Chitin-Based Porous Carbon Containing Cuprous Sulfide for Supercapacitor Electrode Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Purification of Chitin
2.3. Preparation of Chitin Nanofiber Dispersion
2.4. Preparation of CChNF/Cu2S Carbon Aerogels
2.5. Characterization
3. Results
3.1. Structural and Morphological Characterization
3.2. Electrochemical Performance Evaluation
3.3. Investigation of Charge Storage Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Banerjee, S.; Mordina, B.; Sinha, P.; Kar, K.K. Recent advancement of supercapacitors: A current era of supercapacitor devices through the development of electrical double layer, pseudo and their hybrid supercapacitor electrodes. J. Energy Storage 2025, 108, 115075. [Google Scholar] [CrossRef]
- Ma, H.; Chen, Z.; Gao, X.; Liu, W.; Zhu, H. 3D hierarchically gold-nanoparticle-decorated porous carbon for high-performance supercapacitors. Sci. Rep. 2019, 9, 17065. [Google Scholar] [CrossRef]
- Elshahawy, A.M.; Li, X.; Zhang, H.; Hu, Y.; Ho, K.H.; Guan, C.; Wang, J. Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 7494–7506. [Google Scholar] [CrossRef]
- Yang, P.; Zheng, D.; Zhu, P.; Jiang, F.; Bi, X. Biocarbon with large specific surface area and tunable pore structure from binary molten salt templating for supercapacitor applications. Chem. Eng. J. 2023, 472, 144785. [Google Scholar] [CrossRef]
- Kim, C.; Zhu, C.; Aoki, Y.; Habazaki, H. Heteroatom-doped porous carbon with tunable pore structure and high specific surface area for high performance supercapacitors. Electrochim. Acta 2019, 314, 173–187. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, L.; Liu, Z.; Jiang, Y.; Zhuo, K. Synthesis of nitrogen/sulfur co-doped reduced graphene oxide aerogels for high-performance supercapacitors with ionic liquid electrolyte. Mater. Chem. Phys. 2019, 238, 121932. [Google Scholar] [CrossRef]
- Rosaiah, P.; Ashok, K.; Radhalayam, D.; Roy, S.; Ko, T.J.; Nunna, G.P.; Karim, M.R. Neodymium oxide-based hybrid phase few-layer MoS2 nanocomposite as high-performance symmetric supercapacitor electrode. Ceram. Int. 2024, 50, 54371–54378. [Google Scholar] [CrossRef]
- Molahalli, V.; Soman, G.; Hegde, G.; Wang, S.; Roy, N.; Joo, S.W.; Pattar, V.; Shaikh, S.F.; Prakash, C.; Kumar, A. Synthesis of ZnO and NiO nano ceramics composite high-performance supercapacitor and its catalytic capabilities. Ceram. Int. 2024, 50, 39732–39738. [Google Scholar]
- Kasprzak, D.; Liu, J. Chitin and Cellulose as Constituents of Efficient, Sustainable, and Flexible Zinc-Ion Hybrid Supercapacitors. Sustain. Mater. Technol. 2023, 38, e00726. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, T.; Liu, K.; Zhang, M.; Zhao, Q.; Liang, Q.; Si, C. Nanocellulose-based advanced materials for flexible supercapacitor electrodes. Ind. Crops Prod. 2023, 204, 117378. [Google Scholar] [CrossRef]
- Qiu, X.; Meng, D.; Liu, W.; Deng, S.; Hu, Y.; Chen, Q.; Jing, Y.; Su, S.; Zhu, J.; Zhang, X. Construction of the porous carbon supercapacitors with efficient energy storage by the dissolution and regeneration strategy of chitin. J. Phys. Chem. C 2023, 127, 15719–15729. [Google Scholar] [CrossRef]
- Ding, W.; Xiao, L.; Lv, L.P.; Wang, Y. Redox-Active Organic Electrode Materials for Supercapacitors. Batter. Supercaps 2023, 6, e202300278. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, C.; Yang, F.; Yu, J.; Dong, H.; Sui, J.; Chen, Y.; Yu, L.; Dong, L. High performance fiber-shaped flexible asymmetric supercapacitor based on MnO2 nanostructure composited with CuO nanowires and carbon nanotubes. Ceram. Int. 2022, 48, 13996–14003. [Google Scholar] [CrossRef]
- Daher, Z.; Bokova, M.; Kassem, M.; Fourmentin, M.; Poupin, C.; Cousin, R.; Mortada, H.; Toufaily, J.; Bychkov, E. Copper containing chalcogenide glasses and crystals: Macroscopic, Electrical and Vibrational properties. Ceram. Int. 2025, 51, 39149–39160. [Google Scholar] [CrossRef]
- Berenguer, R.; García-Mateos, F.; Ruiz-Rosas, R.; Cazorla-Amorós, D.; Morallón, E.; Rodríguez-Mirasol, J.; Cordero, T. Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage. Green Chem. 2016, 18, 1506–1515. [Google Scholar] [CrossRef]
- Zuber, M.; Zia, K.M.; Barikani, M. Chitin and chitosan based blends, composites and nanocomposites. In Advances in Natural Polymers: Composites and Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2013; pp. 55–119. [Google Scholar]
- Rai, S.; Pokhrel, P.; Udash, P.; Chemjong, M.; Bhattarai, N.; Thuanthong, A.; Nalinanon, S.; Nirmal, N. Chitin and chitosan from shellfish waste and their applications in agriculture and biotechnology industries. Crit. Rev. Biotechnol. 2025, 45, 1508–1526. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Y.; Song, N.; Li, X. Biomass-derived renewable carbon materials for electrochemical energy storage. Mater. Res. Lett. 2017, 5, 69–88. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, S.; Yan, X.; Lyu, M.; Wang, L.; Bell, J.; Wang, H. 2-Methylimidazole-derived Ni–Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 15510–15524. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Jiao, Y.; Li, J. A cellulose fibers-supported hierarchical forest-like cuprous oxide/copper array architecture as a flexible and free-standing electrode for symmetric supercapacitors. J. Mater. Chem. A 2017, 5, 17267–17278. [Google Scholar] [CrossRef]
- Van Lam, D.; Shim, H.C.; Kim, J.H.; Lee, H.J.; Lee, S.M. Carbon Textile Decorated with Pseudocapacitive VC/VxOy for High-Performance Flexible Supercapacitors. Small 2017, 13, 1702702. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Tang, S.; Vongehr, S.; Xie, H.; Zhu, J.; Meng, X. FeCo2O4 submicron-tube arrays grown on Ni foam as high rate-capability and cycling-stability electrodes allowing superior energy and power densities with symmetric supercapacitors. Chem. Commun. 2016, 52, 2624–2627. [Google Scholar] [CrossRef]
- Tan, H.T.; Sun, W.; Wang, L.; Yan, Q. 2D transition metal oxides/hydroxides for energy-storage applications. ChemNanoMat 2016, 2, 562–577. [Google Scholar] [CrossRef]
- Rani, L.; Han, J.I. Fabrication of CuS/Cu2S nanoparticles integrated with multi-walled carbon nanotubes for advanced energy storage applications. J. Energy Storage 2024, 82, 110533. [Google Scholar] [CrossRef]
- Hong, Y.-M.; Chen, J.-P.; Whang, T.-J. Enhanced pseudocapacitive properties of cobalt-doped manganese oxide electrode utilizing magnesium sulfate electrolyte for supercapacitors. Ceram. Int. 2024, 50, 33809–33816. [Google Scholar] [CrossRef]
- Liu, X.; Ye, M.; Hou, H.; Sun, Z.; Yu, X.; Rong, J.; Xiong, S. Well-coordinated bimetal sulfide MnS/Cu2S/C composite for high performance supercapacitors. J. Energy Storage 2025, 106, 114316. [Google Scholar] [CrossRef]
- Das, A.; Maitra, A.; Mondal, A.; De, A.; Maity, P.; Khatua, B.B. Hydrothermal synthesis of Cu2S/NiS/Ni3S4 as high performance supercapacitor application. J. Energy Storage 2024, 92, 112293. [Google Scholar] [CrossRef]
- Zhang, X.; Pollitt, S.; Jung, G.; Niu, W.; Adams, P.; Buhler, J.; Grundmann, N.S.; Erni, R.; Nachtegaal, M.; Ha, N. Solution-Processed Cu2S nanostructures for solar hydrogen production. Chem. Mater. 2023, 35, 2371–2380. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Zhu, G.; Shi, J.; Lu, T.; Pan, L. Biomass-based N, P, and S self-doped porous carbon for high-performance supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 12052–12060. [Google Scholar] [CrossRef]
- Sevilla, M.; Diez, N.; Ferrero, G.A.; Fuertes, A.B. Sustainable supercapacitor electrodes produced by the activation of biomass with sodium thiosulfate. Energy Storage Mater. 2019, 18, 356–365. [Google Scholar] [CrossRef]
- Zhou, J.; Bao, L.; Wu, S.; Yang, W.; Wang, H. Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors. Carbohydr. Polym. 2017, 173, 321–329. [Google Scholar] [CrossRef]
- Li, S.; Yu, C.; Yang, J.; Zhao, C.; Zhang, M.; Huang, H.; Liu, Z.; Guo, W.; Qiu, J. A superhydrophilic “nanoglue” for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy Environ. Sci. 2017, 10, 1958–1965. [Google Scholar] [CrossRef]
- Niu, F.; Li, X.; Shi, Z.; Xiong, C.; Yang, Q. Flexible chitin/CCTO composite films for dielectric capacitor: The influence of filler morphological structure. Ceram. Int. 2025, 51, 13263–13270. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, Y.; Zhan, L.; Shi, Z.; Xiong, C.; Yang, Q. High-performance chitin-based carbon aerogels with mesoporous structure for electromagnetic interference shielding. Diam. Relat. Mater. 2025, 154, 112198. [Google Scholar] [CrossRef]
- Li, J.; Hu, J.; Wang, H.; Zhai, W.; Huan, S.; Liu, Y.; Wang, B.; Li, Z. Chitin-based bamboo-inspired carbon aerogels enabling excellent absorption-dominated electromagnetic interference shielding and superior thermal dissipation performance. Int. J. Biol. Macromol. 2025, 145726. [Google Scholar] [CrossRef]
- Wang, M.-L.; Zhou, Z.-H.; Zhu, J.-L.; Lin, H.; Dai, K.; Huang, H.-D.; Li, Z.-M. Tunable high-performance electromagnetic interference shielding of intrinsic N-doped chitin-based carbon aerogel. Carbon 2022, 198, 142–150. [Google Scholar] [CrossRef]
- Mu, M.; Li, B.; Yu, J.; Ding, J.; He, H.; Li, X.; Mou, J.; Yuan, J.; Liu, J. Construction of Porous Carbon Nanosheet/Cu2S Composites with Enhanced Potassium Storage. Nanomaterials 2023, 13, 2415. [Google Scholar] [CrossRef] [PubMed]
- Faisal, M.M.; Ali, S.R.; Shah, S.S.; Iqbal, M.W.; Pushpan, S.; Aziz, M.A.; Aguilar, N.P.; Rodríguez, M.M.A.; Loredo, S.L.; Sanal, K.C. Redox-active anomalous electrochemical performance of mesoporous nickel manganese sulfide nanomaterial as an anode material for supercapattery devices. Ceram. Int. 2022, 48, 28565–28577. [Google Scholar] [CrossRef]
- Syed, J.A.; Ma, J.; Zhu, B.; Tang, S.; Meng, X. Hierarchical multicomponent electrode with interlaced Ni(OH)2 nanoflakes wrapped zinc cobalt sulfide nanotube arrays for sustainable high-performance supercapacitors. Adv. Energy Mater. 2017, 7, 1701228. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, L.; Ciesielski, A.; Samorì, P. 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 2016, 6, 1600671. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Santos, È.A.; Martins, P.R.; Silva, C.G.; Zanin, H. Emerging medium-and high-entropy materials as catalysts for lithium-sulfur batteries. Energy Storage Mater. 2023, 63, 102999. [Google Scholar] [CrossRef]
- Tong, H.; Bai, W.; Yue, S.; Gao, Z.; Lu, L.; Shen, L.; Dong, S.; Zhu, J.; He, J.; Zhang, X. Zinc cobalt sulfide nanosheets grown on nitrogen-doped graphene/carbon nanotube film as a high-performance electrode for supercapacitors. J. Mater. Chem. A 2016, 4, 11256–11263. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Yu, W.; Niu, F.; Hu, Y.; Qin, H.; Shi, Z.; Xiong, C.; Yang, Q. Chitin-Based Porous Carbon Containing Cuprous Sulfide for Supercapacitor Electrode Materials. Polymers 2025, 17, 3186. https://doi.org/10.3390/polym17233186
Han J, Yu W, Niu F, Hu Y, Qin H, Shi Z, Xiong C, Yang Q. Chitin-Based Porous Carbon Containing Cuprous Sulfide for Supercapacitor Electrode Materials. Polymers. 2025; 17(23):3186. https://doi.org/10.3390/polym17233186
Chicago/Turabian StyleHan, Jiangyang, Wenchao Yu, Fukun Niu, Yang Hu, Hongmei Qin, Zhuqun Shi, Chuanxi Xiong, and Quanling Yang. 2025. "Chitin-Based Porous Carbon Containing Cuprous Sulfide for Supercapacitor Electrode Materials" Polymers 17, no. 23: 3186. https://doi.org/10.3390/polym17233186
APA StyleHan, J., Yu, W., Niu, F., Hu, Y., Qin, H., Shi, Z., Xiong, C., & Yang, Q. (2025). Chitin-Based Porous Carbon Containing Cuprous Sulfide for Supercapacitor Electrode Materials. Polymers, 17(23), 3186. https://doi.org/10.3390/polym17233186

