting non-radiative decay to do useful work: Development of a multi-modality theranostic system from an AIEgen. Angew. Chem. 2019, 131, 5684–5688. [Google Scholar] [CrossRef]
- He, Z.; Zhao, L.; Zhang, Q.; Chang, M.; Li, C.; Zhang, H.; Lu, Y.; Chen, Y. An acceptor–donor–acceptor structured small molecule for effective NIR triggered dual phototherapy of cancer. Adv. Funct. Mater. 2020, 30, 1910301. [Google Scholar] [CrossRef]
- Wan, Y.; Lu, G.; Wei, W.C.; Huang, Y.H.; Li, S.; Chen, J.X.; Cui, X.; Xiao, Y.F.; Li, X.; Liu, Y.; et al. Stable organic photosensitizer nanoparticles with absorption peak beyond 800 nm and high reactive oxygen species yield for multimodality phototheranostics. ACS Nano 2020, 14, 9917–9928. [Google Scholar] [CrossRef]
- Yuan, H.; Li, Z.; Zhao, Q.; Jia, S.; Wang, T.; Xu, L.; Yuan, H.; Li, S. Molecular evolution of acceptor–donor–acceptor-type conjugated oligomer nanoparticles for efficient photothermal antimicrobial therapy. Adv. Funct. Mater. 2023, 33, 2213209. [Google Scholar] [CrossRef]
- Kang, M.; Zhou, C.; Wu, S.; Yu, B.; Zhang, Z.; Song, N.; Lee, M.M.S.; Xu, W.; Xu, F.J.; Wang, D.; et al. Evaluation of structure–function relationships of aggregation-induced emission luminogens for discrimination and photodynamic killing of Gram-positive bacteria. J. Am. Chem. Soc. 2019, 141, 16781–16789. [Google Scholar] [CrossRef] [PubMed]
- Inal, S.; Rivnay, J.; Suiu, A.O.; Malliaras, G.G.; McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res. 2018, 51, 1368–1376. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, M.; Xie, Q.; Liu, Y.; Huang, J.; Zeng, Q.; Li, X.; Rao, K.; Ning, J.; Zhao, M.; et al. Eradicating fungal biofilm-based infections by ultrasound-assisted semiconductor sensitized upconversion photodynamic therapy. Nat. Commun. 2025, 16, 6499. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Tian, X.; Cao, M.; Wang, J.; Niu, G.; Tang, B.Z. Solvatochromic near-infrared AIE-active acrylonitriles by acceptor modulation for low-power STED nanoscopy. Chem. Mater. 2023, 35, 2472–2485. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Y.; Lu, X.; Hu, X.; Zhao, H.; Hu, W.; Lu, F.; Fan, Q.; Huang, W. Bio-erasable intermolecular donor–acceptor interaction of organic semiconducting nanoprobes for activatable NIR-II imaging. Adv. Funct. Mater. 2019, 29, 1807376. [Google Scholar] [CrossRef]
- Lee, K.W.; Wan, Y.; Huang, Z.; Zhao, Q.; Li, S.; Lee, C.S. Organic optoelectronic materials: A rising star of bioimaging and phototherapy. Adv. Mater. 2024, 36, 2306492. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Kim, H.; Nguyen, V.N.; Jang, S.; Jang, W.J.; Yoon, J. Recent advances and prospects in organic molecule-based phototheranostic agents for enhanced cancer phototherapy. Coord. Chem. Rev. 2024, 501, 215560. [Google Scholar] [CrossRef]
- Feyen, P.L.; Matarèse, B.F.; Urbano, L.; Abelha, T.F.; Rahmoune, H.; Green, M.; Dailey, L.A.; De Mello, J.C.; Benfenati, F. Photosensitized and photothermal stimulation of cellular membranes by organic thin films and nanoparticles. Front. Bioeng. Biotechnol. 2022, 10, 932877. [Google Scholar] [CrossRef]
- Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In Cancer Nanotechnology: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2010; pp. 25–37. [Google Scholar] [CrossRef]
- Lu, B.; Huang, Y.; Zhang, Z.; Quan, H.; Yao, Y. Organic conjugated small molecules with donor–acceptor structures: Design and application in tumor phototherapy. Mater. Chem. Front. 2022, 6, 2968–2993. [Google Scholar] [CrossRef]
- Cai, Y.; Tang, C.; Wei, Z.; Song, C.; Zou, H.; Zhang, G.; Ran, J.; Han, W. Fused-ring small-molecule-based bathochromic nano-agents for NIR-II imaging-guided photothermal/photodynamic therapy. ACS Appl. Bio Mater. 2021, 4, 1942–1949. [Google Scholar] [CrossRef]
- Papkovskaya, E.D.; Wan, J.; Balakirev, D.O.; Dyadishchev, I.V.; Bakirov, A.V.; Luponosov, Y.N.; Min, J.; Ponomarenko, S.A. Improving the Efficiency of Organic Solar Cells via the Molecular Engineering of Simple Fused Non-Fullerene Acceptors. Energies 2023, 16, 3443. [Google Scholar] [CrossRef]
- Chambon, S.; Schatz, C.; Sébire, V.; Pavageau, B.; Wantz, G.; Hirsch, L. Organic semiconductor core–shell nanoparticles designed through successive solvent displacements. Mater. Horiz. 2014, 1, 431–438. [Google Scholar] [CrossRef]
- Yoshioka, N.A.; Faraco, T.A.; Barud, H.S.; Ribeiro, S.J.; Cremona, M.; Fragneaud, B.; Maciel, I.O.; Quirino, W.G.; Legnani, C. Synthesis of organic semiconductor nanoparticles with different conformations using the nanoprecipitation method. Polymers 2022, 14, 5336. [Google Scholar] [CrossRef] [PubMed]
- Cardona, C.M.; Li, W.; Kaifer, A.E.; Stockdale, D.; Bazan, G.C. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 2011, 23, 2367–2371. [Google Scholar] [CrossRef]
- Roper, D.K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641. [Google Scholar] [CrossRef]
- Heuvel, R.; Colberts, F.J.; Li, J.; Wienk, M.M.; Janssen, R.A. Side-chain substitution effects in DPP polymers. J. Mater. Chem. A 2018, 6, 20904–20915. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, T.; Jia, T.; Xiao, Y.; Chen, Z.; Lu, X.; Zou, Y. Precisely Controlling the Position of Bromine on the End Group Enables Well-Regular Polymer Acceptors for All-Polymer Solar Cells with Efficiencies over 15%. Adv. Mater. 2020, 32, 2005942. [Google Scholar] [CrossRef]
- Li, D.; Fei, Z.; Lin, Y.; Han, Y.; Gao, K.; Jen, A.K.-Y.; Heeney, M. Aggregation of Non-Fullerene Acceptors in Organic Solar Cells. J. Mater. Chem. A 2020, 8, 15607–15619. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Guo, X.; Xia, R.; Liu, F.; Yan, H. Progress and Prospects of the Morphology of Non-Fullerene Acceptor-Based High-Efficiency Organic Solar Cells. Energy Environ. Sci. 2021, 14, 4341–4357. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, G.; Zou, D.; Hui, Y.; Nigam, K.; Middelberg, A.P.; Zhao, C.X. Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery. Ind. Eng. Chem. Res. 2019, 59, 4134–4149. [Google Scholar] [CrossRef]
- Elgiddawy, N.; Elnagar, N.; Korri-Youssoufi, H.; Yassar, A. π-conjugated polymer nanoparticles. Microorganisms 2023, 11, 2006. [Google Scholar] [CrossRef]
- Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nanoparticles. Nanomedicine 2008, 3, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Cao, Y.; Cao, M.; Wang, Y.; Cao, Y.; Gong, T. Nanomedicine in cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 293. [Google Scholar] [CrossRef] [PubMed]
- Hoshyar, N.; Gray, S.; Han, H.; Bao, G. Nanoparticle size effects. Nanomedicine 2016, 11, 673–692. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Itty Ipe, B.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170. [Google Scholar] [CrossRef]
- Hickey, J.W.; Santos, J.L.; Williford, J.M.; Mao, H.Q. Control of polymeric nanoparticle size. J. Control Release 2015, 219, 536–547. [Google Scholar] [CrossRef]
- Addissouky, T.A.; Ali, M.M.; El Sayed, I.E.T.; Wang, Y. Advances in diagnosing and treating H. pylori. Arch. Pharmacol. Ther. 2023, 5, 53–66. [Google Scholar] [CrossRef]
- Guo, Q.; Qian, Z.M. Macrophage-based drug delivery. Bioact. Mater. 2024, 38, 55–72. [Google Scholar] [CrossRef]
- Barua, S.; Mitragotri, S. Penetration of nanoparticles across barriers. Nano Today 2014, 9, 223–243. [Google Scholar] [CrossRef]
- Kim, D.; Shin, K.; Kwon, S.G.; Hyeon, T. Multifunctional nanoparticles. Adv. Mater. 2018, 30, 1802309. [Google Scholar] [CrossRef]
- Foroozandeh, P.; Aziz, A.A. Cellular uptake and trafficking of nanoparticles. Nanoscale Res. Lett. 2018, 13, 339. [Google Scholar] [CrossRef]
- Abdallah, H.M.; Al-Abd, A.M.; El-Dine, R.S.; El-Halawany, A.M. P-glycoprotein inhibitors. J. Adv. Res. 2015, 6, 45–62. [Google Scholar] [CrossRef]
- Geng, S.; Zhao, H.; Zhan, G.; Zhao, Y.; Yang, X. Injectable hydrogels for photothermo-chemotherapy. ACS Appl. Mater. Interfaces 2020, 12, 7995–8005. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, H.M.; Song, G.; Li, Z.; Zhang, X.B. Conjugated-polymer nanomaterials for photothermal therapy. ACS Appl. Polym. Mater. 2020, 2, 4258–4272. [Google Scholar] [CrossRef]





| Compound | UV−vis Absorption | CV Data | Molecular Weight Distribution | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Film | φox, V | φred, V | HOMO, eV | LUMO, eV | Eg, eV | MN, kDa | MW, kDa | Đ | |||
| λmax, nm | λonset, nm | EgOpt, eV | |||||||||
| BTPT−OD | 734 | 801 | 1.55 | +1.42 | −0.60 | −5.82 | −3.80 | 2.02 | - | - | - |
| r−BTPT | 747 | 848 | 1.46 | +1.21 | −0.48 | −5.61 | −3.92 | 1.69 | 12.1 | 20.6 | 1.71 |
| ir−BTPT | 746 | 834 | 1.49 | +1.21 | −0.48 | −5.61 | −3.92 | 1.69 | 8.5 | 18.2 | 2.13 |
| Compound | A-549 Cells | MCF-7 Cells | Sk-Br-3 Cells | |||
|---|---|---|---|---|---|---|
| IC50, µM | IC50, µM | IC50, µM | ||||
| Dark | Light | Dark | Light | Dark | Light | |
| BTPT-OD | >25.72 | 16.49 ± 2.85 | >25.72 | 10.60 ± 2.02 | >25.72 | 25.59 ± 7.46 |
| ir-BTPT | >1.83 | 0.76 ± 0.10 | >1.83 | 0.54 ± 0.11 | >1.83 | 1.29 ± 0.12 |
| r-BTPT | >1.61 | 0.41 ± 0.09 | >1.61 | 0.40 ± 0.08 | >1.61 | 0.63 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isaeva, Y.A.; Blagodarnaia, E.D.; Vetyugova, A.A.; Stepanov, M.E.; Poletavkina, L.A.; Dyadishchev, I.V.; Trul, A.A.; Egorova, T.V.; Akasov, R.A.; Luponosov, Y.N. From Small Molecules to Polymers: Developing Non-Fullerene Acceptors for Efficient NIR Photothermal Cancer Therapy. Polymers 2025, 17, 3304. https://doi.org/10.3390/polym17243304
Isaeva YA, Blagodarnaia ED, Vetyugova AA, Stepanov ME, Poletavkina LA, Dyadishchev IV, Trul AA, Egorova TV, Akasov RA, Luponosov YN. From Small Molecules to Polymers: Developing Non-Fullerene Acceptors for Efficient NIR Photothermal Cancer Therapy. Polymers. 2025; 17(24):3304. https://doi.org/10.3390/polym17243304
Chicago/Turabian StyleIsaeva, Yulia A., Elizaveta D. Blagodarnaia, Anastasia A. Vetyugova, Maxim E. Stepanov, Liya A. Poletavkina, Ivan V. Dyadishchev, Askold A. Trul, Tatyana V. Egorova, Roman A. Akasov, and Yuriy N. Luponosov. 2025. "From Small Molecules to Polymers: Developing Non-Fullerene Acceptors for Efficient NIR Photothermal Cancer Therapy" Polymers 17, no. 24: 3304. https://doi.org/10.3390/polym17243304
APA StyleIsaeva, Y. A., Blagodarnaia, E. D., Vetyugova, A. A., Stepanov, M. E., Poletavkina, L. A., Dyadishchev, I. V., Trul, A. A., Egorova, T. V., Akasov, R. A., & Luponosov, Y. N. (2025). From Small Molecules to Polymers: Developing Non-Fullerene Acceptors for Efficient NIR Photothermal Cancer Therapy. Polymers, 17(24), 3304. https://doi.org/10.3390/polym17243304

