Metal-Free Radical Homopolymerization of Olefins and Their (Co)Polymerization with Polar Monomers
Abstract
1. Introduction
2. Homopolymerization of Ethylene
3. Copolymerization of Olefins and Polar Vinyl Monomers
3.1. Copolymerization of 1-Alkenes with Polar Monomers
3.2. Copolymerization of Ethylene and Propylene with Polar Monomers
4. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| AAPH | 2,2-azobis(2-amidinopropane)dihydrochloride |
| AIBN | Azobisisobutyronitrile |
| APS | Ammonium persulfate |
| ATRP | Atom transfer radical polymerization |
| BA | Butyl Acrylate |
| BMA | Butyl methacrylate |
| BPO | Benzoyl peroxide |
| CTAs | Chain transfer agents |
| Đ | Dispersity |
| DEC | Diethylcarbonate |
| DMC | Dimethylcarbonate |
| DT | Degenerative chain transfer |
| ESCP | Enhanced spin capturing polymerization |
| EVA | Ethylene-vinyl acetate |
| FRP | Free-radical polymerization |
| GMA | Glycidyl methacrylate |
| HEVE | 2-hydroxylethyl vinyl |
| IB | Isobutylene |
| ITP | Iodine transfer polymerization |
| LPO | Lauroyl peroxide |
| MA | Methyl acrylate |
| MADIX | Macromolecular design via the interchange of xanthates |
| Man | Maleic anhydride |
| MMA | Methyl methacrylate |
| Mn | Molar mass |
| NMP | Nitroxide-mediated polymerization |
| NMR | Nuclear magnetic resonance |
| NVCL | N-Vinylcaprolactam |
| Oct | 1-octene |
| PE | Polyethylene |
| PP | Polypropylene |
| RAFT | Reversible addition–fragmentation chain transfer |
| RDRP | Reversible deactivation radical polymerization |
| SDS | Sodium dodecyl sulfate |
| TBA | Tert-butyl acrylate |
| THF | Tetrahydrofuran |
| Tol | Toluene |
| VA | Vinyl acetate |
| VTFAc | Vinyl trifluoroacetate. |
References
- Malpass, D.B. Introduction to Industrial Polyethylene; Wiley: Hoboken, NJ, USA, 2010; ISBN 9780470625989. [Google Scholar]
- Hero, D.; Kali, G. New, Aqueous Radical (Co)Polymerization of Olefins at Low Temperature and Pressure. Processes 2020, 8, 688. [Google Scholar] [CrossRef]
- Rosales-Guzmán, M.; Pérez-Camacho, O.; Torres-Lubián, R.; Harrisson, S.; Schubert, U.S.; Guerrero-Sánchez, C.; Saldívar-Guerra, E. Kinetic and Copolymer Composition Investigations of the Free Radical Copolymerization of 1-Octene with Glycidyl Methacrylate. Macromol. Chem. Phys. 2018, 219, 1800084. [Google Scholar] [CrossRef]
- Mei, H.; Douvris, C.; Volkis, V.; Hanefeld, P.; Hildebrandt, N.; Michl, J. Radical Copolymerization of Isobutylene and Ethyl Acrylate with LiCB 11 Me 12 Catalyst. Macromolecules 2011, 44, 2552–2558. [Google Scholar] [CrossRef]
- Su, W.-F. Radical chain polymerization. In Principles of Polymer Design and Synthesis; Springer: Berlin/Heidelberg, Germany, 2013; pp. 137–183. [Google Scholar]
- Braunecker, W.A.; Akdag, A.; Boon, B.A.; Michl, J. Highly Branched Polypropylene via Li+-Catalyzed Radical Polymerization. Macromolecules 2011, 44, 1229–1232. [Google Scholar] [CrossRef]
- Nakamura, Y.; Ebeling, B.; Wolpers, A.; Monteil, V.; D’Agosto, F.; Yamago, S. Controlled Radical Polymerization of Ethylene Using Organotellurium Compounds. Angew. Chem. Int. Ed. 2018, 57, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Dworakowska, S.; Lorandi, F.; Gorczyński, A.; Matyjaszewski, K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. Adv. Sci. 2022, 9, 2106076. [Google Scholar] [CrossRef] [PubMed]
- Chikkali, S.H. Ziegler–Natta Polymerization and the Remaining Challenges. Resonance 2017, 22, 1039–1060. [Google Scholar] [CrossRef]
- Baffie, F.; Sinniger, L.; Lansalot, M.; Monteil, V.; D’Agosto, F. From Radical to Reversible-Deactivation Radical Polymerization of Ethylene. Prog. Polym. Sci. 2025, 162, 101932. [Google Scholar] [CrossRef]
- He, Y.; Ke, H.; Lu, Y. Solvent Effect in the Copolymerization of Ethylene and Vinyl Acetate. Ind. Eng. Chem. Res. 2024, 63, 15999–16008. [Google Scholar] [CrossRef]
- Grau, E.; Broyer, J.-P.; Boisson, C.; Spitz, R.; Monteil, V. Unusual Activation by Solvent of the Ethylene Free Radical Polymerization. Polym. Chem. 2011, 2, 2328. [Google Scholar] [CrossRef]
- Grau, E.; Broyer, J.-P.; Boisson, C.; Spitz, R.; Monteil, V. Free Ethylene Radical Polymerization under Mild Conditions: The Impact of the Solvent. Macromolecules 2009, 42, 7279–7281. [Google Scholar] [CrossRef]
- Perrier, S.; Takolpuckdee, P. Macromolecular Design via Reversible Addition–Fragmentation Chain Transfer (RAFT)/Xanthates (MADIX) Polymerization. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 5347–5393. [Google Scholar] [CrossRef]
- Wolpers, A.; Bergerbit, C.; Ebeling, B.; D’Agosto, F.; Monteil, V. Aromatic Xanthates and Dithiocarbamates for the Polymerization of Ethylene through Reversible Addition–Fragmentation Chain Transfer (RAFT). Angew. Chem. Int. Ed. 2019, 58, 14295–14302. [Google Scholar] [CrossRef]
- Dommanget, C.; D’Agosto, F.; Monteil, V. Polymerization of Ethylene through Reversible Addition–Fragmentation Chain Transfer (RAFT). Angew. Chem. Int. Ed. 2014, 53, 6683–6686. [Google Scholar] [CrossRef] [PubMed]
- Wolpers, A.; Baffie, F.; Verrieux, L.; Perrin, L.; Monteil, V.; D’Agosto, F. Iodine-Transfer Polymerization (ITP) of Ethylene and Copolymerization with Vinyl Acetate. Angew. Chem. Int. Ed. 2020, 59, 19304–19310. [Google Scholar] [CrossRef] [PubMed]
- Bertin, D.; Gigmes, D.; Marque, S.R.A.; Tordo, P. Kinetic Subtleties of Nitroxide Mediated Polymerization. Chem. Soc. Rev. 2011, 40, 2189. [Google Scholar] [CrossRef]
- Audran, G.; Bagryanskaya, E.G.; Marque, S.R.A.; Postnikov, P. New Variants of Nitroxide Mediated Polymerization. Polymers 2020, 12, 1481. [Google Scholar] [CrossRef]
- Grau, E.; Dugas, P.; Broyer, J.; Boisson, C.; Spitz, R.; Monteil, V. Aqueous Dispersions of Nonspherical Polyethylene Nanoparticles from Free-Radical Polymerization under Mild Conditions. Angew. Chem. Int. Ed. 2010, 49, 6810–6812. [Google Scholar] [CrossRef]
- Billuart, G.; Bourgeat-Lami, E.; Lansalot, M.; Monteil, V. Free Radical Emulsion Polymerization of Ethylene. Macromolecules 2014, 47, 6591–6600. [Google Scholar] [CrossRef]
- Morgen, T.O.; Krumova, M.; Luttikhedde, H.; Mecking, S. Free-Radical Dispersion Polymerization of Ethylene with Laponite to Polyethylene–Clay Nanocomposite Particles. Macromolecules 2018, 51, 4118–4128. [Google Scholar] [CrossRef]
- Morgen, T.O.; Luttikhedde, H.; Mecking, S. Aqueous Dispersions of Ethylene Copolymers and Their Laponite Clay Nanocomposites from Free-Radical Dispersion Polymerization. Macromolecules 2019, 52, 4270–4277. [Google Scholar] [CrossRef]
- Rosales-Guzmán, M.; de Jesús Herrera-Morales, R.; Mendoza-Carrizales, R.; García-Zamora, M.; Cepeda-Garza, J.A.; Saldívar-Guerra, E.; Pérez-Camacho, O.; Torres-Lubián, R. On the Precipitation Copolymerization of 1-Octene and Glycidyl Methacrylate in Supercritical Carbon Dioxide. Macromol. React. Eng. 2022, 16, 2200038. [Google Scholar] [CrossRef]
- Hmayed, A.A.R.; Norsic, S.; Monteil, V.; Raynaud, J. Ethylene Free Radical Polymerization in Supercritical Ethylene/CO2 Mixture. Polym. Chem. 2020, 11, 1001–1009. [Google Scholar] [CrossRef]
- Dommanget, C.; Boisson, C.; Charleux, B.; D’Agosto, F.; Monteil, V.; Boisson, F.; Junkers, T.; Barner-Kowollik, C.; Guillaneuf, Y.; Gigmes, D. Enhanced Spin Capturing Polymerization of Ethylene. Macromolecules 2013, 46, 29–36. [Google Scholar] [CrossRef]
- Rosales-Guzmán, M.; Pérez-Camacho, O.; Guerrero-Sánchez, C.; Harrisson, S.; Torres-Lubián, R.; Vitz, J.; Schubert, U.S.; Saldívar-Guerra, E. Semiautomated Parallel RAFT Copolymerization of Isoprene with Glycidyl Methacrylate. ACS Comb. Sci. 2019, 21, 771–781. [Google Scholar] [CrossRef]
- Dau, H.; Tsogtgerel, E.; Matyjaszewski, K.; Harth, E. One-For-All Polyolefin Functionalization: Active Ester as Gateway to Combine Insertion Polymerization with ROP, NMP, and RAFT. Angew. Chem. Int. Ed. 2022, 61, 202205931. [Google Scholar] [CrossRef]
- Frech, S.; Molle, E.; Butzelaar, A.J.; Theato, P. Ethylene-Free Synthesis of Polyethylene Copolymers and Block Copolymers. Macromolecules 2021, 54, 9937–9946. [Google Scholar] [CrossRef]
- Baffie, F.; Patias, G.; Shegiwal, A.; Brunel, F.; Monteil, V.; Verrieux, L.; Perrin, L.; Haddleton, D.M.; D’Agosto, F. Block Copolymers Based on Ethylene and Methacrylates Using a Combination of Catalytic Chain Transfer Polymerisation (CCTP) and Radical Polymerisation. Angew. Chem. Int. Ed. 2021, 60, 25356–25364. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Fan, Y.; Fan, Z. Temperature-Structure Dependence of Poly(1-Octene-Co-t-Butyl Acrylate) Prepared by Conventional Free Radical Polymerization. Iran. Polym. J. 2010, 20, 223–235. [Google Scholar]
- Liu, S.; Sen, A. Living/Controlled Copolymerization of Acrylates with Nonactivated Alkenes. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 6175–6192. [Google Scholar] [CrossRef]
- Wolpers, A.; Baffie, F.; Monteil, V.; D’Agosto, F. Statistical and Block Copolymers of Ethylene and Vinyl Acetate via Reversible Addition-Fragmentation Chain Transfer Polymerization. Macromol. Rapid Commun. 2021, 42, 202100270. [Google Scholar] [CrossRef]
- Chen, Q.-B.; Zeng, T.-Y.; Xia, L.; Zhang, Z.; Hong, C.-Y.; Zou, G.; You, Y.-Z. A RAFT/MADIX Method Finely Regulating the Copolymerization of Ethylene and Polar Vinyl Monomers under Mild Conditions. Chem. Commun. 2017, 53, 10780–10783. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gu, B.; Rowlands, H.A.; Sen, A. Controlled Random and Alternating Copolymerization of Methyl Acrylate with 1-Alkenes. Macromolecules 2004, 37, 7924–7929. [Google Scholar] [CrossRef]
- Gu, B.; Liu, S.; Leber, J.D.; Sen, A. Nitroxide-Mediated Copolymerization of Methyl Acrylate with 1-Alkenes and Norbornenes. Macromolecules 2004, 37, 5142–5144. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, C.; Sun, G.; Wooley, K.L. A Polarity-activation Strategy for the High Incorporation of 1-alkenes into Functional Copolymers via RAFT Copolymerization. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 3488–3498. [Google Scholar] [CrossRef]
- Borkar, S.; Sen, A. Controlled Copolymerization of Vinyl Acetate with 1-alkenes and Their Fluoro Derivatives by Degenerative Transfer. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 3728–3736. [Google Scholar] [CrossRef]
- Zarrouki, A.; Espinosa, E.; Boisson, C.; Monteil, V. Free Radical Copolymerization of Ethylene with Vinyl Acetate under Mild Conditions. Macromolecules 2017, 50, 3516–3523. [Google Scholar] [CrossRef]
- Karpov, G.O.; Morontsev, A.A.; Ilyin, S.O.; Sultanova, M.U.; Samoilov, V.O.; Bermeshev, M.V. Synthesis of Ethylene–Vinyl Acetate Copolymers by Reversible Addition–Fragmentation Chain-Transfer Radical Polymerization. Russ. J. Appl. Chem. 2023, 96, 50–58. [Google Scholar] [CrossRef]
- Venkatesh, R.; Staal, B.B.P.; Klumperman, B. Olefin Copolymerization via Reversible Addition–Fragmentation Chain Transfer. Chem. Commun. 2004, 10, 1554–1555. [Google Scholar] [CrossRef]
- Saikia, M.; Baruah, U.; Borphukan, S.; Saikia, P.J.; Saikia, B.K.; Baruah, S.D. Controlled Copolymerization of 1-octene and Butyl Methacrylate via RAFT and Their Nonisothermal Model-free Thermokinetic Decomposition Study. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 2093–2103. [Google Scholar] [CrossRef]
- Baffie, F.; Boyron, O.; Lansalot, M.; Monteil, V.; D’Agosto, F. Polyethylene and Poly(Ethylene- Co -Vinyl Acetate) Star Polymers by Iodine Transfer Polymerization. Polym. Chem. 2023, 14, 4419–4428. [Google Scholar] [CrossRef]
- Delorme, J.; Boyron, O.; Dugas, P.-Y.; Dufils, P.-E.; Wilson, D.J.; Monteil, V.; D’Agosto, F.; Lansalot, M. Poly(Vinyl Acetate- Co -Ethylene) Particles Prepared by Surfactant-Free Emulsion Polymerization in the Presence of a Hydrophilic RAFT/MADIX Macromolecular Chain Transfer Agent. Polym. Chem. 2020, 11, 7410–7420. [Google Scholar] [CrossRef]
- Poljanšek, I.; Fabjan, E.; Burja, K.; Kukanja, D. Emulsion Copolymerization of Vinyl Acetate-Ethylene in High Pressure Reactor-Characterization by Inline FTIR Spectroscopy. Prog. Org. Coat. 2013, 76, 1798–1804. [Google Scholar] [CrossRef]
- Saikia, M.; Baruah, U.; Borphukan, S.; Saikia, P.J.; Gautam, A.; Baruah, S.D. RAFT Mediated Miniemulsion Copolymerization of Ethylene and BMA and Their Non-Isothermal Model-Free Kinetic Analysis. Polym. Bull. 2019, 76, 6437–6458. [Google Scholar] [CrossRef]
- Borphukan, S.; Saikia, M.; Baruah, U.; Gautam, A.; Baruah, S.D.; Saikia, P.J. Synthesis of Ethylene and Butyl Methacrylate-based Copolymer by Emulsion Polymerization. J. Appl. Polym. Sci. 2019, 136, 47994. [Google Scholar] [CrossRef]
- Sinniger, L.; Boyron, O.; Dugas, P.Y.; Patias, G.; Lester, D.; Haddleton, D.M.; Monteil, V.; Lansalot, M.; D’Agosto, F. Synthesis of Poly(Methyl Methacrylate)- b -Polyethylene (PMMA- b -PE) Block Copolymers via Conventional Emulsion Polymerization. Polym. Chem. 2023, 14, 4569–4579. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Z.; Ke, H.; Lu, Y. Microflow System for Controlled Synthesis of Ethylene-Vinyl Acetate Copolymers: Continuous Copolymerization and Kinetic Study. Chem. Eng. J. 2023, 470, 143940. [Google Scholar] [CrossRef]
- Vu, N.D.; Ivanchenko, O.; Baffie, F.; Guillaneuf, Y.; Gigmes, D.; Harrisson, S.; Monteil, V.; Destarac, M.; D’Agosto, F. Synthesis of Degradable Polyethylene and Poly(Ethylene- Co -Vinyl Acetate) by Radical Co- and Terpolymerization of Ethylene, ε-Thionocaprolactone, and Vinyl Acetate. Macromolecules 2024, 57, 4516–4523. [Google Scholar] [CrossRef]
- Bergerbit, C.; Baffie, F.; Wolpers, A.; Dugas, P.; Boyron, O.; Taam, M.; Lansalot, M.; Monteil, V.; D’Agosto, F. Ethylene Polymerization-Induced Self-Assembly (PISA) of Poly(Ethylene Oxide)- Block -polyethylene Copolymers via RAFT. Angew. Chem. Int. Ed. 2020, 59, 10385–10390. [Google Scholar] [CrossRef]
- Baffie, F.; Lansalot, M.; Monteil, V.; D’Agosto, F. Telechelic Polyethylene, Poly(Ethylene- Co -Vinyl Acetate) and Triblock Copolymers Based on Ethylene and Vinyl Acetate by Iodine Transfer Polymerization. Polym. Chem. 2022, 13, 2469–2476. [Google Scholar] [CrossRef]

). Reprinted with permission from Grau, E., Broyer, J.-P., Boisson, C., Spitz, R. & Monteil, V. “Free Ethylene Radical Polymerization under Mild Conditions: The Impact of the Solvent.” Macromolecules 42, 7279–7281 (2009). Copyright 2009 American Chemical Society [13]. (b) Free-radical polymerization of ethylene in aqueous dispersed medium: (■) yield and (□) average particle diameter versus ethylene pressure (80 mg AAPH, 50 mL water, 4 h at 70 °C under ethylene pressure); (
) yield and (∆) average particle diameter versus ethylene pressure (80 mg AAPH, 50 mL water with 1 g L−1 CTAB, 4 h at 70 °C under ethylene pressure). Reprinted with permission from reference [20].
). Reprinted with permission from Grau, E., Broyer, J.-P., Boisson, C., Spitz, R. & Monteil, V. “Free Ethylene Radical Polymerization under Mild Conditions: The Impact of the Solvent.” Macromolecules 42, 7279–7281 (2009). Copyright 2009 American Chemical Society [13]. (b) Free-radical polymerization of ethylene in aqueous dispersed medium: (■) yield and (□) average particle diameter versus ethylene pressure (80 mg AAPH, 50 mL water, 4 h at 70 °C under ethylene pressure); (
) yield and (∆) average particle diameter versus ethylene pressure (80 mg AAPH, 50 mL water with 1 g L−1 CTAB, 4 h at 70 °C under ethylene pressure). Reprinted with permission from reference [20].





| Entry/Ref | Initiator | Method † | Solvent | Yield (g)/%Conv | P (bar) | T (°C) | Mn a (g/mol) | Đ b |
|---|---|---|---|---|---|---|---|---|
| 1/[13] | AIBN | FRP | Tol | 1.3 | 250 | 118.7 | 4320 | 1.75 |
| 2/[13] | AIBN | FRP | THF | 7.8 | 250 | 115.6 | 2410 | 1.99 |
| 3/[12] | AIBN | FRP | Tol/THF/DEC | 4.1 | 100 | 70 | 5970 | 2 |
| 4/[25] | BPO | FRP | CO2 | 1.2 | 80 | 45 | 5000 | 1.6 |
| 5/[16] | AIBN | RAFT | DMC | 5.76 | 200 | 70 | 1980 | 1.9 |
| 6/[15] | AIBN | RAFT | DMC | ≅2 | 200 | 70 | ≅2400 | ≅1.6 |
| 7/[26] | AIBN | ESCP | DMC | 5.3 | 200 | 70 | 11,500 | 4.3 |
| 8/[17] | AIBN | ITP | DMC | 2.3 | 80 | 70 | 8000 | 1.7–3.5 |
| 9/[20] | AAPH | FRP | dispersion | 19.9 | 250 | 70 | 119,000 | 6.3 |
| 10/[21] | AAPH | FRP | emulsion | 15.17 | 200 | 80 | 2.1 × 106 | 2.4 |
| Entry/Reference | System † | Method ‡ | Year |
|---|---|---|---|
| 1/[32] | MA with | FRP, NMP, RAFT, ITP | 2004 |
| 1-hexene | |||
| Oct | |||
| Ethylene | |||
| Propylene | |||
| 2/[41] | MMA/Oct | RAFT | 2004 |
| MMA/BA | |||
| 4/[36] | MA with | NMP | 2004 |
| 1-hexene | |||
| Oct | |||
| Ethylene | |||
| Propylene | |||
| 5/[38] | Vinyl acetate with | ITP | 2005 |
| Oct | |||
| Oct | |||
| 1-decene | |||
| ethylene | |||
| 6/[37] | Man/1-decene | RAFT | 2008 |
| 7/[31] | TBA/1-octene | FRP | 2010 |
| 8/[34] | Ethylene with | RAFT/MADIX | 2017 |
| HEVE | |||
| NVCL | |||
| VTFAc | |||
| 9/[3,24] | GMA/Oct | FRP | 2018, 2022 |
| 10/[42] | BMA/Oct | RAFT | 2019 |
| 11/[46,47] | Ethylene/BMA | RAFT, FRP | 2019 |
| 12/[11,16,39,40,45,50,51,52] | Ethylene/VA | RAFT, MADIX, FRP, ITP | 2020, 2021, 2023, 2013, 2023, 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales-Guzmán, M.; Saldívar-Guerra, E.; Guerrero-Sánchez, C. Metal-Free Radical Homopolymerization of Olefins and Their (Co)Polymerization with Polar Monomers. Polymers 2025, 17, 2871. https://doi.org/10.3390/polym17212871
Rosales-Guzmán M, Saldívar-Guerra E, Guerrero-Sánchez C. Metal-Free Radical Homopolymerization of Olefins and Their (Co)Polymerization with Polar Monomers. Polymers. 2025; 17(21):2871. https://doi.org/10.3390/polym17212871
Chicago/Turabian StyleRosales-Guzmán, Miguel, Enrique Saldívar-Guerra, and Carlos Guerrero-Sánchez. 2025. "Metal-Free Radical Homopolymerization of Olefins and Their (Co)Polymerization with Polar Monomers" Polymers 17, no. 21: 2871. https://doi.org/10.3390/polym17212871
APA StyleRosales-Guzmán, M., Saldívar-Guerra, E., & Guerrero-Sánchez, C. (2025). Metal-Free Radical Homopolymerization of Olefins and Their (Co)Polymerization with Polar Monomers. Polymers, 17(21), 2871. https://doi.org/10.3390/polym17212871

