Tooth-Whitening Agents and Polymer-Based Carriers: Efficacy, Safety, and Clinical Perspectives
Abstract
1. Introduction
2. Tooth-Whitening Agents and Delivery Systems
2.1. Hydrogen Peroxide
2.1.1. Whitening Efficacy and Color Evaluation
2.1.2. Biocompatibility and Safety Considerations
2.1.3. Role of Polymer-Based Carriers
2.1.4. Adjunctive Protective Additives (Non-Polymeric)
2.2. Carbamide Peroxide
2.2.1. Whitening Efficacy and Color Evaluation
2.2.2. Biocompatibility and Safety Considerations
2.2.3. Role of Polymer-Based Carriers
2.3. Charcoal Toothpaste
2.3.1. Color Evaluation
2.3.2. Biocompatibility and Safety Considerations
2.4. Fluoride Compounds
2.4.1. Color Evaluation
2.4.2. Biocompatibility and Safety Considerations
2.5. Sodium Bicarbonate
2.5.1. Color Evaluation
2.5.2. Biocompatibility and Safety Considerations
2.6. Phthalimidoperoxycaproic Acid
2.6.1. Whitening Efficacy and Color Evaluation
2.6.2. Biocompatibility and Safety Considerations
2.6.3. Formulation Considerations
2.7. Blue Covarine
2.7.1. Color Evaluation
2.7.2. Biocompatibility and Safety Considerations
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butera, A.; Maiorani, C.; Rederiene, G.; Checchi, S.; Nardi, G.M. Evaluation of the effectiveness of different types of professional tooth whitening: A systematic review. Bioengineering 2024, 11, 1178. [Google Scholar] [CrossRef] [PubMed]
- Altınışık, H.; Nezir, M. Clinical evaluation of in-office bleaching with low, medium, and high concentrate hydrogen peroxide: A 6-month a double-blinded randomized controlled trial. Clin. Oral Investig. 2025, 29, 260. [Google Scholar] [CrossRef] [PubMed]
- Meireles, S.S.; Fontes, S.T.; Coimbra, L.A.; Della Bona, Á.; Demarco, F.F. Effectiveness of different carbamide peroxide concentrations used for tooth bleaching: An in vitro study. J. Appl. Oral Sci. 2012, 20, 186–191. [Google Scholar] [CrossRef]
- Tomás, D.B.M.; Pecci-Lloret, M.P.; Guerrero-Gironés, J. Effectiveness and abrasiveness of activated charcoal as a whitening agent: A systematic review of in vitro studies. Ann. Anat. 2023, 245, 151998. [Google Scholar] [CrossRef]
- Melo, M.; Fioresta, R.; Sanz, J.L.; Pecci-Lloret, M.P.; Llena, C. Effect of highly concentrated bleaching gels on enamel microhardness and superficial morphology, and the recovery action of four remineralizing agents. BMC Oral Health 2022, 22, 645. [Google Scholar] [CrossRef]
- de Lima, A.F.; Lessa, F.C.; Gasparoto Mancini, M.N.; Hebling, J.; de Souza Costa, C.A.; Marchi, G.M. Cytotoxic effects of different concentrations of a carbamide peroxide bleaching gel on odontoblast-like cells MDPC-23. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90, 907–912. [Google Scholar] [CrossRef]
- Müller-Heupt, L.K.; Wiesmann-Imilowski, N.; Kaya, S.; Schumann, S.; Steiger, M.; Bjelopavlovic, M.; Deschner, J.; Al-Nawas, B.; Lehmann, K.M. Effectiveness and safety of over-the-counter tooth-whitening agents compared to hydrogen peroxide in vitro. Int. J. Mol. Sci. 2023, 24, 1956. [Google Scholar] [CrossRef] [PubMed]
- Mohammadipour, H.S.; Borouziniat, A.; Bagheri, H.; Khorshid, M.; Shahri, A.; Shooshtari, Z.; Rezaei, M. Tooth sensitivity and whitening effect of an in-office bleaching gel containing 2% sodium fluoride: A randomized triple-blind clinical trial. Clin. Oral Investig. 2025, 29, 238. [Google Scholar] [CrossRef]
- Kida, D.; Zakrzewska, A.; Zborowski, J.; Szulc, M.; Karolewicz, B. Polymer-based carriers in dental local healing—Review and future challenges. Materials 2021, 14, 3948. [Google Scholar] [CrossRef]
- Kurakula, M.; Rao, G.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar] [CrossRef]
- Vlad, R.A.; Pintea, A.; Pintea, C.; Rédai, E.M.; Antonoaea, P.; Bîrsan, M.; Ciurba, A. Hydroxypropyl methylcellulose—A key excipient in pharmaceutical drug delivery systems. Pharmaceutics 2025, 17, 784. [Google Scholar] [CrossRef]
- Knarr, M.; Rogers, T.L.; Petermann, O.; Adden, R. Investigation and rank-ordering of hydroxypropyl methylcellulose (HPMC) properties impacting controlled release performance. J. Drug Deliv. Sci. Technol. 2025, 104, 106425. [Google Scholar] [CrossRef]
- Fernandes, A.V.P.; Nunes, G.P.; Urzedo, L.O.R.; de Toledo, P.T.A.; Martins, T.P.; Alves, R.O.; Delbem, A.C.B. Total sodium replacement by calcium in trimetaphosphate and its incorporation into dental whitening gels: A novel strategy for in-office treatment. J. Dent. 2025, 160, 105861. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.; Ahn, J.H.; Kang, N.G. Design and characterization of non-erosive polymeric tooth-whitening compositions. Appl. Sci. 2023, 13, 3698. [Google Scholar] [CrossRef]
- Andrade, A.C.M.; Comba, A.; Scotti, N.; Es Sebar, L.; Torres, C.R.G. Influence of thickener and mineral supplementation of bleaching gels on enamel demineralization. J. Esthet. Restor. Dent. 2025, 37, 2144–2153. [Google Scholar] [CrossRef]
- Elminofy, K.M.; Hasan, M.M.A.; Shebl, E.A.E. Evaluation of different remineralizing agents on microhardness and surface roughness of bleached enamel. Tanta Dent. J. 2024, 21, 15–20. [Google Scholar] [CrossRef]
- Alves, R.O.; Nunes, G.P.; Martins, T.P.; Toledo, P.T.A.; Ragghianti, M.H.F.; Delbem, A.C.B. Effect of quercetin-doped hydrogen peroxide gels on enamel properties: An in vitro study. Gels 2025, 11, 325. [Google Scholar] [CrossRef]
- Pushpalatha, C.; Gayathri, V.S.; Sowmya, S.V.; Augustine, D.; Alamoudi, A.; Zidane, B.; Albar, N.H.M.; Bhandi, S. Nanohydroxyapatite in dentistry: A comprehensive review. Saudi Dent. J. 2023, 35, 741–752. [Google Scholar] [CrossRef]
- Enax, J.; Fandrich, P.; Schulze zur Wiesche, E.; Amaechi, B.T. The whitening efficacy of a hydroxyapatite toothpaste and a blue covarine toothpaste: A comparative in vitro study. Dent. J. 2025, 13, 143. [Google Scholar] [CrossRef]
- Panarin, E.F.; Kalninsh, K.K.; Pestov, D.V. Complexation of hydrogen peroxide with polyvinylpyrrolidone: Ab initio calculations. Eur. Polym. J. 2001, 37, 375–379. [Google Scholar] [CrossRef]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Suhail, M.; Wu, P.C.; Minhas, M.U. Using carbomer-based hydrogels for control of the release rate of diclofenac sodium: Preparation and in vitro evaluation. Pharmaceuticals 2020, 13, 399. [Google Scholar] [CrossRef]
- Layek, B. A comprehensive review of xanthan gum-based oral drug delivery systems. Int. J. Mol. Sci. 2024, 25, 10143. [Google Scholar] [CrossRef]
- Burnett, C.L.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Final report of the amended safety assessment of PVM/MA copolymer and its related salts and esters as used in cosmetics. Int. J. Toxicol. 2011, 30, 128S–144S. [Google Scholar] [CrossRef]
- Gonçalves, I.M.C.; Sobral-Souza, D.F.; Roveda, A.C., Jr.; Aguiar, F.H.B.; Lima, D.A.N.L. Effect of experimental bleaching gels with polymers Natrosol and Aristoflex on the enamel surface properties. Braz. Dent. J. 2023, 34, 56–66. [Google Scholar] [CrossRef]
- Yang, S.Y.; Han, A.R.; Kim, K.M.; Kwon, J.S. Effects of incorporating 45S5 bioactive glass into 30% hydrogen peroxide solution on whitening efficacy and enamel surface properties. Clin. Oral Investig. 2022, 26, 5301–5312. [Google Scholar] [CrossRef] [PubMed]
- Fallahzadeh, F.; Nouri, F.; Rashvand, E.; Heidari, S.; Najafi, F.; Soltanian, N. Enamel changes of bleached teeth following application of an experimental combination of chitosan-bioactive glass. BMC Oral Health 2024, 24, 445. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.Y.; Mei, M.L.; Li, Q.L.; Lo, E.C.M.; Chu, C.H. Methods for biomimetic mineralisation of human enamel: A systematic review. Materials 2015, 8, 2873–2886. [Google Scholar] [CrossRef]
- Kwon, S.R.; Wertz, P.W. Review of the mechanism of tooth whitening. J. Esthet. Restor. Dent. 2015, 27, 240–257. [Google Scholar] [CrossRef] [PubMed]
- Krayem, E.; Banerjee, A.; Milly, H. Evaluating the efficiency of two different over-the-counter tooth whitening systems: A randomised controlled clinical trial. BDJ Open 2024, 10, 41. [Google Scholar] [CrossRef]
- Yilmaz, M.N.; Gul, P. Effect of carbamide peroxide treatment on the ion release of different dental restorative materials. BMC Oral Health 2024, 24, 1089. [Google Scholar] [CrossRef]
- Carey, C.M. Tooth whitening: What we now know. J. Evid. Based Dent. Pract. 2014, 14, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Joiner, A. Whitening toothpastes: A review of the literature. J. Dent. 2010, 38 (Suppl. 2), e17–e24. [Google Scholar] [CrossRef] [PubMed]
- Joiner, A.; Luo, W. Tooth colour and whiteness: A review. J. Dent. 2017, 67S, S3–S10. [Google Scholar] [CrossRef]
- Huaman-Sarmiento, E.; Mayta-Tovalino, F.; Munive-Degregori, A.A.; Mendoza, R.; Barja-Ore, J.; Mauricio-Vilchez, C. Uses and applications of activated charcoal in the manufacture of toothpastes and oral rinses: A narrative review. J. Int. Oral Health 2023, 15, 237–241. [Google Scholar]
- Joiner, A. Tooth colour: A review of the literature. J. Dent. 2004, 32 (Suppl. 1), 3–12. [Google Scholar] [CrossRef]
- Carneiro, B.T.; Kury, M.; Lopes, J.C.; Gonçalves, R.S.; Suzuki, T.Y.U.; Picolo, M.Z.D.; Giannini, M.; André, C.B. Effect of whitening toothpastes and activated charcoal powder on enamel wear and surface roughness. Braz. Oral Res. 2023, 37, e092. [Google Scholar] [CrossRef]
- Cutrim, E.A.C.; Penha, K.J.S.; Silva, P.B.; Carvalho, E.M.; Silva, M.G.; Kugelmeier, C.L.; Firoozmand, L.M. Optical, mechanical, and chemical impact of brushing with activated charcoal toothpowder and toothpaste on dental enamel: An in vitro evaluation. Materials 2024, 17, 6104. [Google Scholar] [CrossRef]
- El-Damanhoury, H.M.; Elsahn, N.A.; Sheela, S.; Bastaty, T. In vitro enamel remineralization efficacy of calcium silicate-sodium phosphate-fluoride salts versus NovaMin bioactive glass, following tooth whitening. Eur. J. Dent. 2021, 15, 515–522. [Google Scholar] [CrossRef]
- Ergucu, Z.; Yoruk, I.; Erdoğan, A.; Boyacıoğlu, H.; Hill, R.; Baysan, A. The use of toothpastes containing different formulations of fluoride and bioglass on bleached enamel. Materials 2023, 16, 1368. [Google Scholar] [CrossRef] [PubMed]
- Gruba, A.S.; Nunes, G.P.; Marques, M.T.; Danelon, M.; Alves, R.O.; de Toledo, P.T.A.; Briso, A.L.F.; Delbem, A.C.B. Influence of bleaching gels formulated with nano-sized sodium trimetaphosphate and fluoride on the physicochemical, mechanical, and morphological properties of dental enamel. J. Dent. 2023, 139, 104743. [Google Scholar] [CrossRef]
- Felipe Akabane, S.T.; Danelon, M.; Nunes, G.P.; Gruba, A.S.; Alberto de Souza-Costa, C.; Caroline de Oliveira Duque, C.; de Oliveira Gallinari, M.; Fraga Briso, A.L.; Botazzo Delbem, A.C. Evaluation of the aesthetic effect, enamel microhardness and trans-amelodentinal cytotoxicity of a new bleaching agent for professional use containing trimetaphosphate and fluoride. J. Mech. Behav. Biomed. Mater. 2021, 114, 104225. [Google Scholar] [CrossRef]
- AlShehri, A.; AlRefeai, M.H.; AlZamil, F.; AlOtaibi, N.; AlKinani, Y. Effect of over-the-counter tooth-whitening products on enamel surface roughness and microhardness. Appl. Sci. 2022, 12, 6930. [Google Scholar] [CrossRef]
- Abidia, R.F.; El-Hejazi, A.A.; Azam, A.; Al-Qhatani, S.; Al-Mugbel, K.; AlSulami, M.; Khan, A.S. In vitro comparison of natural tooth-whitening remedies and professional tooth-whitening systems. Saudi Dent. J. 2023, 35, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Stain removal and whitening by baking soda dentifrice: A review of literature. J. Am. Dent. Assoc. 2017, 148, S20–S26. [Google Scholar] [CrossRef]
- Mahmiyah, E.; Susatyo, J.H.; Ningsih, N.S. Cytotoxicity of sodium bicarbonate solution to human gingival fibroblast cells. J. Inf. Kesehat. 2023, 21, 795–803. [Google Scholar] [CrossRef]
- Axe, A.; Patel, N.; Qaqish, J.; Ling, M.R.; Araga, M.; Parkinson, C.; Goyal, C.R. Efficacy of an experimental toothpaste containing sodium bicarbonate, sodium hyaluronate and sodium fluoride on gingivitis. BMC Oral Health 2024, 24, 209. [Google Scholar] [CrossRef] [PubMed]
- Pascolutti, M.; de Oliveira, D. A radical-free approach to teeth whitening. Dent. J. 2021, 9, 148. [Google Scholar] [CrossRef] [PubMed]
- Stübinger, S.; Altenried, S.; Ren, Q. Tooth-whitening with a novel phthalimido peroxy caproic acid: Short communication. Clin. Cosmet. Investig. Dent. 2024, 16, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Meireles, S.S.; de Sousa, J.P.; Lins, R.B.E.; Sampaio, F.C. Efficacy of whitening toothpaste containing blue covarine: A double-blind controlled randomized clinical trial. J. Esthet. Restor. Dent. 2021, 33, 341–350. [Google Scholar] [CrossRef]
- Schlafer, S.; Poulsen, P.N.; Johansen, J.; Trap, L.; Leite, F.R.M. The whitening effect of single brushing with blue-covarine containing toothpaste-A randomized controlled trial. J. Dent. 2021, 105, 103559. [Google Scholar] [CrossRef] [PubMed]
- Pascolutti, M.; Tomic, A.; Milleman, K.R.; Milleman, J.L.; Walsh, L.J. Safety and effectiveness of a novel color corrector serum for causing temporary changes to tooth shade: A randomized controlled clinical study. Dent. J. 2024, 12, 197. [Google Scholar] [CrossRef] [PubMed]
- Porciani, P.F.; Perra, C.; Grandini, S. Whitening optical effect of new chewing gums. Open Dent. J. 2022, 16, 1–7. [Google Scholar] [CrossRef]
Topic | Key Points |
---|---|
Efficacy |
|
Safety |
|
Carriers |
|
Aspect | Key Points |
---|---|
Efficacy |
|
Safety | |
Carriers |
|
Aspect | Key Points |
---|---|
Whitening efficacy |
|
Safety |
|
Formulation |
Aspect | Key Points |
---|---|
Whitening efficacy |
|
Safety and biocompatibility | |
Clinical considerations |
|
Aspect | Key Points |
---|---|
Whitening efficacy | |
Safety and biocompatibility | |
Formulation considerations |
|
Aspect | Key Points |
---|---|
Whitening efficacy |
|
Safety and biocompatibility |
|
Formulation considerations |
Aspect | Key Points |
---|---|
Whitening efficacy |
|
Safety and biocompatibility |
|
Formulation considerations |
|
Agent | Whitening Mechanism | Efficacy | Safety and Biocompatibility | Polymer-Based Formulation Role |
---|---|---|---|---|
Hydrogen peroxide | Oxidative bleaching of intrinsic pigments (ROS-mediated) | High intrinsic whitening; protocol optimization often more important than simply raising concentration | High concentrations can reduce microhardness (~18% loss) and cause surface irregularities; cytotoxicity risk increases with dose and exposure | PVP stabilizes peroxide via hydrogen bonding; Carbopol creates a viscous diffusion barrier to limit penetration; HPMC modulates release kinetics; combined with CaNaTMP/fluoride to reduce mineral loss |
Carbamide peroxide | Gradual release of hydrogen peroxide and urea | Effective intrinsic whitening; slower onset vs. hydrogen peroxide | Safer for dental materials; potential cytotoxicity to pulp cells even at low doses; sensitivity risk rises with concentration | Carbopol improves tray retention; PVP/HPMC stabilize peroxide and regulate release; urea-induced alkalinization reduces demineralization; additives (e.g., CaNaTMP, n-HAp) provide further protection |
Charcoal toothpaste | Abrasive removal of extrinsic stains and adsorption | Limited intrinsic whitening; minor brightness improvement | May increase enamel wear, roughness, and lower microhardness; clinical benefits remain unproven | Polymers (carbomer, cellulose) stabilize particles and improve viscosity, but no strong evidence for protective effects |
Fluoride compounds | Supportive remineralization; no intrinsic bleaching | Do not increase ΔE directly but maintain enamel integrity; reduce sensitivity during bleaching | Highly biocompatible; enhance remineralization; reduce enamel hardness loss | Often combined with Carbopol/HPMC to improve viscosity and retention; unique polymer contributions remain unclear |
Sodium bicarbonate | Mechanical stain removal (abrasivity) | Moderate extrinsic whitening; ΔE ~3.8–4.2; visible but less than peroxide | Generally safe at ≤7%; high concentrations cytotoxic in vitro; clinically well tolerated | Polymers improve paste viscosity, disperse particles, and may reduce localized abrasivity; specific evidence limited |
Blue covarine | Optical whitening via pigment deposition on enamel | Immediate but superficial; no intrinsic whitening; requires repeated use | Safe short-term; long-term pigment accumulation effects unknown | Polymers (PVP/HPMC/Carbopol) stabilize pigments, improve viscosity, and ensure even distribution |
PAP | Direct peracid oxidation of chromophores, without ROS generation | Effective whitening; sometimes superior to 6% hydrogen peroxide in vitro; preserves enamel surface | Maintains enamel hardness and gloss; non-cytotoxic to fibroblasts; no interprismatic dissolution observed | Formulated with stabilizers and near-neutral pH; polymers (Carbopol, PVP, HPMC) likely enhance viscosity, adhesion, and stability; further validation needed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.-Y.; Chen, L.-N.; Tseng, C.-F.; Chen, Y.-S.; Lin, H.-Y.; Vo, T.T.T.; Peng, T.-Y.; Lee, I.-T. Tooth-Whitening Agents and Polymer-Based Carriers: Efficacy, Safety, and Clinical Perspectives. Polymers 2025, 17, 2545. https://doi.org/10.3390/polym17182545
Lin P-Y, Chen L-N, Tseng C-F, Chen Y-S, Lin H-Y, Vo TTT, Peng T-Y, Lee I-T. Tooth-Whitening Agents and Polymer-Based Carriers: Efficacy, Safety, and Clinical Perspectives. Polymers. 2025; 17(18):2545. https://doi.org/10.3390/polym17182545
Chicago/Turabian StyleLin, Pin-Yu, Li-Nai Chen, Chien-Fu Tseng, Yi-Shao Chen, Hung-Yu Lin, Thi Thuy Tien Vo, Tzu-Yu Peng, and I-Ta Lee. 2025. "Tooth-Whitening Agents and Polymer-Based Carriers: Efficacy, Safety, and Clinical Perspectives" Polymers 17, no. 18: 2545. https://doi.org/10.3390/polym17182545
APA StyleLin, P.-Y., Chen, L.-N., Tseng, C.-F., Chen, Y.-S., Lin, H.-Y., Vo, T. T. T., Peng, T.-Y., & Lee, I.-T. (2025). Tooth-Whitening Agents and Polymer-Based Carriers: Efficacy, Safety, and Clinical Perspectives. Polymers, 17(18), 2545. https://doi.org/10.3390/polym17182545