Theoretical Modeling of a Bionic Arm with Elastomer Fiber as Artificial Muscle Controlled by Periodic Illumination
Abstract
1. Introduction
2. Theoretical Model and Formulation
2.1. Formulation of Light-Powered Forced Vibration of the Bionic Arm
2.2. Dynamic LCE Model
2.3. Governing Equations
2.4. Solution Method
3. Results and Discussion
3.1. Controllable Forced Vibration of the Bionic Arm
3.2. Mechanism of the Controllable Forced Vibration of the Bionic Arm
3.3. Optimal Illumination Period
3.4. Optimal Illumination Time Rate
3.5. Effects of Various Parameters on the Amplitude and Equilibrium Position of the Oscillation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Dang, A.; Zhang, Z.; Yin, R.; Gao, Y.; Feng, L.; Yang, S. Repeatable and reprogrammable shape morphing from photoresponsive gold nanorod/liquid crystal elastomers. Adv. Mater. 2020, 32, 2004270. [Google Scholar] [CrossRef]
- Du, C.; Cheng, Q.; Li, K.; Yu, Y. A Light-powered liquid crystal elastomer spring oscillator with self-shading coatings. Polymers 2022, 14, 1525. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Feng, H.; Zhou, X.; Gao, F.; Zhou, K.; Huang, Y.; Jin, B.; Xie, T.; Zhao, Q. Programming actuation onset of a liquid crystalline elastomer via isomerization of network topology. Nat. Commun. 2023, 14, 6822. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Zhang, H.; Kraus, T.; Jiao, P. Ultra-Stretchable Kirigami Piezo-Metamaterials for Sensing Coupled Large Deformations. Adv. Sci. 2024, 11, 2303674. [Google Scholar] [CrossRef] [PubMed]
- Sepehri, S.; Mashhadi, M.M.; Fakhrabadi, M.S. Active/passive tuning of wave propagation in phononic microbeams via piezoelectric patches. Mech. Mater. 2022, 167, 104249. [Google Scholar] [CrossRef]
- Baumann, A.; Sánchez-Ferrer, A.; Jacomine, L.; Martinoty, P.; Houerou, V.L.; Ziebert, F.; Kulic, I.M. Motorizing fibres with geometric zero-energy modes. Nat. Mater. 2018, 17, 523–527. [Google Scholar] [CrossRef]
- Guo, K.; Yang, X.; Zhou, C.; Li, C. Self-regulated reversal deformation and locomotion of structurally homogenous hydrogels subjected to constant light illumination. Nat. Commu. 2024, 15, 1694. [Google Scholar] [CrossRef]
- Zhu, Q.L.; Liu, W.; Khoruzhenko, O.; Breu, J.; Hong, W.; Zheng, Q.; Wu, Z.L. Animating hydrogel knotbots with topology-invoked self-regulation. Nat. Commun. 2024, 15, 300. [Google Scholar] [CrossRef]
- Zheng, S.; Shen, Y.; Zhu, F.; Yin, J.; Qian, J.; Fu, J.; Wu, Z.; Zheng, Q. Programmed deformations of 3D-printed tough physical hydrogels with high response speed and large output force. Adv. Funct. Mater. 2018, 28, 1803366. [Google Scholar] [CrossRef]
- Li, K.; Wu, P.; Cai, S. Chemomechanical oscillations in a responsive gel induced by an autocatalytic reaction. J. Appl. Phys. 2014, 116, 043523. [Google Scholar] [CrossRef]
- Iglesias, R.; Rossi, F.; Zhang, R.; Pavone, M. A BCMP network approach to modeling and controlling autonomous mobility-on-de-mand systems. Int. J. Robot. Res. 2016, 38, 357–374. [Google Scholar] [CrossRef]
- Barois, T.; Ayari, A.; Vincent, P.; Perisanu, S.; Poncharal, P.; Purcell, S.T. Ultra low power consumption for self-oscillating nanoelectromechanical systems constructed by contacting two nanowires. Nano Lett. 2013, 13, 1451–1456. [Google Scholar] [CrossRef][Green Version]
- Huang, L.; Lin, S.; Xu, Z.; Zhou, H.; Duan, J.; Hu, B.; Zhou, J. Fiber-based energy conversion devices for human-body energy harvesting. Adv. Mater. 2020, 32, 1902034. [Google Scholar] [CrossRef]
- Li, Z.; Myung, N.V.; Yin, Y. Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming. Sci. Robot. 2021, 6, eabi4523. [Google Scholar] [CrossRef]
- Soltani, M.; Raahemifar, K.; Nokhosteen, A.; Kashkooli, F.M.; Zoudani, E.L. Numerical methods in studies of liquid crystal elastomers. Polymers 2021, 13, 1650. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Y.; Lv, J. Phototunable self-oscillating system driven by a self-winding fiber actuator. Nat. Commun. 2021, 12, 3211. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ji, Q.; Huang, M.; Chang, L.; Zhang, C.; Wu, G.; Zi, B.; Bao, N.; Chen, W.; Wu, Y. Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure. Angew. Chem. 2021, 133, 20674–20680. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Z.; Sun, X.; Zuo, W.; Li, K. Multi-modal self-sustained motions of a silicone oil paper disc on a surface driven by hot steam. Chaos Solitons Fract. 2025, 191, 115898. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, W.; Li, K. Dynamical Behaviors of a Translating Liquid Crystal Elastomer Fiber in a Linear Temperature Field. Polymers 2022, 14, 3185. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhao, B.; Li, X.; Dong, L.; Zhang, M.; Zou, J.; Gu, G. Dexterous electrical-driven soft robots with reconfigurable chiral-lattice foot design. Nat. Commun. 2023, 14, 5067. [Google Scholar] [CrossRef]
- Atia, M.G.; Mohammad, A.; Gameros, A.; Axinte, D.; Wright, I. Reconfigurable soft robots by building blocks. Adv. Sci. 2022, 9, 2203217. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, Z.; Hu, W.; Soon, R.H.; Yasa, I.C.; Liu, Z.; Sitti, M. Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Robot. 2021, 6, eabf0112. [Google Scholar] [CrossRef]
- Duhr, P.; Meier, Y.A.; Damanpack, A.; Carpenter, J.; Studart, A.R.; Rafsanjani, A.; Demirörs, A.F. Kirigami Makes a Soft Magnetic Sheet Crawl. Adv. Sci. 2023, 10, 2301895. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Wang, Y.F.; Kang, J.T.; Qiu, X.H.; Wang, C.G. Helical micro-swimmer: Hierarchical tail design and propulsive motility. Soft Matter 2022, 18, 6148–6156. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Rao, D.; Zhang, M.; Xue, Y.; Cao, X.; Yin, S.; Wong, J.; Zhou, F.; Wong, T.W.; Yang, X.; et al. A jelly-like artificial muscle for an untethered underwater robot. Cell Rep. Phys. Sci. 2024, 5, 101957. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, C.; Dai, Y.; Li, K. Light-fueled self-fluttering aircraft with a liquid crystal elastomer-based engine. Commun. Nonlinear Sci. 2024, 132, 107942. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, K. Light-powered self-striking liquid crystal elastomer hammers inspired by mantis shrimp. Commun. Nonlinear Sci. 2025, 146, 108802. [Google Scholar]
- Zheng, M.; Wang, D.; Zhu, D.; Cao, S.; Wang, X.; Zhang, M. PiezoClimber: Versatile and Self-Transitional Climbing Soft Robot with Bioinspired Highly Directional Footpads. Adv. Funct. Mater. 2024, 34, 2308384. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, G.; Jin, B.; Feng, H.; Chen, Z.; Fang, M.; Yang, B.; Xiao, R.; Xie, T.; Zheng, N. Multimodal Autonomous Locomotion of Liquid Crystal Elastomer Soft Robot. Adv. Sci. 2024, 11, 2402358. [Google Scholar] [CrossRef]
- Kuang, Z.; Liu, J.; Meng, W.; Ikeda, T.; Wang, J.; Jiang, L. Click-Beetles-Inspired Light-Driven Continuous Jumping Robots Based on Janus Azobenzene Polymer Films. Adv. Funct. Mater. 2025, 35, 2421111. [Google Scholar] [CrossRef]
- Li, X.; Du, Y.; Pan, X.; Xiao, C.; Ding, X.; Zheng, K.; Liu, X.; Chen, L.; Gong, Y.; Xue, M.; et al. Leaf Vein-Inspired Programmable Superstructure Liquid Metal Photothermal Actuator for Soft Robots. Adv. Mater. 2025, 37, 2416991. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, L.; Yang, Y.; Wang, B.; Luo, J.; Tao, R.; Ding, J.; Xu, L. Light-driven liquid crystal elastomer actuators based on surface plasmon resonance for soft robots. ACS Appl. Mater. Interfaces 2024, 16, 69858–69869. [Google Scholar] [CrossRef]
- Yang, J.; Shankar, M.R.; Zeng, H. Photochemically responsive polymer films enable tunable gliding flights. Nat. Commun. 2024, 15, 4684. [Google Scholar] [CrossRef]
- Qing, H.; Guo, J.; Zhu, Y.; Chi, Y.; Hong, Y.; Quinn, D.; Dong, H.; Yin, J. Spontaneous snapping-induced jet flows for fast, maneuverable surface and underwater soft flapping swimmer. Sci. Adv. 2024, 10, eadq4222. [Google Scholar] [CrossRef] [PubMed]
- Ni, C.; Chen, D.; Wen, X.; Jin, B.; He, Y.; Xie, T.; Zhao, Q. High speed underwater hydrogel robots with programmable motions powered by light. Nat. Commun. 2023, 14, 7672. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Wang, Z.; Chen, Y.; Shao, J.; Gao, T.; Cai, S. Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle. ACS Appl. Mater. Interfaces 2018, 10, 8307–8316. [Google Scholar] [CrossRef]
- Kageyama, Y.; Ikegami, T.; Satonaga, S.; Obara, K.; Sato, H.; Takeda, S. Light-driven flipping of azobenzene assemblies-sparse crystal structures and responsive behavior to polarized light. Chem.-Eur. J. 2020, 26, 2000701. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, R.; Jin, L.; Liu, M.; Gao, Y.; Raney, J.; Yang, S. 3D-Printed photoresponsive liquid crystal elastomer composites for free-form actuation. Adv. Funct. Mater. 2023, 33, 2210614. [Google Scholar] [CrossRef]
- Heil, M.; Hazel, A.L. Fluid-structure interaction in internal physiological flows. Annu. Rev. Fluid Mech. 2011, 43, 141–162. [Google Scholar] [CrossRef]
- Gelebart, A.H.; Mulder, D.J.; Varga, M.; Konya, A.; Vantomme, G.; Meijer, E.W.; Selinger, R.L.B.; Broer, D.J. Making waves in a photoactive polymer film. Nature 2017, 546, 632–636. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, Y.; Li, K. Light-fueled self-ejecting liquid crystal elastomer launcher inspired by lizard tail autotomy. Chaos Solitons Fract. 2025, 194, 116265. [Google Scholar] [CrossRef]
- Hauser, A.W.; Sundaram, S.; Hayward, R.C. Photothermocapillary Oscillators. Phys. Rev. Lett. 2018, 121, 158001. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Du, C.; Dai, Y.; Li, K. Thermally Driven Continuous Rolling of a Thick-Walled Cylindrical Rod. Micromachines 2022, 13, 2035. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Ge, D.; Qiu, Y.; Li, K.; Xu, P. Mechanics of light-fueled bidirectional self-rolling in a liquid crystal elastomer rod on a track. Chaos Solitons Fract. 2025, 191, 115901. [Google Scholar] [CrossRef]
- Li, K.; Du, C.; He, Q.; Cai, S. Thermally driven self-oscillation of an elastomer fiber with a hanging weight. Extrem. Mech. Lett. 2022, 50, 101547. [Google Scholar] [CrossRef]
- Kim, Y.; Berg, J.; Crosby, A.J. Autonomous snapping and jumping polymer gels. Nat. Mater. 2021, 20, 1695–1701. [Google Scholar] [CrossRef]
- Vantomme, G.; Elands, L.C.; Gelebart, A.H.; Meijer, E.W.; Pogromsky, A.Y.; Nijmeijer, H.; Broer, D.J. Coupled liquid crystalline oscillators in Huygens’ synchrony. Nat. Mater. 2021, 20, 1702–1706. [Google Scholar] [CrossRef]
- Guerra, F. Coupled self-oscillating systems:theory and applications. Int. J. Mod. Phys. B 2009, 23, 5505–5514. [Google Scholar] [CrossRef]
- Warner, M.; Terentjev, E.M. Liquid Crystal Elastomers; Oxford University Press: Oxford, UK, 2007; p. 120. [Google Scholar]
- Naciri, J.; Srinivasan, A.; Jeon, H.; Nikolov, N.; Keller, P.; Ratna, B.R. Nematic elastomer fiber actuator. Macromolecules 2003, 36, 8499–8505. [Google Scholar] [CrossRef]
- White, T.J.; Broer, D.J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098. [Google Scholar] [CrossRef]
- Pang, X.; Qin, L.; Xu, B.; Liu, Q.; Yu, Y. Ultralarge contraction directed by light-driven unlocking of prestored strain energy in linear liquid crystal polymer fibers. Adv. Funct. Mater. 2020, 30, 2002451. [Google Scholar] [CrossRef]
- Kang, J.; Liu, S.; Wang, C. Controllable bistable smart composite structures driven by liquid crystal elastomer. Smart Mater. Struct. 2021, 31, 015003. [Google Scholar] [CrossRef]
- He, Q.; Wang, Z.; Wang, Y.; Minori, A.; Tolley, M.T.; Cai, S. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation. Sci. Adv. 2019, 5, eaax5746. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, Z.; Wei, J.; Li, X.; Guo, J. Phototriggered selective actuation and self-oscillating in dual-phase liquid crystal photonic actuators. Adv. Opt. Mater. 2018, 6, 1800131. [Google Scholar] [CrossRef]
- He, Q.; Wang, Z.; Wang, Y.; Wang, Z.; Li, C.; Annapooranan, R.; Zeng, J.; Chen, R.; Cai, S. Electrospun liquid crystal elastomer microfiber actuator. Sci. Robot. 2021, 6, eabi9704. [Google Scholar] [CrossRef] [PubMed]
- Roach, D.J.; Yuan, C.; Kuang, X.; Li, V.C.F.; Blake, P.; Romero, M.L.; Hammel, I.; Yu, K.; Qi, H.J. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl. Mater. Interfaces 2019, 11, 19514–19521. [Google Scholar] [CrossRef]
- Nägele, T.; Hoche, R.; Zinth, W.; Wachtveitl, J. Femtosecond photoisomerization of cis-azobenzene. Chem. Phys. Lett. 1997, 272, 489–495. [Google Scholar] [CrossRef]
- Finkelmann, H.; Nishikawa, E.; Pereira, G.G.; Warner, M. A New Opto-Mechanical Effect in Solids. Phys. Rev. Lett. 2001, 87, 015501. [Google Scholar] [CrossRef]
- Yanlei, Y.; Makoto, N.; Tomiki, I. Photomechanics: Directed bending of a polymer film by light. Nature 2003, 425, 145. [Google Scholar]
Parameter | Definition | Value | Unit |
---|---|---|---|
Original length of the LCE fiber | 10~30 | mm | |
Diameter of the fiber | 500 | um | |
Density of the fiber | 1.3 | g/cm3 | |
Mass of the fiber | 2.6~7.8 | mg | |
Straight-line distance between the center of mass and point B (Length of the forearm) | 5~20 | mm | |
Cross-sectional area of the forearm | 4 | mm2 | |
Density of the forearm (in balsa wood) | 0.25 | g/cm3 | |
Mass of the forearm | 0.005~0.02 | g | |
Mass of the mass block | 2~5 | g | |
Length from point A to point B | 10~25 | mm | |
Length from point B to point C | 0~20 | mm |
Parameter | Definition | Value | Unit |
---|---|---|---|
Light intensity | 0~50 | kW/m2 | |
Contraction coefficient of LCE material | −0.5~0 | / | |
Light-absorption constant | 0.0002 | m2/s·W | |
Time of thermal relaxation | 0.01~0.1 | s | |
Time of an illumination period | 0~3 | s | |
Time of illumination on | 0~3 | s | |
Illumination time rate | 0~1 | / | |
Time of illumination off | 0~3 | s | |
Gravitational acceleration | 9.8 | m/s−2 | |
Elastic coefficient of the fiber | 1~4 | N/m |
Dimensionless Parameter | Definition | Value |
---|---|---|
0.5~5 | ||
0~1 | ||
0~30 | ||
0~30 | ||
/ | ||
0.1~40 | ||
0.2~5 | ||
/ | −0.5~0 | |
0~1 | ||
0~1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, C.; Dai, S.; Sun, Q. Theoretical Modeling of a Bionic Arm with Elastomer Fiber as Artificial Muscle Controlled by Periodic Illumination. Polymers 2025, 17, 2122. https://doi.org/10.3390/polym17152122
Du C, Dai S, Sun Q. Theoretical Modeling of a Bionic Arm with Elastomer Fiber as Artificial Muscle Controlled by Periodic Illumination. Polymers. 2025; 17(15):2122. https://doi.org/10.3390/polym17152122
Chicago/Turabian StyleDu, Changshen, Shuhong Dai, and Qinglin Sun. 2025. "Theoretical Modeling of a Bionic Arm with Elastomer Fiber as Artificial Muscle Controlled by Periodic Illumination" Polymers 17, no. 15: 2122. https://doi.org/10.3390/polym17152122
APA StyleDu, C., Dai, S., & Sun, Q. (2025). Theoretical Modeling of a Bionic Arm with Elastomer Fiber as Artificial Muscle Controlled by Periodic Illumination. Polymers, 17(15), 2122. https://doi.org/10.3390/polym17152122